反馈控制系统的传递函数解读
2.5反馈控制系统的传递函数

一、系统的开环传递函数
闭环控制 R(s) 系统的典型
结构:
开环传递函数:
E(s)
_ G1(s)
B(s)
D(s)
+
C(s) G2(s)
H(s)
系统反馈量与误差信号的比值
Gk(s)=
B(s) E(s)
=G1(s)G2(s)H
(s)=G(s)H(s)
第五节 反馈控制系统的传递函数
求
DR(s()s) +_
_G3 G1
C(s)
H1
D(s) G1G2
G2G1 - H1
1+G1G2H1
D(s)
_
G2
C(s+)
C(s) G3
- -1
H-(21+H2/G1)
H2 /G1
解:
D(s) 系+统传G递3 函数为:
C(s)
R(s) = 0
H1
结 变构换图为CD((ss))= 1+G1GGG22H3(11++G-G21GGG32H1H21+- )GH21G2-1G3
解1+: 1RERG+1(G+(G(s1sDs)GG1)1)G(G=21s-GG21)2GH+32=GH3G13H0111HG2+2/2GGG结H121=1G构+1G2-+H图HG21G1变1+GG3GHG换122GH12G+为21G3G+H-:G13G2E2G(2sG)3H3 2
第五节 反馈控制系统的传递函数
B(s) H(s)
第五节 反馈控制系统的传递函数
2.扰动信号D(s)作用
第2章_控制系统的动态数学模型_2.4传递函数以及典型环节的传递函数

【例】R-L-C无源电路网络的传递函数
已知系统的微分方程为:
d2 d LC 2 uc (t ) RC uc (t ) uc (t ) ur (t ) dt dt
所有初始条件均为零时,其拉氏变换为:
LCs 2U c (s) RCsU c (s) U c (s) U r (s)
n
m n bm K =K * (-Zi ) / ( p j ) an i 1 j 1
为传递函数的增益
b0 K a0
*
为根轨迹增益
Ti和 i 为时间常数
零、极点分布图:
G ( s) b0 (s z1 )(s z2 )(s zm ) M (s) a0 (s p1 )(s p2 )(s pn ) D(s)
r (t ) 1(t )
零状态响应分别为: c1 (t ) 1 2et 3e2t
c2 (t ) 1 0.5et 0.5e2t
各个模态在两个系统输出响应中所占的比重不同,
取决于零点相对于极点的距离。
j
z2
z1
0
(5)关于传递函数的几点说明
传递函数是一种以系统参数表示的线性定常系统输 入量与输出量之间的关系式。传递函数的概念通常只 适用于线性定常系统。 传递函数是复数自变量s的复变函数。传递函数中 的各项系数和相应微分方程中的各项系数对应相等, 完全取决于系统结构参数。
D(s)=0 称为系统的特征方程,其根称为系统的 特征根。特征方程决定着系统的动态特性。
D(s) 中s 的最高阶次等于系统的阶次。
将传递函数的分子和分母多项式进行因式分解可得
第二章 控制系统的传递函数

第二章
控制系统的传递函数
2.1 微分方程模型(时间域模型)
一、控制系统微分方程的分类
线性系统:可由线性微分方程描述的系统。线性微分方程是指微分方程 是定常和线性的。线性系统可应用叠加原理,将多输入及多输出的 系统转化为单输入和单输出的系统进行处理分析,最后进行叠加。 另外线性系统还有一个重要的性质,就是齐次性,即当输入量的数 值成比例增加时,输出量的数值也成比例增加,而且输出量的变化 规律只与系统的结构、参数及输入量的变化规律有关,与输入量数 值的大小是无关的。 非线性系统:研究非线性系统的运动规律和分析方法的一个分支学科。 非线性系统最重要的问题之一就是确定模型的结构,如果对系统的 运动有足够的知识,则可以按照系统运动规律给出它的数据模型。 一般来说,这样的模型是由非线性微分方程和非线性差分方程给出 的,对这类模型的辨别可以采用线性化,展开成特殊函数等方法。 非线性系统理论的研究对象是非线性现象,它反映出非线性系统运 动本质的一类现象,不能采用线性系统的理论来解释,主要原因是 非线性现象有频率对振幅的依赖性、多值响应和跳跃谐振、分谐波 振荡、自激振荡、频率插足、异步抑制、分岔和混沌等。
控制系统的传递函数
例 2:RLC 电路(L-R-C 无源四端网络)如图,建立输入输出间的微分方程关
由基尔霍夫定律,回路的压降为 0,即输入电压由电感、电阻、电容上的电压 平衡。 Ur=UL+UR+UC 电流 与 有 即 的关系
第二章
控制系统的传递函数
与 在数值上具有一 ~
注意:该系统也是一个二阶系统 与例 1 相比,它们具有相同的模型形式。当
线性系统满足叠加原理,而非线性系统不满足叠加原理。
第二章
控制系统的传递函数
二、微分方程模型的建立 根据系统物理机理建立系统微分方程模型的基本步骤: (1)确定系统中各元件的输入、输出物理量; (2)根据物理定律或化学定律(机理),列出元件的原始方程,在条 件允许的情况下忽略次要因素,适当简化; (3)列出原始方程中中间变量与其他因素的关系; (4)消去中间变量,按模型要求整理出最后形式。
反馈的传递函数

反馈的传递函数反馈的传递函数反馈是一种重要的控制系统设计技术,广泛应用于电子、机械、航空、军事、化工等领域。
反馈是指将系统的输出信号作为输入信号重新送回系统,对系统进行补偿或调整而达到控制的目的。
在反馈控制中,反馈传递函数是一个重要的概念,本文将探讨反馈传递函数的含义、计算方法以及应用。
一、反馈传递函数的定义反馈传递函数是指反馈系统中输入输出之间的比例系数,它是输入信号与输出信号之间的函数关系。
通常用符号K表示,可以表示为:K = β / (1 + αH)其中,β 表示反馈回路中反馈信号的比例系数;α 表示前向信号的比例系数;H 表示系统的传递函数。
反馈传递函数 K 描述了反馈信号对系统输出的影响程度。
二、反馈传递函数的计算方法在实际反馈控制系统中,反馈传递函数的计算通常采用两种方法:仿射变换法和基尔霍夫定理法。
1.仿射变换法仿射变换法是一种重要的电路理论方法,广泛应用于控制系统中。
利用仿射变换法可以将反馈系统的传递函数表示为输入输出之间的仿射变换关系。
2.基尔霍夫定理法基尔霍夫定理法是一种基于电路理论的反馈传递函数计算方法,它基于基尔霍夫电路定理建立了反馈回路中的电路模型。
三、反馈传递函数的应用反馈传递函数广泛应用于各种控制系统中,如机械控制系统、电子控制系统、电力控制系统、化工控制系统、军事控制系统等。
在实际应用中,反馈传递函数可以用于研究系统的动态特性、稳定性分析及控制系统设计等。
1.研究系统动态特性反馈传递函数可以描述反馈系统的输入输出之间的关系,通过分析反馈传递函数可以研究系统的动态特性。
例如,可以对系统的响应速度、稳态误差、阻尼比等参数进行分析,从而对系统进行性能优化。
2.稳定性分析反馈控制系统的稳定性分析是控制系统设计中的重要问题。
反馈传递函数可以用于稳定性分析,例如判断系统的稳定性条件和研究系统的频率响应特性。
3.控制系统设计反馈控制系统的设计是利用反馈传递函数对系统进行优化的过程,通过反馈传递函数可以研究系统的动态特性、稳定性、抗干扰能力等性能。
控制系统的传递函数及信号流图和梅逊公式

1 Ln LrLsLt
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
例2-7 试用梅逊公式求系统的闭环传递函数 C(S)
R(S)
图2-45 例2-7图
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
解: P1 G1G2G3.
路 开通路—通路与任一节点相交不多于一次
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
闭通路—通路的终点也是通路的起点,并且与任何其它节 点相交不多于一次
6)前向通路—从输入节点到输出节点的通路上,通过任何节 点不多于一次,此通路自然保护区为前向通路
7)回路—就是闭环通路 8)不接触回路—如果一些回路间没有任何公共节点 9)前向通路增益—在前向通路中多支路增益的乘积。 10)回路增益—回路中多支路增益的乘积。
《自动控制理论》
§2.6 信号流图和梅逊公式的应用
信号流图的性质 (1)信号流图只适用于线性系统。 (2)支路表示一个信号对另一个信号的函数关系;信 号只能沿着支路上的箭头指向传递 (3)在节点上可以把所有输入支路的信号叠加,并把 相加后的信号传送到所有的输出支路。
(4)具有输入和输出支路的混合节点,通过增加一个具 有单位增益的支路,可以把它作为输出节点来处理。 (5)对于一个给定的系统,其信号流图不是唯一的, 这是由于描述的方程可以表示为不同的形式。
参考输入误差的传递函数为
CR(s) ER(s)G1(s)G2(s)
CR(s)
G1( s )G 2( s )
R(s) 1 G1(s)G2(s)H (s)
ER(s)G1(s)G2(s)
反馈控制系统的传递函数

E(s)
_ G1(s)
H(s)
G2(s)
C(s)
B(s)
第五节 反馈控制系统的传递函数
2.扰动信号D(s)作用
系统的典型 R(s) E(s) 闭环传递函数为: D(s) + G2(s) 结构: _ G1(s) G2(s) C(s) Фd(s)= D(s) = B(s) 1+G1(s)G2(s)H(s) 设 R (s) = 0 H(s) 动态结构图 转换成: 前向通道:
E(s)
前向通道: 反馈通道:
_
H(s) G2(s) G1(s)
第五节 反馈控制系统的传递函数
2.扰动信号D(s)作用
R(s) E(s) C(s) + R(s)作用下误 _ G1(s) -G2(s)H(s)G2(s) 差输出的动态 E(s)= B(s) Фed(s)= D(s) 1+G (s)G H(s) 结构图: 1 2(s)H(s)
反馈通道:
D(s) G1(s) G2(s) C(s)
C(s)
H(s)
第五节 反馈控制系统的传递函数
三、系统的误差传递函数
1.给定信号R(s)作用
D(s) 设 D(s)=0 误差传递函数为: R(s) E(s) + _ G1(s) G2(s) E(s) 1 误差输出的动 Фer(s)= R(s) = 1+G (s)G (s)H(s) B(s) H(s) 1 2 态结构图: R(s) C(s)
R(s) = 0 误差传递函数为: D(s)
前向通道: 反馈通道:
D(s)
控制工程基础第三章系统的传递函数

如图所示为机械转动系统,由惯性负载和粘性摩擦阻 尼器构成,以转矩Ti为输入量,以角速度w为输出量
机械转动系统
dw ( t) 其运动方程式为:J + Bw ( t )= Ti ( t) dt W (s ) 1 K 其传递函数为:G ( s)= = = Ti (s ) Js + B Ts + 1 J 1 式中 T= , K = 。 B B
B
i(t)
C
uo (t)
x
机械平移系统
d 2x dx m 2 B k x f t dt dt
RLC电路
X s 1 1 2n Gs = 2 F s ms Bs k k s 2 2n s 2 n
n
k m
B 2 km
C
uo (t )
其微分方程为:Ri( t)+ u0 () t = ui () t du0 () t i( t)= C dt 消去中间变量后,得 du0 () t RC + u0 () t = ui () t dt 通过拉氏变换求得电路的传递函数为: U0 (s) 1 G( s)= = Ui (s) Ts+1 式中 T=RC
4. 微分环节
输出量与输入量的微分成比例的环节,称为微分环节 dxi ( t) 其运动方程式为:x0 ( t )= TD dt 其传递函数为: G ( s)= TD s
式中 TD ─ 微分环节的时 间常数 。
当输入量为单位阶跃信号时,输出量就是脉冲函数,这 在实际中是不可能的。因此,理想的微分环节不能实现,在 实际中用来执行微分作用的都是近似的,称为实际微分环节, 其传递函数具有如下形式:
一阶微分环节和二阶微分环节的微分方程分别为:
反馈控制系统原理

反馈控制系统原理反馈控制系统是现代工业控制系统的基础,它的原理可以应用于各种领域,包括机械、电子、化工、航空、航天等。
本文将介绍反馈控制系统的原理,包括反馈控制系统的概念、组成和分类、反馈控制系统的基本原理、反馈控制系统的稳定性和性能分析、反馈控制器的设计方法等。
一、反馈控制系统的概念、组成和分类反馈控制系统是一种通过测量输出信号并将其与所需信号进行比较,从而调节系统输入信号的控制系统。
反馈控制系统由四个基本部分组成:传感器、误差放大器、执行器和反馈控制器。
其中,传感器用于将系统的输出信号转换为电信号,误差放大器用于比较输出信号和所需信号之间的误差,执行器将误差信号转换为系统的输入信号,反馈控制器则用于调节误差信号。
根据系统的反馈路径,反馈控制系统可以分为开环控制系统和闭环控制系统。
开环控制系统是指输入信号不受输出信号的影响,输出信号也不会对输入信号产生影响的控制系统。
闭环控制系统是指系统的输出信号会对输入信号进行反馈调节的控制系统。
闭环控制系统的反馈路径可以分为负反馈和正反馈两种情况。
负反馈是指输出信号与所需信号之间的误差信号通过反馈路径返回到误差放大器进行比较调节,从而减小误差。
正反馈则是指误差信号通过反馈路径返回到系统的输入端口,增加误差,使得系统失去控制。
二、反馈控制系统的基本原理反馈控制系统的基本原理是通过误差信号来调节系统的输入信号,使得系统的输出信号与所需信号尽可能接近。
反馈控制系统的调节过程可以分为三个阶段:传递函数的建立、稳态误差的计算和控制器的设计。
传递函数是反馈控制系统的重要参数,它描述了系统输入信号与输出信号之间的关系。
传递函数可以通过系统的数学模型进行推导,通常采用拉普拉斯变换的方法进行求解。
传递函数的形式为:G(s) = Y(s) / X(s)其中,G(s)表示系统的传递函数,s为复频域变量,Y(s)和X(s)分别表示系统的输出信号和输入信号。
稳态误差是指系统在稳定状态下输出信号与所需信号之间的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-8 反馈控制系统的传递函数
一个反馈控制系统在工作过程中,一般会受到两类信号的作用,统称外作用。
一类是有用信号或称输入信号、给定值、指令等,用)(t r 表示。
通常)(t r 是加在控制系统的输入端,也就 是系统的输入端;另一类则是扰动,或称干扰)(t n ,而干扰)(t n ,可以出现在系统的任何位置,
但通常,最主要的干扰信号是作用在被控对象上的扰动,
例如电动机的负载扰动等。
一个闭环控制系统的典型结构图,如图2-48所示,
应用叠加原理可分别求出下面几种传递函数。
一、输入信号)(t r 作用下的闭环传递函数
令0)(=t n ,这时图2-48可简化成图2-49)(a 。
输出)(s C 对输入)(s R 之间的传递函数,称输入作用下的闭环传递函数,简称闭环传递函数,用)(s Φ表示。
)
()()(1)()()()()(2121s H s G s G s G s G s R s C s +==
Φ 而输出的拉氏变换式为 )()()()(1)()()(2121s R s H s G s G s G s G s C += (2-61)
为了分析系统信号的变化规律,寻求偏差信号与输入之间的关系,将结构图简化为如图2-49)(b 。
列写出输入)(s R 与输出)(s ε之间的传递函数,称为控制作用下偏差传递函数。
用)()
()(s R s s εΦε=表示。
)()()(11)()()(21s H s G s G s R s s +==
εΦε (2-62)
二、干扰)(t n 作用下的闭环传递函数 同样,令0)(=t r ,结构图2-48可简化为图2-50)(a 。
以)(s N 作为输入,)(s C 为在扰动作用下的输出,它们之间的传递函数,用)(s n Φ表示,称为扰动作用下的闭环传递函数,简称干扰传递函数。
)
()()(1)()()()(212s H s G s G s G s N s C s n +==Φ 系统在扰动作用下所引起的输出为
)()()()(1)()(212s N s H s G s G s G s C += (2-63)
同理,干扰作用下的偏差传递函数,称干扰偏差传递函数。
用)(s n εΦ表示。
以)(s N 作为输入,)(s ε作为输出的结构图,如图2-50)(b 。
)()()(1)()()()
()(212s H s G s G s H s G s N s s n +-==εΦε (2-64)
显然,系统在同时受)(t r 和)(t n 作用下,系统总输出,根据线性系统的叠加原理,应为各外作用分别引起的输出的总和,将式(2-61)和(2-63)相加,即为总输出的变换式
)()()()(1)()()()()(1)()()(2122121s N s H s G s G s G s R s H s G s G s G s G s C +++= (2-65) 式中,如果系统中的参数设置,能满足1)()()(21>>s H s G s G 及1)()(1>>s H s G ,则系统总输出表达式(2-65)可近似为
)()
(1)(s R s H s C ≈ 上式表明,采用反馈控制的系统,适当地选配元、部件的结构参数,系统就具有很强的抑制干扰的能力。
同时,系统的输出只取决于反馈通路传递函数及输入信号,而与前向通路传递函数几乎无关。
特别是当1)(=s H 时,即系统为单位反馈时,)()(s R s C ≈,表明系统几乎实现了对输入信号的完全复现,即获得较高的工作精度。
同理,根据式(2-62)和式(2-64)可得系统总的偏差为
)()()()(s N s R s s n e εΦΦε+=
将上式推导的四种传递函数表达式进行比较,可以看出两个特点
(1)它们的分母完全相同,均为)]()()(1[21s H s G s G +,其中)()()(21s H s G s G 称为开环传递函数。
所谓开环传递函数,是指在图2-48所示典型的结构图中,将)(s H 的输出断开,亦即断开系统主反馈回路,这时从输入)(s R (或)(s ε)到)(s B 之间的传递函数。
开环传递函数在今后各章讨论中是十分重要的。
(2)它们的分子各不相同,且与其前向通路的传递函数有关。
因此,闭环传递函数的分子随着外作用的作用点和输出量的引出点不同而不同。
显然,同一个外作用加在系统不同的位置上,对系统运动的影响是不同的。