三角形易错题练习

合集下载

三角形易错题集锦(带答案解析)

三角形易错题集锦(带答案解析)

三角形易错题一、填空题(共 10 小题) (除非特别说明,请填准确值)1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为_________ .2.等腰三角形 ABC 的周长是 8cm, AB=3cm,则 BC= _________ cm.3.等腰三角形的周长为 20cm,若腰不大于底边,则腰长 x 的取值范围是 _________ .4.如图: a∥ b, BC=4,若三角形 ABC 的面积为 6,则 a 与b 的距离是 _________ .5.小亮家离学校 1 千米,小明家离学校 3 千米,如果小亮家与小明家相距 x 千米,那么 x 的取值范围是 _________ .6.已知△ ABC 两边长 a,b 满足,则△ ABC 周长 l 的取值范围是 _________ .7.若等腰△ ABC (AB=AC),能用一刀剪成两个等腰三角形,则∠ A= _________ .8.图 1 是一个三角形,分别连接这个三角形三边的中点得到图 2;再分别连接图 2 中间小三角形的中点,得到图 3. (若三角形中含有其它三角形则不记入)(1) 图 2 有 _________ 个三角形;图 3 中有 _________ 个三角形(2)按上面方法继续下去,第 20 个图有 _________ 个三角形;第 n 个图中有 _________ 个三角形. (用 n 的代数式表示结论)9.一个三角形两边长为 5 和 7,且有两边长相等,这个三角形的周长是 _________ .10.两边分别长 4cm 和 10cm 的等腰三角形的周长是 _________ cm.参考答案与试题解析一、填空题(共 10 小题) (除非特别说明,请填准确值)1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为 8 .考点:多边形内角与外角.专题:计算题.分析:根据内角和公式,设该多边形为 n 边形,内角和公式为180°• (n ﹣ 2),因为最小角为100°,又依次增加的度数为10°,则它的最大内角为( 10n+90) °,根据等差数列和的公式列出方程,求解即可.解答:解:设该多边形的边数为 n.则为=180 • (n ﹣ 2),解得 n1=8, n2=9,n=8时,10n+90=10×80+90=170,n=9 时,10n+90=9 × 10+90=180, (不符合题意)故这个多边形为八边形.故答案为: 8.点评:本题结合等差数列考查了凸 n 边形内角和公式.方程思想是解此类多边形有关问题常要用到的思想方法,注意凸 n 边形的内角的范围为大于0°小于180°.2.等腰三角形 ABC 的周长是 8cm, AB=3cm,则 BC= 2 或 3 或 2.5 cm.考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:按照 AB 为底边和腰,分类求解.当 AB 为底边时, BC 为腰;当 AB 腰时, BC 为腰或底边.解答:解: (1) 当 AB=3cm 为底边时, BC 为腰,由等腰三角形的性质,得 BC= (8 ﹣ AB) =2.5cm;(2) 当 AB=3cm 为腰时,①若 BC 为腰,则 BC=AB=3cm,②若 BC 为底,则 BC=8 ﹣ 2AB=2cm.故本题答案为: 2 或 3 或 2.5cm.点评:本题考查了等腰三角形的性质,分类讨论思想.关键是明确等腰三角形的三边关系.3.等腰三角形的周长为 20cm,若腰不大于底边,则腰长 x 的取值范围是 5<x≤ .考点:等腰三角形的性质;三角形三边关系.分析:根据题意以及三角形任意两边之和大于第三边列出不等式组求解即可.解答:解:等腰三角形的底边为 20 ﹣ 2x,根据题意得,,由①得,x≤ ,由②得, x>5,所以,腰长 x 的取值范围是5<x≤ .故答案为: 5<x≤ .点评:本题考查了等腰三角形两腰相等的性质,三角形的三边关系,列出不等式组是解题的关键.4.如图:a∥ b, BC=4,若三角形 ABC 的面积为 6,则 a 与b 的距离是 3 .考点:平行线之间的距离;三角形的面积.分析:过 A 作AD⊥BC 于 D,则 AD 的长就是 a b 之间的距离,根据三角形的面积公式求出 AD 即可.解答:解:过 A 作 AD⊥BC 于 D,∵ 三角形 ABC 的面积为 6, BC=4,:×BC ×AD=6,×4×AD=6,AD=3,∵ a∥ b,:a 与b 的距离是 3,故答案为: 3.点评:本题考查了两条平行线间的距离和三角形的面积,关键是正确作辅助线后能求出 AD 的长.5.小亮家离学校 1 千米,小明家离学校 3 千米,如果小亮家与小明家相距 x 千米,那么 x 的取值范围是2≤x≤4 .考点:三角形三边关系.分析:小明、小亮家的地理位置有两种情况:(1)小明、小亮家都在学校同侧;(2)小明、小亮家在学校两侧.联立上述两种情况进行求解.解答:解: (1)小明、小亮家都在学校同侧时,x≥2;(2)小明、小亮家在学校两侧时, x≤4.因此 x 的取值为2≤x≤4.点评:本题注意考虑两种不同的情况,能够分析出每一种情况的范围,再进一步综合两种情况的结论.6.已知△ ABC 两边长 a,b 满足,则△ ABC 周长l 的取值范围是 6<l<10 .考点:分析:解答:非负数的性质:算术平方根;非负数的性质:偶次方;三角形三边关系.由,可得 + (b ﹣ 3) 2=0,则 a=2, b=3,可得第三边 c 的取值范围是 1<c<5,从而求得周长 l 的取值范围.解:∵ ,∴ + (b ﹣ 3) 2=0,∴ a=2, b=3,∴ 第三边 c 的取值范围是 1<c<5,∴ △ ABC 周长 l 的取值范围是 6<l<10.故答案为: 6<l<10.点评:此题主要考查了非负数的性质,其中首先灵活应用了非负数的性质,然后利用三角形三边之间的关系,难度中等.7.若等腰△ ABC (AB=AC),能用一刀剪成两个等腰三角形,则∠ A= 36。

三角形易错题(答案版)

三角形易错题(答案版)

一.折叠问题1.如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为5.【分析】由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8﹣x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案.【解答】解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x,在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5,故答案为:5.【点评】本题主要考查折叠的性质,利用折叠的性质得到AE=A1E是解题的关键,注意勾股定理的应用.2.如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则=.【分析】根据等边三角形的性质、相似三角形的性质得到∠AED=∠BDF,根据相似三角形的周长比等于相似比计算即可.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=6,由折叠的性质可知,∠EDF=∠C=60°,EC=ED,FC=FD,∴∠AED=∠BDF,∴△AED∽△BDF,∴===,∴==,故答案为:.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.3.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为2.【分析】作DF⊥B′E于点F,作B′G⊥AD于点G,首先根据有一个角为60°的等腰三角形是等边三角形判定△BDE是边长为4的等边三角形,从而根据翻折的性质得到△B′DE也是边长为4的等边三角形,从而GD=B′F=2,然后根据勾股定理得到B′G =2,然后再次利用勾股定理求得答案即可.【解答】解:如图,作DF⊥B′E于点F,作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是边长为4的等边三角形,∵将△BDE沿DE所在直线折叠得到△B′DE,∴△B′DE也是边长为4的等边三角形,∴GD=B′F=2,∵B′D=4,∴B′G===2,∵AB=10,∴AG=10﹣6=4,∴AB′===2.故答案为:2.【点评】本题考查了翻折变换的性质,解题的关键是根据等边三角形的判定定理判定等边三角形,难度不大.二.用代数式表示1.如图,在Rt△ABC中,=nM为BC上的一点,连接BM.(1)如图1,若n=1,①当M为AC的中点,当BM⊥CD于H,连接AH,求∠AHD的度数;②如图2,当H为CD的中点,∠AHD=45°,求的值和∠CAH的度数;(2)如图3,CH⊥AM于H,连接CH并延长交AC于Q,M为AC中点,直接写出tan ∠BHQ的值(用含n的式子表示).【分析】(1)①如图1中,作AK⊥CD交CD的延长线于K.利用全等三角形的性质证明AK=CH,再证明CH=KH,推出AK=KH即可解决问题.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.证明△ADH∽△CDA,推出AD=a,设AM=CM=BM=x,在Rt△CMD中,根据CM2=DM2+CD2,构建方程求出x(用a表示),求出BD即可,再证明sin∠ACK=,推出∠ACK=30°即可解决问题.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.想办法求出AJ,HJ(用n,y表示)即可解决问题.【解答】解:(1)①如图1中,作AK⊥CD交CD的延长线于K.∵CD⊥BM,AK⊥CK,∠ACB=90°,∴∠CHB=∠K=90°,∠CBH+∠BCH=90°,∠BCH+∠ACK=90°,∴∠CBH=∠ACK,∵CB=CA,∴△CHB≌△AKC(AAS),∴AK=CH,∵∠CHM=∠K=90°,∴MH∥AK,∵AM=BM,∴CH=KH,∴AK=KH,∵∠K=90°,∴∠AHD=45°.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵∠AHD=45°,∠AHD=∠ACH+∠CAH,∴∠ACH+∠CAH=∠CAH+∠DAH,∴∠DAH=∠ACD,∵∠ADH=∠CAD,∴△ADH∽△CDA,∴=,∴=,∴AD=a,∵CA=CB,∠ACB=90°,CM⊥AB,∴AM=BM,∴CM=AM=BM,设AM=CM=BM=x,在Rt△CMD中,∵CM2=DM2+CD2,∴x2+(x﹣a)2=4a2,解得x=a(负根已经舍弃).∴BD=AB﹣AD=(+)a﹣a=a,∴==.∵△ADH∽△CDA,∴==,设AH=m,则AC=m,AK=KH=m,∴tan∠ACK==,∴∠ACH=30°,∴∠CAH=∠AHD﹣∠ACH=45°﹣30°=15°.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.∵CH⊥BM,BM===•y,∴CH===•y,∴HM==•y,∵AJ⊥BJ,CH⊥BJ,∴∠J=∠CHM=90°,∵∠AMJ=∠CMH,AM=CM,∴△AMJ≌△CMH(AAS),∴AJ=CH=•y,HM=JM=•y,∵∠BHQ=∠AHJ,∴tan∠BHQ=tan∠AHJ===n.【点评】本题属于三角形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.2.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=45度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【解答】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH=EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH=CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=AF,∵在Rt△AEF中,AE2=AF2+EF2,∴(AF)2+(EF)2=2AE2,∴EH2+CH2=2AE2.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.3.如图,城关镇某村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为m米,那么这两树在坡面上的距离AB为()A.m cosαB.C.m sinαD.【分析】直接利用锐角三角函数关系得出cosα=,进而得出答案.【解答】解:由题意可得:cosα=,则AB=.故选:B.【点评】此题主要考查了解直角三角形的应用,正确记忆锐角三角函数关系是解题关键.4.已知顶角为α(30°<α<90°)的等腰三角形纸片的腰长和底边长分别为a,b,过三角形其中一个顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.a2+ab+b2=0B.a2﹣ab﹣b2=0C.a2﹣ab+b2=0D.a2+ab﹣b2=0【分析】由等腰三角形的性质可得AB=AC=a,BD=BC=b=AD,∠ABD=∠A,∠BDC =∠C,∠C=∠ABC,通过证明,△ABC~△BDC,可得,即可求解.【解答】解:如图,等腰△ABC,等腰△BDA和等腰△BDC,∴AB=AC=a,BD=BC=b=AD,∠ABD=∠A,∠BDC=∠C,∠C=∠ABC,∴CD=a﹣b,△ABC~△BDC,∴,∴b2=a(a﹣b),∴a2﹣ab﹣b2=0,故选:B.【点评】本题考查了等腰三角形的性质,相似三角形的判定和性质,关键是灵活运用相似三角形的性质.5.已知直角三角形纸片的两条直角边长分别为m和3(m<3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+6m+9=0B.m2﹣6m+9=0C.m2+6m﹣9=0D.m2﹣6m﹣9=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(3﹣m)2,整理即可解答.【解答】解:如图,m2+m2=(3﹣m)2,2m2=32﹣6m+m2,m2+6m﹣9=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.6.如图,在△ABC中,AB=AC,BC=4,E为AC边的中点,线段BE的垂直平分线交边BC于点D,EH垂直BC于点H.设BD=x,EH=y,则()A.2x﹣y2=3B.4x﹣y2=6C.6x﹣y2=9D.8x﹣y2=12【分析】如图,作AM⊥BC于M,连接DE.在Rt△DEH中,利用勾股定理即可解决问题;【解答】解:如图,作AM⊥BC于M,连接DE.∵AB=AC,AM⊥BC,∴BM=CM=2,∵EH⊥BC,∴EH∥AM,∵AE=EC,∴CH=MH=1,∵BD=x,∴DH=4﹣x﹣1=3﹣x,∵线段BE的垂直平分线交边BC于点D,∴DE=BD=x,在Rt△DEH中,DE2=EH2+DH2,∴x2=y2+(3﹣x)2,∴y2=6x﹣9,∴6x﹣y2=9,故选:C.【点评】本题考查等腰三角形的性质、线段的垂直平分线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用勾股定理解决问题,属于中考常考题型.7.如图,在△ABC中,点D在边AB上,且,过点D作DE∥BC交AC于点E,连接BE.若△ADE和△BCE的面积分别为S1和S2,则的值为()A.B.C.D.【分析】由DE∥BC证明△ADE∽ABC,得,,因平行线间的距离相等,即△BDE和△BCE底边DE和BC上的高相等,面积比等于底边比求出,即的值为.【解答】解:设S△ABC的面积为S,如图所示:∵DE∥BC,∴△ADE∽ABC,∴,又∵,AB=AD+BD,∴,又∵S△ADE=S1,∴=,∴,∵.S△BCE=S2,∴,又∵S四边形BCED=S△BDE+S△BCE=,∴,解得:,∴,故选:C.【点评】本题综合考查相似三角形的判定与性质,面积的和差,在等高的两个三角形中,面积比等于底边比等相关知识,本题难度中等,属于中档题.8.如图,在△ABC中,AB=AC,点D在边AB上,DE∥BC,与边AC交于点E,将△ADE 沿着DE所在的直线对折,得到△FDE,连结BF.记△ADE,△BDF的面积分别为S1,S2,若BD>2AD,则下列说法正确的是()A.2S2>3S1B.2S2>5S1C.3S2>7S1D.3S2>8S1【分析】首先证明四边形ADFE是菱形,推出EF∥AB,可得=,由BD>2AD,推出S2>2S1,由此即可判断.【解答】解:∵AB=AC,∴∠ABC=∠C,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∵△DEF是由△ADE翻折得到,∴AD=DF=EF=AE,∴四边形ADFE是菱形,∴EF∥AB,∴=,∵BD>2AD,∴S2>2S1,∴选项A正确故选:A.【点评】本题考查翻折变换,平行线的性质,三角形的面积,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m=,求证:AE=DF;(2)如图2,若m=,求的值.【分析】(1)①先判断出△BHE∽△BAC,进而判断出HE=DC,即可得出结论;②先判断出AC=AB,BH=HE,再判断出∠HEA=∠AFD,即可得出结论;(2)先判断出△EGB∽△CAB,进而求出CD:BE=3:5,再判断出∠AFM=∠AEG进而判断出△F AD∽△EGA,即可得出结论.【解答】解:(1)①证明:∵EH⊥AB,∠BAC=90°,∴EH∥CA,∴△BHE∽△BAC,∴,∵,∴,∴,∴HE=DC,∵EH∥DC,∴四边形DHEC是平行四边形;②∵,∠BAC=90°,∴AC=AB,∵,HE=DC,∴HE=DC,∴,∵∠BHE=90°,∴sin B==,∴∠B=45°,∴∠BEH=∠B=45°∴BH=HE,∵HE=DC,∴BH=CD,∴AH=AD,∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°,∴∠HEA=∠AFD,∵∠EHA=∠F AD=90°,∴△HEA≌△AFD,∴AE=DF;(2)如图2,过点E作EG⊥AB于G,∵CA⊥AB,∴EG∥CA,∴△EGB∽△CAB,∴,∴,∵,∴EG=CD,设EG=CD=3x,AC=3y,∴BE=5x,BC=5y,∴BG=4x,AB=4y,∵∠EGA=∠AMF=90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG,∵∠F AD=∠EGA=90°,∴△F AD∽△EGA,∴=【点评】此题是相似形综合题,主要考查了平行四边形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,判断出∠HEA=∠AFD是解本题的关键.10.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.【点评】本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.11.如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S△DAF=y,求y关于x的函数关系式(不需要写函数的定义域);(3)如果AG=8,求DE的长.【分析】(1)求出AC=3,可得∠DAC=∠FBC,则tan∠FBC=tan∠DAC==;(2)由条件可得∠AGF=∠CBF,可得,可用x表示CF和AF的长,求出CD,则S△DAF=,可用x表示结果;(3)分两种情况,①当点D在BC的延长线上时,②当点D在BC的边上时,可求出AE长AD的长,则DE=AD﹣AE可求出.【解答】解:(1)∵∠ACB=90°,BC=4,sin∠ABC=,∴设AC=3x,AB=5x,∴(3x)2+16=(5x)2,∴x=1,即AC=3,∵BE⊥AD,∴∠AEF=90°,∵∠AFE=∠CFB,∴∠DAC=∠FBC,∴tan∠FBC=tan∠DAC==;(2)∵AG∥BD,∴∠AGF=∠CBF,∴tan∠AGF=tan∠CBF,∴,,∴,∴.∴=.∵∠EAF=∠CBF,∴,∴,∴S△DAF==;(3)①当点D在BC的延长线上时,如图1,∵AG=8,BC=4,AG∥BD,∴,∴AF=2CF,∵AC=3,∴AF=2,CF=1,∴,∴,设AE=x,GE=4x,∴x2+16x2=82,解得x=,即AE=.同理tan∠DAC=tan∠CBF,∴,∴DC=,∴AD===.∴=.②当点D在BC的边上时,如图2,∵AG∥BD,AG=8,BC=4,∴.∴AF=6,∵∠EAF=∠CBF=∠ABC,∴cos∠EAF=cos∠ABC,∴,∴,同理,∴,∴.∴DE=AE﹣AD=.综合以上可得DE的长为或.【点评】本题是三角形综合题,考查了勾股定理,平行线的性质,三角形的面积,锐角三角函数等知识,熟练掌握锐角三角函数的定义是解题的关键.12.在等边△ABC中,AB=8,点D在边BC上,△ADE为等边三角形,且点E与点D在直线AC的两侧,过点E作EF∥BC,EF与AB、AC分别相交于点F、G.(1)如图,求证:四边形BCEF是平行四边形;(2)设BD=x,FG=y,求y关于x的函数解析式,并写出定义域;(3)如果AD的长为7时,求线段FG的长.【分析】(1)由三角形ABC与三角形ADE都为等边三角形,得到∠BAC=∠DAE=60°,利用等式的性质得到∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS得到三角形ABD 与三角形ACE全等,利用全等三角形的对应角相等得到∠ACE=∠ABC=60°,进而确定出同旁内角互补,得到CE与FB平行,再由EF与BC平行,即可得到四边形BCEF 为平行四边形;(2)由三角形ABD与三角形ACE全等,得到BD=CE,再由四边形BCEF为平行四边形得到BF=CE,等量代换得到BF=BD=x,由FG与BC平行,由平行得比例,即可列出y关于x的函数解析式,求出x的范围得到定义域;(3)过A作AM⊥BC交BC于M,可得M为BC的中点,即BM=CM=4,在直角三角形ABM中,利用勾股定理求出AM的长,而MD=4﹣x,在直角三角形ADM中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,代入(2)的解析式中求出y的值,即为FG的长.【解答】(1)证明:∵△ABC和△ADE是等边三角形,∴∠BAD+∠DAC=∠DAC+∠CAE=60°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=60°,又∵∠ACB=60°,∴∠ABC+∠ACB+∠ACE=180°,即∠ABC+∠BCE=180°,∴AB∥CE,又∵EF∥BC,∴四边形BCEF是平行四边形;(2)解:∵△BAD≌△CAE,∴EC=BD,∵四边形BCEF是平行四边形,∴BF=EC,∴BF=BD=x,又∵AB=8,∴AF=8﹣x,∵FG∥BC,∴∠AFG=∠ABC,∠AGF=∠ACB,∴△AFG∽△ABC,∴=,即=,∴y=8﹣x(0<x<8);(3)解:过A作AM⊥BC交BC于M,可得M为BC的中点,即BM=CM=4,在Rt△ABM中,根据勾股定理得:AM==4,MD=4﹣x,由题意得AD2=AM2+MD2,即48+(4﹣x)2=49,解得:x1=3,x2=5,当x=3时,y=8﹣3=5;当x=5时,y=8﹣5=3,则FG=3或5.【点评】此题考查了相似三角形的判定与性质,全等三角形的判定与性质,等边三角形的性质,平行四边形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.13.△ABC是边长为4的等边三角形,在射线AB和BC上分别有动点P、Q,且AP=CQ,连接PQ交直线AC于点D,作PE⊥AC,垂足为E.(1)如图,当点P在边AB(与点A、B不重合)上,问:①线段PD与线段DQ之间有怎样的大小关系?试证明你的结论.②随着点P、Q的移动,线段DE的长能否确定?若能,求出DE的长;若不能,简要说明理由;(2)当点P在射线AB上,若设AP=x,CD=y,求:①y与x之间的函数关系式,并写出x的取值范围;②当x为何值时,△PCQ的面积与△ABC的面积相等.【分析】(1)①作PG∥BC交AC于G,DH∥AB交BQ于H,推出△DHC,△APG为等边三角形根据三角形全等,求出DP=DQ;②根据AE=EG,GD=DC,即可算出DE =AC;(2)分为两种情况来考虑,当P点在线段AB上或在射线AB上,根据等边三角形的性质和全等三角形的性质找到相等关系,经过等量转换即可求出答案;(3)分两种情况进行分析,当0<x≤4时,无解;当x>4时,结合图形找相等面积的三角形,求出PE的长度,用含x的代数式表示出△PCQ的面积,即可根据题意得出关于x的一元二次方程,解方程,得x的值.【解答】解:(1)证明:①作PG∥BC交AC于G,DH∥AB交BQ于H,∵△ABC是边长为4的等边三角形,∴△DHC,△APG为等边三角形,∵AP=CQ,∴PG=CQ,∠PGC=∠DCQ=120°,∵∠GPD=∠Q,∵△PDG≌△QDC,∴DP=DQ,②能确定,∵PE⊥AC,∴AE=EG,∵GD=DC,AB=BC=AC=4,∴GD+EG+AE+DC=4,∵2(GD+EG)=4,即DE=2;(2)①∵PD=DQ,DH∥AB,AP=x,CD=y,∴DH=BP,∵AB=4,∴BP=4﹣x或BP=x﹣4,∴y=(4﹣x)=2﹣x(0<x≤4)或y=x﹣2(x>4),②当0<x≤4时,无解,当x>4时,∵PE⊥AC,∠A=60°AP=x,∴PE=sin60°×x=x,∵AB=BC=AC=4,∴S△ABC=4,∵PD=DQ,∴结合图形可知S△PCQ=2S△PDC=2×,∴2×=4,∴(x﹣2)×x=4,化简得:x2﹣4x﹣16=0,解得:x1=2﹣2(不符合题意,舍去)x2=2+2,∴x=2+2,∴当x=2+2时,△PCQ的面积与△ABC的面积相等.【点评】本题主要考查等边三角形的性质、全等三角形的判定及性质、根据实际问题列一次函数关系式等,本题关键在于作出辅助线,找出等量关系。

(完整word版)三角形易错题(经典自己整理)

(完整word版)三角形易错题(经典自己整理)

1、如图12,在Rt ABC ∆中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的点A 处,折痕为CD ,则∠A DB 的度数为( )A40° B30°C20° D10°2、如图,D 是线段AB 、BC 垂直平分线的交点,若∠ABC =150°,则∠ADC 的大小是( )A 60° B70° C75° D80°3、如图,已知ABC ∆中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 于点E 、F ,给出下列四个结论:1、AE =CF ;2、∆EPF 是等腰直角三角形;3、EF =AP; 4 、 S 四边形AEPF =21abc s ∆当∠EPF 在ABC ∆内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中正确的有( ) A 1 2 3 4 B 1 2 3 C 1 2 4 D2 3 44、已知A (m-1,3)与点B (2,n+1)关于X 的对称轴,则点P (m,n )的坐标为( ) 在ABC ∆中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50度,则∠B等于( )5、如图,在ABC ∆中,ADBC ⊥于D。

请你再添一个条件,就可以确定ABC ∆是等腰三角形。

你添加的条件是( )在线段,直线,射线,角,三角形,不一定是轴对称图形是( )6、如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a b相交点A(3,4),连接OA,若在直线a上存点P,使ABC ∆是等腰三角形。

那么所满足的条件的点P的坐标是( )7、如图是一块三角形的蛋糕,请将这块蛋糕平均分成两块以便分给小丽和小娜享用,并说明理由。

8、如图,AD是∆ABC的一条角平分线,∠B=2∠C。

试判断线段AB、AC、BD 之间的数量关系,并说明理由。

全等三角形易错题(Word版 含答案)

全等三角形易错题(Word版 含答案)

一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BPt (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x , 解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=在AED 和AFD 中,{AF AEEAF DAE AD AD ,=∠=∠=.AED AFD ∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD ,∵CG=CB+BF+FG=CB+2BF=DE+2BF ,∴CD=2BF+DE .【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.4.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE.又 BA=CA,AD=AE,∴△ABD≌△ACE (SAS)∴∠ACE=∠B=45°且 CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为垂直,相等;②都成立,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△DAB与△EAC中,AD AEBAD CAEAB AC⎧⎪∠∠⎨⎪⎩===∴△DAB≌△EAC,∴CE=BD,∠B=∠ACE,∴∠ACB+∠ACE=90°,即CE⊥BD;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.5.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.【解析】【分析】(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题.【详解】(1)解:∵∠ACB =90°,∠B =60°,∴∠BAC =90°﹣60°=30°,∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴∠FAC =15°,∠FCA =45°,∴∠AFC =180°﹣(∠FAC+∠ACF )=120°(2)解:FE 与FD 之间的数量关系为:DF =EF .理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG和△CFD中,CG CDDCF GCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△CFG≌△CFD(SAS),∴DF=GF.∠CFD=∠CFG由(1)∠AFC=120°得,∴∠CFD=∠CFG=∠AFE=60°,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,AFE AFGAF AFEAF GAF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA,AG=AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.6.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.7.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE ,∴DE=CE+BD ,故答案为:DE=CE+BD ;(2)(1)中结论还仍然成立,理由如下:∵BDA AEC BAC α∠=∠=∠=,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD ,在△ADB 与△CEA 中,∵∠ABD=∠CAE ,∠ADB=∠CEA ,AB=AC ,∴△ADB ≌△CEA(AAS),∴AE=BD ,AD=CE ,∴BD+CE=AE+AD=DE ,即:DE=CE+BD ,(3)DEF ∆为等边三角形,理由如下:由(2)可知:△ADB ≌△CEA ,∴BD=EA ,∠DBA=∠CAE ,∵△ABF 与△ACF 均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF ,∴∠DBA+∠ABF=∠CAE+CAF ,∴∠DBF=∠FAE ,在△DBF 与△EAF 中,∵FB=FA ,∠FDB=∠FAE ,BD=AE ,∴△DBF ≌△EAF(SAS),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.8.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152t <≤;(3)存在,1t =或53. 【解析】【分析】(1)只要证明△AOE ≌△BCE 即可解决问题;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;【详解】解:(1)∵AD 是高,∴90ADC ∠=∵BE 是高,∴90AEB BEC ∠=∠=∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,∴EAO EBC ∠=∠在AOE ∆和BCE ∆中,EAO EBC AE BEAEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD ,根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-,∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】 本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,ABC ∆是等腰直角三角形,090BAC ∠=,点D 是直线BC 上的一个动点(点D 与点B C 、不重合),以AD 为腰作等腰直角ADE ∆,连接CE .(1)如图①,当点D 在线段BC 上时,直接写出,BC CE 的位置关系,线段,BC CD ,CE 之间的数量关系;(2)如图②,当点D 在线段BC 的延长线上时,试判断线段BC ,CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由;(3)如图③,当点D 在线段CB 的延长线上时,试判断线段,BC CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE ⊥,CE BC CD =+,理由见解析;(3),BC CE CD BC CE ⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC ,∠BAC=90°,AD=AE ,∠DAE=90°,判定△ABD ≌△ACE (SAS ),利用两角的和即可得出BC CE ⊥;利用线段的和差即可得出BC CE CD =+;(2)同(1)的方法根据SAS 证明△ABD ≌△ACE ,得出BD=CE ,∠ACE=∠ABD ,从而得出结论;(3)先根据SAS 证明△ABD ≌△ACE ,得出ADB AEC ∠=∠,BD CE =,从而得出结论.【详解】(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB=AC ,AE =AD ,在△△ABD 和△ACE 中90AB AC BAC DAE AD AE ⎧⎪∠∠=︒⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE ,BD=CE,又∵△ABC 是等腰直角三角形,∴∠B+∠ACB=90︒,∴∠ACE +∠ACB=90︒,即BC CE ⊥,∵BC=BD+CD, BD=CE ,∴BC CE CD =+;(2)BC CE ⊥,CE BC CD =+,理由如下:∵ABC ∆、ADE ∆是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC DAC DAE DAC ∠+∠=∠+∠即BAD CAE ∠=∠,在ABD ∆和ACE ∆中AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆∴BD CE =∵BD BC CD =+∴CE BC CD =+,∴ABD ACE ∠=∠,∵090ABD ACE ∠+∠=∴090ACE ACB ∠+∠=∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下:∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆,∴ADB AEC ∠=∠,BD CE =,∵CD BD BC =+,∴CD CE BC =+,∵090ADE AED ∠+∠=,即090ADB CDE AED ∠+∠+∠=∴090AEC CDE AED ∠+∠+∠=,∴090DCE ∠=,即BC CE ⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.10.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.。

人教版数学四年级下册 第5单元 三角形 易错题强化卷含答案

人教版数学四年级下册 第5单元 三角形 易错题强化卷含答案

人教版数学四年级下册第5单元《三角形》易错精选强化练习题(2)姓名:__________ 班级:__________考号:__________题号一二三四总分评分一、单选题(共10题;共30分)1.在一个三角形中,如果其中任何两个角的度数之和都大于第三角的度数,那么这个三角形一定是()。

A. 直角三角形B. 锐角三角形C. 钝角三角形2.下图中,围不成三角形的三根小棒是:()单位:cmA.B.C.3.图中共有()个三角形。

A. 3B. 4C. 64.已知∠1和∠2是直角三角形中的两个锐角,∠1=44°,∠2=()A. ∠2=136°B. ∠2=46°C. ∠2=90°D. ∠2= 36°5.添上一根长度是整厘米数的吸管,与图中的两根吸管首尾相接,围成一个三角形。

添上的这根吸管最长是()厘米。

A. 11B. 12C. 106.等腰三角形的底角是50°,它的顶角是()。

A. 130°B. 100°C. 80°7.既能拼成平行四边形又能拼成梯形的是()。

A. 两个完全一样的直角梯形B. 两个完全一样的三角形C. 两个完全一样的长方形A. 直角三角形只有1条高。

B. 把1.230末尾的0去掉后,所得的数缩小到原来的1。

10C. 按照“四舍五入”法,近似数为5.21的最大的一位小数是5.209。

D. 所有的等边三角形都是锐角三角形。

9.一个等腰三角形,它的顶角是一个底角的3倍,它的顶角是()。

A. 108°B. 72°C. 36°10.有4厘米、6厘米长的两根小棒,从下面各种长度的小棒中再挑一根,首尾相连,不能围成三角形的是()。

A. 2厘米B. 4厘米C. 6厘米D. 8厘米二、判断题(共5题;共15分)11.一个三角形中,如果有两个锐角,它一定是锐角三角形。

()12.一个三角形中的两个锐角之和一定大于90°。

初中数学三角形易错题汇编含答案

初中数学三角形易错题汇编含答案
C.不能判定△ABC≌△AED,故C符合题意.
D.∵AB=AE,∠BAC=∠EAD,AC=AD,∴△ABC≌△AED(SAS),故D不符合题意.
故选C.
12.如图,在菱形 中,点 在 轴上,点 的坐标轴为 ,点 的坐标为 ,则菱形 的周长等于()
A. B. C. D.
【答案】C
【解析】
【分析】
如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD的周长.
3.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是( )
A.4B.3C.6D.2
【答案】B
【解析】
【分析】
首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.
【详解】
解:AD是△ABC中∠BAC的平分线,
【详解】
在Rt△ABC中,∠A=90°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
D、72+202≠252,242+152≠252,故D不正确,
故选C.
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.

三角形易错题选

三角形易错题选

• 6. (2012•梧州)如图,AE是△ABC的角 平分线,AD⊥BC于点D,若∠BAC=128°, ∠C=36°,则∠DAE的度数是( ) A • A.10°B.12°C.15°D.18°
• 7. (2012•河源)如图,在折纸活动中,小 明制作了一张△ABC纸片,点D、E分别是 边AB、AC上,将△ABC沿着DE折叠压平, A与A′重合,若∠A=75°,则∠1+∠2= ( ) A • A.150°B.210°C.105°D.75°
• 8. (2011•昭通)将一副直角三角板如图所 示放置,使含30°角的三角板的一条直角 边和含45°角的三角板的一条直角边重合, C 则∠1的度数为( ) • A.45°B.60°C.75°D.85°
• 9.如图中有四条互相不平行的直线L1、L2、 L3、L4所截出的七个角.关于这七个角的 度数关系,下列何者正确( C ) • A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+ ∠4+∠6=180°D.∠2+∠3+∠5=360°
• 2.已知△ABC, • ①如图1,若P点是∠ABC和∠ACB的角平分线的交点; ②如图2,若P点是∠ABC和∠ACE的角平分线的交点; ③如图3,若P点是∠CBF和∠BCE的角平分线的交点. (1)探究上述三种情况下,∠P与∠A的数量关系 (直接写出结论); (2)任选一种情况加以证明.
• 3.如图,△ABC中,CD是∠ACB的角平分 线,CE是AB边上的高,若∠A=40°, ∠B=72°. (1)求∠DCE的度数; (2)试写出∠DCE与∠A、∠B的之间的 关系式.(不必证明)
• 3.已知等腰三角形的周长为24,一边长是4, 则另一边是( )B • A. 16 B. 10 C. 10或6 D.无法确定 • 4.如果三角形的两边分别是3和5,则周长L 的范围是( D ) • A. 6<L<15 B. 6<L<16 • C. 11<L<13 D. 10<L<16

四年级下册数学 《5 三角形》易错题综合练习 人教版 含答案

四年级下册数学  《5 三角形》易错题综合练习  人教版 含答案

人教新版四年级下学期《5 三角形》高频易错题集一.选择题(共10小题)1.下面三组线段中,能围成一个三角形的是()A.5厘米、5厘米、7厘米B.4厘米、6厘米、13厘米C.5厘米、5厘米、10厘米2.一个三角形的两条边分别是40厘米、50厘米,第三条边的长度只能选()A.80厘米B.90厘米C.110厘米3.在一个三角形中,如果两个锐角的和大于90°,那么这个三角形一定是()三角形.A.锐角B.直角C.钝角4.一个三角形的两个内角和是100°,这是一个()三角形.A.锐角B.直角C.钝角D.以上都有可能5.一个三角形,经过它的一个顶点画一条线段把它分成两个三角形,其中一个三角形的内角和是()A.180°B.90°C.不确定6.等腰三角形的一个底角和顶角度数的比是3:4,那么这个三角形是()三角形.A.锐角B.直角C.钝角D.无法确定7.下面几种图形,()具有稳定性.A.长方形B.三角形C.平行四边形D.梯形8.下面图形中,()具有稳定性.A.平行四边形B.三角形C.长方形9.下面的小棒中,不能组成三角形的是()A.6厘米、6厘米、6厘米B.6厘米、7厘米、8厘米C.2厘米、7厘米、9厘米D.4厘米、7厘米、1分米10.下面各组线段中,不能组成三角形的是()A.3厘米,4厘米,5厘米B.2厘米,3厘米,5厘米C.3厘米,3厘米,3厘米二.填空题(共5小题)11.自行车的车架做成三角形,这是应用了三角形的性.12.三角形的两个内角之和是85°,这个三角形是.13.用两块完全一样的三角尺拼成一个大三角形,这个三角形的内角和是.14.自行车的大梁做成三角形的形状,是因为三角形具有稳定性.(判断对错)15.长度分别为12cm、6cm和6cm的三条线段能组成一个等腰三角形..三.解答题(共5小题)16.一个三角形的两边长分别是6厘米和9厘米,第三条边的长度一定大于厘米,同时小于厘米.17.在任意三角形中如果有两个内角的和小于90°,那么这个三角形是钝角三角形..18.看图算一算,填一填.19.在不改变下面平行四边形形状的同时,使它变得稳定起来.20.一个三角形两条边的长度分别是6厘米和9厘米,那么第三条边的长度可能是多少?(在可能的数据下面画“√”)3厘米5厘米6厘米12厘米15厘米16厘米人教新版四年级下学期《5 三角形》高频易错题集参考答案与试题解析一.选择题(共10小题)1.【解答】解:A.5+5>7,5﹣5<7,则A符合要求;B.4+6<13,则B不符要求;C.5+5=10,则C不符合要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础练习
1.如图,AD⊥BC于点D,那么图中以AD为高的三角形有个.
2.BD是△ABC的中线,若AB=5 cm,BC=3 cm,则△ABD与△BCD的周长之差为.
3.如图,在△ABC中,已知点E,F分别是AD,CE边上的中点,且S△ABC=8 cm2,则S△BEF的值
为.
4.如图,AD是△ABC的中线,AE是△ABD的中线,若CE=9 cm,则BC= cm.
5.手工课上,小明用螺栓将两端打有孔的5根长度相等的木条,首尾连接制作了一个五角星,他发现五角星的形状不稳定,稍微一动五角星就变形了.于是他想在木条交叉点处再加上若干个螺栓,使其稳定不再变形,他至少需要添加的螺栓数为( )
A.1个
B.2个
C.3个
D.4个
6.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点D,若∠BDC=115°,则∠A=°.
7.如图,在△ABC中,已知∠ABC=50°,∠ACB=60°,BE是AC边上的高,CF是AB边上的高,H 是BE和CF的交点,则∠BHC=.
8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为()
A.90°
B.105°
C.130°
D.120°
9.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠1+∠2∠3.(填“>”“<”或“=”)
10.具备下列条件的△ABC中,不是直角三角形的是()
A.∠A-∠B=∠C
B.∠A=3∠C,∠B=2∠C
C.∠A=∠B=2∠C
D.∠A=∠B=∠C
11.在△ABC中,∠A,∠B,∠C的度数之比为2∶3∶4,则∠B=.
3.在直角三角形中,其中一个锐角是另一个锐角的2倍,则此三角形中最小的角是()
A.15°
B.30°
12.在△ABC中,∠A+∠B=130°,∠B+∠C=140°,则△ABC的形状是()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.任意三角形
13.如图,CD是∠ACB的平分线,∠EDC=25°,∠A=60°,∠B=70°,则∠BDC的度数是()
A.70°
B.80°
C.85°
D.95°
14.(德阳中考)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()
16.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2=.
17.如图,在△AEC中,点D和点F分别是AC和AE上的两点,连接DF,交CE的延长线于点B,若∠A=25°,∠B=45°,∠DFE=106°,则∠C=.
18.若从多边形的一个顶点出发,最多可以引9条对角线,则它是()
A.十三边形
B.十二边形
C.十一边形
D.十边形
19.【教材母题变式】从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n 个三角形,则m,n的值分别为()
A.4,3
B.3,3
C.3,4
D.4,4
20.下列说法正确的是()
A.每条边相等的多边形是正多边形
B.每个内角相等的多边形是正多边形
C.每条边相等且每个内角相等的多边形是正多边形
D.以上说法都正确
21.【教材母题变式】若一个一般的四边形的一组对角都是直角,则另一组对角可以(D)
A.都是钝角
B.都是锐角
C.是一个锐角和一个直角
D.是一个锐角和一个钝角
22.一个正多边形的每个外角都等于36°,那么它是()
A.正六边形
B.正八边形
C.正十边形
D.正十二边形
23.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为米.
24.如图,六边形ABCDEF 中,AB ∥DC ,∠1,∠2,∠3,∠4分别是∠BAF ,∠AFE ,∠FED ,∠EDC 的外角,则∠1+∠2+∠3+∠4= .
25.多边形的内角中,锐角最多有( )
A.1个
B.2个
C.3个
D.4个
26.如图,四边形ABCD 中,∠A+∠B=200°,∠ADC ,∠DCB 的平分线相交于点O ,则∠COD 的度数是( )
A.80°
B.90°
C.100°
D.110°
27.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )
A.90°
B.105°
C.130°
D.120°
28.以长度为5 cm,7 cm,9 cm,13 cm 的线段中的三条为边,能组成三角形的情况有( )
A.2种
B.3种
C.4种
D.5种
29.三角形中,三个内角的比为1∶3∶6,它的三个外角的比为( )
A.1∶3∶6
B.6∶3∶1
C.9∶7∶4
D.3∶5∶2 30.
如图,七角星中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .
31.如图,小李制作了一张△ABC纸片,点D,E分别在边AB,AC上,现将△ABC沿着DE折叠压平,使点A落在点A'位置.若∠A=75°,则∠1+∠2=.
32.如图,DE∥BC,∠EDC=40°,∠ABC=60°,则∠BAD的度数为.
33.如图,BP是△ABC中∠ABC的平分线,CP是△ABC的外角∠ACM的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()
34.在△ABC中,∠A=64°,角平分线BP,CP相交于点P.
(1)如图1,若BP,CP是两内角的平分线,则∠BPC=;
(2)如图2,若BP,CP是两外角的平分线,则∠BPC=;
(3)如图3,若BP,CP分别是一内角和一外角的平分线,则∠BPC=.
(4)由(1)(2)(3)可知∠BPC与∠A有着密切的数量关系,请写出你的发现.
35.一个三角形三个内角的度数之比为3∶4∶5,这个三角形一定是()
A.等腰三角形
B.直角三角形
C.锐角三角形
D.钝角三角形
36.下列说法错误的是()
A.锐角三角形的三条高、三条中线、三条角平分线分别交于一点
B.钝角三角形有两条高在三角形的外部
C.直角三角形只有一条高
D.任意三角形都有三条高、三条中线、三条角平分线
37.将一副直角三角板按如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()
38.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有(A)
A.4对
B.5对
C.6对
D.7对
39.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()
1.(河池中考)三角形的下列线段中能将三角形的面积分成相等两部分的是()
A.中线
B.角平分线
C.高
D.三等分线
40.(郴州中考)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠
A=45°,∠D=30°,则∠α+∠β等于()
A.180°
B.210°
C.360°
D.270°
41.(常德中考)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.
42.(成都中考)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数
为.
43.(盐城中考)在“三角尺拼角”实验中,小明同学把一副三角尺按如
图所示的方式放置,则∠1=.
44.(广东中考)一个n边形的内角和是720°,则n=.
45.(葫芦岛中考)正八边形的每个外角的度数为.
46.(西宁中考)若正多边形的一个外角是40°,则这个正多边形的边数是.
47.(益阳中考)如图,多边形ABCDE的每个内角都相等,则每个内角的度
数为.
48.若三角形三条边长分别是3,1-2a,8,则a的取值范围是()
A.a>-5
B.-5<a<-2
C.-5≤a≤-2
D.a>-2或a<-5
49.一个三角形有两边长为2和5,则第三边长x的取值范围是.若它的周长是偶数,则第三边的长为.
50.已知有两边相等的三角形的两边长分别为6 cm,4 cm,则该三角形的周长是.
51.(扬州中考)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()
A.6 B。

7 C。

11 D。

12
52.现有2 cm,4 cm,5 cm,8 cm,9 cm长的五根木棒,任意选取三根组成一个三角形,选法种数为()
A.3
B.4
C.5
D.6
53.三角形的三条边长分别是2,2x-3,6,则x的取值范围是.
54.如图,已知四边形ABCD中,∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,则∠E+∠F=.
55.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于度.。

相关文档
最新文档