2016年内蒙古自治区高考理科数学试题与答案
2016年高考新课标1卷(理科数学答案)

2016年普通高等学校招生全国统一考试理科数学 参考答案一、选择题:1—12:DBCBA ADCCB AB 二、填空题:(13)2- (14)10 (15)64 (16)216000 三、解答题:(17)解:(I )由2cos (cos cos )C a B+b A c =得2cos (cos cos )sin C sinA B+sinB A C =,即1cos 2C =,又(0,)C π∈,3C π∴=; (II )2271cos 22a b C ab +-==,1sin 2ABC S ab C ==,6ab ∴=,2213a b +=5a b ∴+==,所以ABC ∆的周长为5(18)解:(I ),AF FE AF FD ⊥⊥,F FD FE = ,⊥∴AF 平面EFDC ,又⊂AF 平面ABEF ,所以平面⊥ABEF 平面EFDC ;(II )以E 为坐标原点,EF ,EB 分别为x 轴和y 轴建立空间直角坐标系(如图), 设2AF =,则1FD =,因为二面角D -AF -E 与二面角C -BE -F 都是60, 即60oEFD FEC ∠=∠=,易得(0,2,0)B ,(2,2,0)A,1(2C ,1(0,2,0),(2,0,0),(,2EB BA BC ∴===-,设平面EBC 与平面ABCD 的法向量分别 为1111(,,)n x y z =和2222(,,)n x y z =,则111111111111(,,)(0,2,0)2011(,,)(,2022n EB x y z y n BC x y z x y ⎧⋅=⋅==⎪⎨⋅=⋅-=-=⎪⎩ 令11x =,则110,3y z ==-,1(1,0,3n ∴=-由222222222222(,,)(2,0,0)2011(,,)(,2,202222n BA x y z xn BC x y z xy z ⎧⋅=⋅==⎪⎨⋅=⋅-=-+=⎪⎩, 令22z =,则220,x y ==,13(0,n ∴=12(1,0,2)cos ,n n ⋅∴<>===, 所以二面角E -BC -A 的余弦值为.(19)解:(I )这100台机器更换的易损零件数为8,9,10,11时的频率为分别为15,25,15,15, 故1台机器更换的易损零件数为8,9,10,11时发生的概率分别为15,25,15,15,每台机器更换与否相互独立,16,17,18,19,20,21,22X =,(II )(1),(1)252252P X 8P X 9≤=<≤=≥,所以n 的最小值为19; (III )若买19件时费用期望为:4040251)150019200(252)100019200(255)50019200(251719200=⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯, 若买20件时费用期望为:4080251)100020200(252)50020200(252220200=⨯+⨯+⨯+⨯+⨯⨯, 所以应选用19n =.(20)解:(I )圆心为(1,0)A -,圆的半径为4AD =,AD AC =,ADC ACD ∴∠=∠,又//BE AC ,ACD EBD ADC ∴∠=∠=∠, BE ED =,4EA EB AD +==.所以点E 的轨迹是以点(1,0)A -和点(1,0)B 为焦点,以4为长轴长的椭圆,即2,1a c ==b ∴=所以点E 的轨迹方程为:221(0)43x y y +=≠. (II )当直线l 的斜率不存在时,直线l 的方程为1x =,3MN =,8PQ =, 此时四边形MPNQ 面积为12;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,与椭圆22143x y +=联立得:2222(34)84120k x k x k +-+-=, 设1122(,),(,)M x y N x y ,则2122834k x x k +=+,212241234k x x k-⋅=+,|MN |=2212(1)34k k +=+,直线PQ 方程为1(1)y x k=--,即10x ky +-=, 所以圆心(1,0)A -到直线PQ的距离为d =,PQ ∴==,221112(1)2234MPNQ k S MN PQ k +=⋅===+四边形=, 综上可知四边形MPNQ面积的取值范围为.(21)解:(I )'()(2)2(1)(1)(2)x x xf x e x e a x x e a =+-+-=-+①当0a =时,()(2)xf x x e =-,此时函数()f x 只有一个零点,不符合题意舍去;②当0a >时,由'()01f x x >⇒>,由'()01f x x <⇒<,所以()f x 在(,1)-∞上递减,在(1,)+∞上递增,min ()(1)0f x f e ∴==-<,又(2)0f a =>,所以函数()f x 在(1,)+∞上只有一个零点,当x →-∞时,0xe →,此时,()f x →+∞,所以函数()f x 在(,1)-∞上只有一个零点 此时函数()f x 有两个零点.③当02ea -<<时,0ln(2)1a <-<, 由'()01ln(2)f x x x a >⇒><-或,由'()0ln(2)1f x a x <⇒-<< 所以()f x 在(,ln(2))a -∞-和(1,)+∞上递增,在(ln(2),1)a -上递减,()(1)0f x f e ∴==-<极小值,2()(ln(2))(ln(2)2)(2)(ln(2)1)0f x f a a a a a =-=---+--<极大值 此时函数()f x 至多一个零点,不符合题意,舍去;④当2e a =-时,'()(2)2(1)(1)()0x x xf x e x e a x x e e =+-+-=--≥恒成立,此时函数()f x 至多一个零点,不符合题意,舍去;⑤当2e a <-时,ln(2)1a ->,由'()01ln(2)f x x x a >⇒<>-或,由'()01ln(2)f x x a <⇒<<-所以()f x 在(,1)-∞和(ln(2),)a -+∞上递增,()f x 在(1,ln(2))a -上递减,()(1)0f x f e ∴==-<极大值,因为()f x 在(1,ln(2))a -上递减,所以()=(ln(2))0f x f a -<极小值, 此时函数()f x 至多一个零点,不符合题意,舍去. 综上可知(0,)a ∈+∞.(II )由(I )若x 1,x 2是()f x 的两个零点,则0a >,不妨令12x x <,则121x x <<要证122x x +<,只要证122x x <-,21x >,221x ∴-<,当0a >时,()f x 在(,1)-∞上递减, 且1()0f x =,(1)0f <所以,只要证2(2)0f x -<,222222(2)(1)x f x x e a x --=-+-,又22222()(2)(1)0x f x x e a x =-+-= 222222(2)(2)x x f x x e x e -∴-=---令2(2),(1)xx y xex e x -=--->22'22(2)(1)xxxxxxe e y exee x e x e ---=-+---=-,.221,10,x x x e e >∴-><,'0y ∴<2(2)x x y xe x e -∴=---在(1,)+∞上递减,当1x =时,0y = 1,0x y ><,即2(2)0f x -<成立, 122x x ∴+<成立.22.(本小题满分10分)选修4—1:几何证明选讲解:(Ⅰ)设E 是AB 的中点,连结OE .因为,120,OA OB AOB ︒=∠= 所以,60OE AB AOE ︒⊥∠=在Rt AOE ∆中,12OE AO =, 即O 到直线AB 的距离等于O 的半径, 所以直线AB 与O 相切.(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心, 设O '是,,,A B C D 四点所在圆的圆心,作直线OO '.由已知的O 在线段AB 的垂直平分线上,又O '在线段AB 的垂直平分线上,所以OO AB '⊥. 同理可证,OO CD '⊥,所以//AB CD .23.(本小题满分10分)选修4—4:坐标系与参数方程解:(Ⅰ)消去参数t 得到1C 的普通方程()2221x y a +-=.故1C 是以()0,1为圆心,a 为半径的圆.将cos ,sin x y ρθρθ==代入1C 的普通方程中,得到1C 的极坐标方程为222sin 10a ρρθ-+-=.(Ⅱ)曲线12,C C 的公共点的极坐标满足方程组:{222sin 104cos a ρρθρθ-+-==. 若0ρ≠,由方程组得2216cos 8sin cos 10a θθθ-+-=,由已知tan 2θ=,可得216cos 8sin cos 0θθθ-=,从而210a -=,解得1a =-(舍去),1a =. 1a =时,极点也为12,C C 的公共点,在3C 上. 所以1a =.24.(本小题满分10分)选修4—5:不等式选讲解:(Ⅰ)()4,1,332,1,234,,2x x f x x x x x ⎧⎪-≤-⎪=--<≤⎨⎪⎪-+>⎩()y f x =的图像如图所示.(Ⅱ)由函数()f x 的表达式及图像, 当()1f x =时,可得1x =,或3x =; 当()1f x =-时,可得13x =,或5x =. 故()1f x >的解集为}{13x x <<;()1f x <-的解集为{}1,53x x x <>或. 所以()1f x >的解集为{}11353x x x x <<<>或或.。
2016年全国高考理科数学试题及标准答案全国卷1

2016年全国高考理科数学试题及标准答案全国卷12016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合$A=\{x|x-4x+30\}$,则$AB=$A)$(-\infty,-1)\cup(3,+\infty)$B)$(-\infty,-1)\cup(1,+\infty)$C)$(-\infty,-\frac{3}{4})\cup(\frac{3}{2},+\infty)$D)$(-\infty,-\frac{3}{4})\cup(\frac{3}{2},+\infty)$2.设$(1+i)x=1+yi$,其中$x,y$是实数,则$x+yi=$A)$1$B)$\frac{1}{2}+\frac{1}{2}i$C)$1+i$D)$\frac{1}{2}+\frac{1}{2}i$3.已知等差数列$\{a_n\}$前9项的和为27,$a_{10}=8$,则$a_{100}=$A)$100$B)$99$C)$98$D)$97$4.某公司的班车在7:00,8:00,8:30发车,XXX在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A)$\frac{1}{2}$B)$\frac{1}{3}$C)$\frac{2}{3}$D)$\frac{3}{4}$5.已知方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$表示双曲线,且该双曲线两焦点间的距离为4,则$n$的取值范围是A)$(-1,3)$B)$(-1,3]$C)$(0,3)$D)$(0,3]$6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。
2016年新课标Ⅲ高考数学理科试题含答案(Word版)

绝密★启用前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =-( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量13(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC=( ) (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是( )(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =( )(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = ( ) (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分(13)若x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
2016年高考真题----理科数学(全国卷Ⅰ) Word版含答案

绝密★启封前试题类型:A2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选做题)。
全卷满分150分,考试用时150分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填在试题卷和答题卡上,并将条形码粘贴在答题卡的指定位置。
用2B铅笔将答题卡上试题类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡的相应区域内,写在试题卷、草稿纸和答题卡非答题区域均无效。
4、选考题的作答:先把所选题的题号在答题卡的指定位置用2B铅笔涂黑,答案写在答题卡的相应区域内,写在试题卷、草稿纸和答题卡非答题区域均无效。
5、考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x=-+<,{|230}B x x=->,则A B=(A)3(3,)2--(B)3(3,)2-(C)3(1,)2(D)3(,3)2(2)设(1i)1ix y+=+,其中x,y是实数,则i=x y+(A)1(B )2(C )3(D)2(3)已知等差数列{}na前9项的和为27,10=8a,则100=a(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)13(B)12(C)23(D)34(5)已知方程222213x ym n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积为(A )17π(B )18π(C )20π(D )28π(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则 (A )c c a b <(B )c cab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为 (A)32(B)22 (C)33(D)13 12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点学.科网,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =. (14)5(2)x x +的展开式中,x 3的系数是.(用数字填写答案)(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。
2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效。
4。
考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B)33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。
解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算. (2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D)2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B.考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。
高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。
16届理数参考答案及评分标准

2016届呼和浩特市高三一模考试理科数学参考答案及评分标准一、选择题1-5 BDCBC 6-10 BBA C B 11-12 DB二、填空题 13.34 14. 43π 15. -108 16.940π 三、解答题17. (1)证明: ∵0≠+n a n ………………………………………………1分 2)1()1(2)1()2(2)1(.11111=-+-+=-++-+=-++∴-----n a n a n a n n a n a n a n n n n n n)或者(0)),1((21≠+-+=+-n a n a n a n n n --------------------------------3分∴{}n a n +是首项为4,公比为2的等比列…………………………………5分(首项和公比各给1分)∴ 11224+-=⋅=+n n n n an a n n -=∴+12- -------------------------------------------------------------------------7分2341(2)(222.......2)(123......)n n S n +=+++-++++……………………9分(会分组给2分) 22822n n n +++=-……………………………………………………………………12分(两个和,每一个和给2分)18.(I )证明:过点Q 作QD ⊥BC 于点D ,∵平面QBC ⊥平面ABC ,∴QD ⊥平面ABC ,又∵PA ⊥平面ABC ,∴QD ∥PA ,………………………………………………..2分又∵QD ⊂平面QBC ,PA ⊄平面QBC ,∴PA ∥平面QBC………………………………….4分(Ⅱ)法一:∵PQ ⊥平面QBC ,∴∠PQB=∠PQC=90°,又∵PB=PC ,PQ=PQ ,∴△PQB ≌△PQC ,∴BQ=CQ .………………………….5分∴点D 是BC 的中点,连接AD ,则AD ⊥BC ,∴AD ⊥平面QBC ,………………………………………………….6分∴PQ ∥AD ,AD ⊥QD ,∴四边形PADQ 是矩形.……………………………………………7分.设PA=2a ,∴,PB=2a ,∴.过Q 作QR ⊥PB 于点R ,……………………………………………8分∴QR==, a PB PQ PR 222== 取PB 中点M ,连接AM ,取PA 的中点N ,连接RN ,∵PR=,,∴MA ∥RN .∵PA=AB ,∴AM ⊥PB ,∴RN ⊥PB .∴∠QRN 为二面角Q ﹣PB ﹣A 的平面角.--------------------------------------10分连接QN ,则QN===.又,∴cos ∠QRN===.即二面角Q ﹣PB ﹣A 的余弦值为.- ------------------------------------------12分(Ⅱ)法二:∵PQ ⊥平面QBC ,∴∠PQB=∠PQC=90°,又∵PB=PC ,PQ=PQ ,∴△PQB ≌△PQC ,∴BQ=CQ .∴点D 是BC 的中点,连接AD ,则AD ⊥BC ,∴AD ⊥平面QBC ,…………………………………………5分∴PQ ∥AD ,AD ⊥QD ,∴四边形PADQ 是矩形.…………………………………..6分.分别以AC 、AB 、AP 为x 、y 、z 轴建立空间直角坐标系O ﹣xyz .不妨设PA=2,则Q (1,1,2),B (0,2,0),P (0,0,2),设平面QPB 的法向量为.……………………..7分 ∵=(1,1,0),=(0,2,﹣2) ∴ ……………………………………………………..8分)1,1,1(--=∴n ……………………………………………………..9分又∵平面PAB 的法向量为.…………………..10分33,,cos =⋅>=<→→→→→→n m nm n m 所以二面角Q ﹣PB ﹣A 的余弦值为33-------------------------------------12分19. 解:(1)由已知在[70,80]之间的初中学生的人数为15人…………………1分记至少有1名女同学为事件A 则741)(215210=-=C C A p ……………………………………………………………4分(写出算式2分,结果1分)分(列联表完全正确才给分) ∴, ............. ........... ........ .10分(公式1分结果2分) ∴有99%的把握认为两个学段的学生对“四大名著”常识了解有差异”. ..... ........ ........ .................... 12分20.(1)设两圆切点为N ,|CN|+|CP|=4,|CN|=|CM|,所以所以圆心C 的轨迹是椭圆.且2a=22,2c=2 所以方程为1222=+y x ........................................................................................4分 (2)联立椭圆和直线方程得:0224)12(222=-+++m kmx x k.. ......... ......... ........................... 5分12,08816)22)(12(41622222222<->+-=-+-=∆k m m k m k m k 即 设交点),(),,(2221y x B y x A12222221+-=k m x x , 124221+-=+k km x x ,...........................................................................7分122))((2222121+-=++=k k m m kx m kx y y所以 21222.2222121-=--==m k m x x y y k k OB OA 即 2122=-k m ......................................................9分12124)(122212212++=-++=k k x x x x k AB ...................... ................................................... 10分 12+=k md ................... ...................... ..................... ................ ................ ............................................ 11分 所以 22.21==d AB s 所以为定值。
2016年高考理科数学全国1卷Word版(含详细答案)

绝密★ 启用前试题种类: A 2016 年一般高等学校招生全国一致考试理科数学本试题卷共 5 页, 24 题(含选考题 )。
全卷满分 150 分。
考试用时 120 分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考据号填写在试题卷和答题卡上,并将准考据号条形码粘贴在答题卡上的指定地点。
用2B 铅笔将答题卡上试卷种类 A 后的方框涂黑。
2、选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、底稿纸和答题卡上的非答题地区内均无效。
3、填空题和解答题的作答:用署名笔挺接答在答题卡上对应的答题地区内。
写在试题卷、底稿纸和答题卡上的非答题地区均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的地点用2B 铅笔涂黑。
答案写在答题卡上对应的答题地区内,写在试题卷、底稿纸和答题卡上的非答题地区均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:此题共12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
(1)设会合A{ x x24x 30},B{ x 2x 3 0},则A B(A)( 3,3)(B)(3,3)(C)(1,3)(D)(3,3) 2222(2)设(1 i ) x1yi ,此中x, y是实数,则x yi(A)1(B)2(C)3(D)2(3)已知等差数列{ a n } 前9项的和为27 ,a108,则 a100( A)100(B)99(C)98(D)97(4)某公司的班车在7 : 30 , 8 : 00,8 : 30 发车,小明在 7 : 50 至 8 : 30之间抵达发车站乘坐班车,且抵达发车站的时候是随机的,则他等车时间不超出10 分钟的概率是(A)1(B)1(C)2(D)3 3234(5)已知方程x 2 y21 表示双曲线, 且该双曲线两焦点间的距离为 4 ,则 n 的2n 3m 2nm 取值范围是(A ) ( 1,3)(B ) ( 1, 3) ( C ) (0,3) ( D ) (0, 3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28,则它的3表面积是(A ) 17(B ) 18 (C ) 20(D ) 28(7)函数 y2x 2 e x 在 [ 2,2] 的图像大概为y y ( A )1( B )12 O2x2 O2xy y ( C )1( D )12O2x2 O2x(8)若 a b1, 0 c 1,则( A ) a cb c( B ) ab cba c ( C ) a log b c b log a c ( D ) log a c log b c(9)履行右边的程序框图,假如输入的x 0, y 1, n 1,则输出 x, y 的值知足( A ) y 2 x( B ) y 3x( C ) y 4x ( D ) y 5x( 10)以抛物线C 的极点为圆心的圆交 C 于 A, B 两点,交 C 的准线于 D, E 两点,已知AB 42,DE2 5 ,则 C 的焦点到准线的距离为(A )2(B )4(C )6 (D )8(11)平面过正方体 ABCDA 1B 1C 1D 1 的极点 A , // 平面 CB 1D 1 ,平面 ABCDm ,平面 ABB 1 A 1 n ,则 m,n 所成角的正弦值为32 ( C )31( A )(B )(D )2 23 3(12)已知函数f ( x)sin( x)(0,2) , x为 f ( x) 的零点,x为44y f ( x) 图像的对称轴,且 f ( x) 在( ,5) 单一,则的最大值为3618(A)11(B)9(C)7(D)5第II 卷本卷包含必考题和选考题两部分。
2016年高考全国2卷理科数学及答案

绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共12页)(适用地区:贵州,甘肃,青海,西藏,黑龙江,吉林,辽宁,宁夏,新疆,内蒙古,云南,重庆,陕西,海南)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答案卡一并交回。
第I 卷一、 选择题:本题共12小题,每小题5分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
(1) 已知i m m z )1()3(−++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3−,1) (B )(1−,3) (C )(1,∞+) (D )(∞−,3−) (2) 已知集合{}3,2,1=A ,{}Z x x x x B∈<−+=,0)2)(1(,则=B A(A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1− (3) 已知向量),1(m a =,)2,3(−=b 且b b a ⊥+)(,则=m(A )8− (B )6− (C )6 (D )8 (4) 圆0138222=+−−+y x y x的圆心到直线01=−+y ax 的距离为1,则=a(A )34−(B )43− (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈−=ππ (B ))(62Z k k x ∈+=ππ(C ))(122Z k k x ∈−=ππ (D ))(122Z k k x ∈+=ππ(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s(A )7 (B )12(C )17 (D )34(9) 若53)4cos(=−απ,则=α2sin(A )257(B )51(C )51− (D )257−(10) 以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )n 4 (B )n 2 (C )m 4 (D )m 2否是 0,0==s kn k >输入n x ,输出s开始 结束输入a1+=+⋅=k k ax s s(11) 已知21,F F 是双曲线E :12222=−by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2(12) 已知函数))((R x x f ∈满足)(2)(x f x f −=−,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i i y x 1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年内蒙古自治区高考理科数学试题与答案(满分150分,时间120分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共5页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题 ,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知Z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(-3,1) (B )(-1,3) (C )()1,+∞ (D )(),3-∞-(2)已知集合{}1,2,3A =,{}|(1)(2)0,B x x x x Z =+-<∈,则A B U =(A ){1} (B ){1,2} (C ){0,1,2,3} (D ){-1,0,1,2,3}(3)已知向量a=(1,m ),b=(3,-2),且(a+b )⊥b ,则m=(A )-8 (B )-6 (C )6 (D )8(4)圆22x +y -2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(A )4-3 (B )3-4(C )3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小明回合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数2sin 2y x = 的图像向左平移12π个单位长度,则平移后的图像对称轴为 (A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈(8)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图。
执行该程序框图,若输入的 x=2,n=2,依次输入的a 为2,2,5,则输入的s=(A )7 (B )12 (C )17 (D )34 (9)若cos (4π-α)=35,则sin2α= (A )725 (B )15 (C )-15 (D )-725(10)从区间[]0,1随机抽取2n 个数12,,...,nx x x , 12,,...,n y y y 构成n 个数对11,x (y ),22,x (y ),…,,n n x (y ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn(11 1F ,2F 是双曲线E :22221a x y b+=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,121sin 3MF F ∠=,则E 的离心率为(A (B )32(C (D )2(12)已知函数f x ∈()(R )满足f x =f x (-)2-(),若函数x 1y=x+与y=f x ()图像的x 1y=f x x +()交点为(1x ,1y );(2x ,2y ),…,(m x ,m y ),则1()mi i i x y =+=∑ (A )0 (B)m (C)2m (D)4m第II 卷本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答。
第22~24题为选考题,考生根据要求作答。
二、填空题:本题共4小题,每小题5分。
(13)△ABC 的内角A ,B ,C 的对边分别为a,b,c 若cosA=45,cosC=513,a=1,则b= 。
(14)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n//β,那么α⊥β. ②如果m ⊥α,n//α,那么m ⊥n. ③如果α//β,m ⊂α,那么m//β④如果m//n ,α//β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 ___________ (填写所有正确的命题序号)。
(15)有三张卡片,分别写有1和2,1和3,2和3。
甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_____________。
(16)若直线y=kx b +的曲线,y=1nx+2的切线,也是曲线y=1n(x+1)的切线,则b=_________三、解答题:解答应写出文字说明、证明过程或演算步骤。
(17)(本小题满分12分)n S 为等差数列{}n a 的的前n 项和,且1a =1,7S =28,记n b =[]lg n a ,其中[x]表示不超过显得最大整数,如[0.9]=0,[lg99]=1. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{n b }的前1000项和. (18)(本小题满分12分)某种保险的基本保费为a (单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD ,CD 上,AE=CF=,EF 交于BD 于点H ,将DEF 沿EF 折到 D ′EF 的位置,OD ’=.(Ⅰ)证明:D ′H ⊥平面ABCD; (Ⅱ)求二面角B- D ′A-C 的正弦值。
(20)(本小题满分12分)已知椭圆E:2xt+23y=1的焦点在X轴上,A是E的左顶点,斜率为K(K>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求K的取值范围。
(21)(本小题满分12分)(Ⅰ)讨论函数f(X)=且f(X)>0,并证明当x>0时,(x-2)+ x+2>0;(Ⅱ)证明:当a[0,1)时,函数g(X)=(x>0)有最小值。
设g(X)的最小值为h(a),求函数h(a)的值域。
请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,10AB =,求l 的斜率.(24)(本小题满分10分)选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ; (Ⅱ)证明:当a ,bM 时,1a b ab +<+.答案:一、1.A 2.C 3.D 4.A 5.B 6.C 7.B 8.C 9.D 10.C 11.A 12.C 二、13.132114. ② ③ ④ 15.1和3 16.1-1n2 三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.(Ⅰ)nan =,[lg ][lg ]n n b a n ==,10b =,11[lg11]1b ==,101[lg101]2b ==.(Ⅱ)因为lg10=,lg101=,lg1002=,lg10003=.所以19n ≤≤时,[lg ]0n =. 当100999n ≤≤时,[lg ]2n =.当999n =时,[lg ]3n =. 所以数列{}nb 的前1000项和1000121000[lg1][lg2][lg3][lg1000]0901900231893T b b b =+++=++++=+⨯+⨯+=L L .18.(Ⅰ)设一续保人本年度的保费高于基本保费的概率为1p ,则10.200.200.100.050.55p =+++=.(Ⅱ)设所求概率为2p ,则20.100.050.1530.200.200.100.050.5511p+===+++.(Ⅲ)续保人本年度的平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=, 所以续保人本年度的平均保费1.23a 与基本保费a 的比值为1.23 1.23a a=.19.(Ⅰ)略.295.20.(Ⅰ)当||||AM AN =时,1k =,直线:2l y x =+.代入椭圆方程整理得271640x x ++=.因为直线l 与椭圆E 的交点为(2,0)A -,0(,)M x y ,所以01627x-+=-,得027x=-,所以点212(,)77M -,又212(,)77N --,所以△AMN 的面积1242144(2)27749S =⨯⨯-+=.(Ⅱ)令2t a =,则直线AM 方程()y k x a =+.联立椭圆直线方程,消去y 整理得22223222(3)2(3)0a k xk a x a a k +++-=.于是2302223k a a xa k -+=-+,所以2323022222333k a a k a xa a k a k -=-=++,所以226||3a AM a k +,222266||133a ak AN k a a k++.因为2||||AM AN =,所以22226633a aka k k a ++,即232(2)63a kk k-=-.所以23632kk t k -=-,因为3t >,所以236332kkk ->-,整理得3202k k ->-2k k <,所以k 的取值范围是.21.(Ⅰ)对2()e 2xx f x x -=+求导,得22()e (2)xx f x x '=+.当(0,)x ∈+∞时,()0f x '>,函数()f x 在区间(0,)+∞内单调递增, 所以()(0)f x >. 因为(0)1f =-,所以2e12xx x ->-+,所以(2)e 20xx x -++>.(Ⅱ)对2e ()x ax ag x x --=求导,得332(2)[e ]e (2)(2)2()xxx x a x a x x g x x x -++-+++'==,0x >.记2()e 2xx x a x ϕ-=++,0x >.由(Ⅰ)知函数()x ϕ区间(0,)+∞内单调递增,所以()(0)x ϕϕ>, 又(0)10a ϕ=-+<,(2)0a ϕ=>,所以存在唯一正实数0x ,使得002()e 02x xx a x ϕ-=+=+.于是,当0(0,)x x ∈时,()0x ϕ<,()0g x '<,函数()g x 在区间0(0,)x 内单调递减;当0(,)x x ∈+∞时,()0x ϕ>,()0g x '>,函数()g x 在区间0(,)x +∞内单调递增.所以()g x 在(0,)+∞内有最小值00020e()x ax a g x x --=,由题设0020e ()x ax ah a x --=.又因为002e 2x xa x --=+.所以001()e 2x g x x =+.根据(Ⅰ)知,()f x 在(0,)+∞内单调递增,0002e (1,0]2x x a x -=-∈-+, 所以002x <≤.令1()e (02)2xu x x x =<≤+,则1()e2xx u x x +'=>+,函数()u x 在区间(0,2)内单调递增,所以(0)()(2)u u x u <≤,即函数()h a 的值域为21e (,]24.22.(Ⅰ)在Rt △DEC 中,因为DF EC ⊥, 所以90FDC DCE FCB ∠=︒-∠=∠,且DF CF DEDC=,因为DE DG =,BC CD =,所以DF FC DGCB=,所以△DFG ∽△CFB .所以DGF CBF ∠=∠.所以180FGC CBF ∠+∠=︒. 所以B ,C ,G ,F 四点共圆.(Ⅱ)因为12DE AD =,DG DE =,所以12DG DC =.因为B ,C ,G ,F 四点共圆,所以90GFB GCB ∠=∠=︒. 所以△GFB ≌△GCB .所以△GCB 的面积1111224S =⨯⨯=.23.(Ⅰ)由圆C 的标准方程22(6)25x y ++=,得221290x y x +++=,所以圆C 的极坐标方程为212cos 90ρρθ++=.(Ⅱ)将cos ,sin x t y t αα=⎧⎨=⎩代入22(6)25x y ++=,整理得212cos 110tt α++=.设A ,B 两点对应参数值分别为1t ,2t ,则1212cos t tα+=-,1211t t=.所以12||||AB tt =-23cos 8α=,解得cos α=,所以tan α或tan α=.24.(Ⅰ)函数12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩,则不等式()2f x <可化为1,222,x x ⎧≤-⎪⎨⎪-<⎩或11,2212,x ⎧-<<⎪⎨⎪<⎩或1,222,x x ⎧≥⎪⎨⎪<⎩解得11x -<<.所以不等式()2f x <的解集为(1,1)-. (Ⅱ)由(Ⅰ)可知(1,1)a ∈-,(1,1)b ∈-,所以210a->,210b ->,于是22(1)(1)0a b -->,即22(1)()0ab a b +-+>,所以|1|||ab a b +>+.。