2017届高三数学(文)一轮复习第十章 算法初步、统计、统计案例10-3
2017届高考数学一轮总复习 第十章 算法初步、统计、统计案例 文 新人教A版

第十章⎪⎪⎪ 算法初步、统计、统计案例第一节 算法初步1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤. (2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题. 2.程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形. 3.三种基本逻辑结构[小题体验]1.(教材习题改编)如图所示,程序框图(算法流程图)的输出结果是( )A.16 B.2524 C.34D.1112解析:选D s =0,n =2,2<8,s =0+12=12;n =2+2=4,4<8,s =12+14=34; n =4+2=6,6<8,s =34+16=1112;n =6+2=8,8<8不成立,输出s 的值为1112.2.(教材习题改编)已知程序框图如图所示,则输出的结果是________.答案:5 0501.易混淆处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.易忽视循环结构中必有选择结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.3.易混淆当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”;而当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[小题纠偏]1.按如下程序框图,若输出结果为170,则判断框内应补充的条件为( )A .i >?B .i >9?C .i >10?D .i >11?解析:选A ∵21+23+25+27=170,∴判断框内应补充的条件为i >7?或i≥9?. 2.阅读如图所示的程序框图,运行相应的程序,输出s 的值等于( )A .-3B .-10C .0D .-2解析:选A 第一次循环:k =0+1=1,满足k <4,s =2×1-1=1;第二次循环:k =1+1=2,满足k<4,s =2×1-2=0;第三次循环:k =2+1=3,满足k<4,s =2×0-3=-3;第四次循环:k =3+1=4,不满足k<4,故输出的s =-3.考点一 算法的基本结构基础送分型考点——自主练透[题组练透]1.定义运算a ⊗b 为执行如图所示的程序框图输出的S 值,则⎝ ⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4的值为( )A .4B .3C .2D .-1解析:选A 由程序框图可知,S =⎩⎪⎨⎪⎧aa -b ,a ≥b ,ba +,a <b ,因为2cos 5π3=1,2tan 5π4=2,1<2,所以⎝⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4=2(1+1)=4. 2.(2015·陕西高考)根据下边框图,当输入x 为2 006时,输出的y =( )A .2B .4C .10D .28解析:选C x 每执行一次循环减少2,当x 变为-2时跳出循环,y =3-x+1=32+1=10.3.如图给出了计算12+14+16+…+160的值的程序框图,其中①②分别是( )A .i <30?,n =n +2B .i =30?,n =n +2C .i >30?,n =n +2D .i >30?,n =n +1解析:选C 因为程序框图的功能是计算12+14+16+…+160的值,所以若i <30,n =n +2,则1<30,输出S =0,故排除A ;若i =30,n =n +2,则输出S =12+14+…+158,故排除B ;若i >30,n =n +1,则输出S =12+13+…+131,故排除D ,应选C.[谨记通法]解决程序框图基本问题的3个常用变量及1个关键点 (1)3个常用变量①计数变量:用来记录某个事件发生的次数,如i =i +1. ②累加变量:用来计算数据之和,如S =S +i . ③累乘变量:用来计算数据之积,如p =p ×i . (2)1个关键点处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.考点二 算法的交汇性问题 (常考常新型考点——多角探明)[命题分析]算法是高考热点内容之一,算法的交汇性问题是高考的一大亮点. 常见的命题角度有: (1)与统计的交汇问题; (2)与函数的交汇问题; (3)与不等式的交汇问题;(4)与数列求和的交汇问题.[题点全练]角度一:与统计的交汇问题1.(2016·黄冈模拟)随机抽取某中学甲、乙两个班各10名同学,测量他们的身高获得身高数据的茎叶图如图,在样本的20人中,记身高在[150,160),[160,170),[170,180),[180,190)的人数依次为A1,A2,A3,A4.如图是统计样本中身高在一定范围内的人数的算法框图.若图中输出的S=18,则判断框应填________.解析:由于i从2开始,也就是统计大于或等于160的所有人数,于是就要计算A2+A3+A4,因此,判断框应填i<5?或i≤4?.答案:i<5?或i≤4?角度二:与函数的交汇问题2.(2015·山东高考)执行下边的程序框图,若输入的x的值为1,则输出的y的值是________.解析:当x=1时,1<2,则x=1+1=2;当x=2时,不满足x<2,则y=3×22+1=13.答案:13角度三:与不等式的交汇问题3.执行如图所示的程序框图,若输入的x 的值为2,则输出的y 的值为( )A .2B .5C .11D .23解析:选D 第一次循环:x =2,y =5, |2-5|=3<8;第二次循环:x =5,y =11, |5-11|=6<8;第三次循环:x =11,y =23, |11-23|=12>8.满足条件,输出的y 的值为23. 角度四:与数列求和的交汇问题4.(2015·湖南高考)执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.67 B.37 C.89D.49解析:选B 第一次循环:S =11×3,i =2;第二次循环:S =11×3+13×5,i =3;第三次循环:S =11×3+13×5+15×7,i =4,满足循环条件,结束循环. 故输出S =11×3+13×5+15×7=121-13+13-15+15-17=37.[方法归纳]解决算法交汇问题的3个关键点(1)读懂程序框图,明确交汇知识;(2)根据给出问题与程序框图处理问题;(3)注意框图中结构的判断.考点三算法基本语句 (重点保分型考点——师生共研)[典例引领](2015·南京三模)执行下边的程序,输出的结果是________.S=1i=3WHILE S<=200S=S*ii=i+2WENDPRINT iEND解析:根据循环结构可得:第一次:S=1×3=3,i=3+2=5,由于3≤200,则循环;第二次:S=3×5=15,i=5+2=7,由于15≤200,则循环;第三次:S=15×7=105,i=7+2=9,由于105≤200,则循环;第四次:S=105×9=945,i=9+2=11,由于945>200,则循环结束,故此时i=11.答案:11[由题悟法]算法语句应用的4个关注点(1)输入、输出语句:在输入、输出语句中加提示信息时,要加引号,变量之间用逗号隔开.(2)赋值语句:左、右两边不能对换,赋值号左边只能是变量.(3)条件语句:条件语句中包含条件语句时,要分清内外条件结构,保证结构完整性.(4)循环语句:分清“for”和“while”的格式,不能混用.[即时应用]根据如图所示的伪代码,最后输出的S的值为________.S=0For I From 1 To 10S=S+IEnd ForPrint S解析:这是一个1+2+3+…+10的求和,所以输出的S的值为55.答案:55一抓基础,多练小题做到眼疾手快1.执行如图所示的程序框图,若输入的实数x =4,则输出结果为( )A .4B .3C .2D.14解析:选C 依题意,输出的y =log 24=2.2.阅读如下程序框图,如果输出的i =4,那么空白的判断框中应填入的条件是( )A .S <10?B .S <12?C .S <14?D .S <16?解析:选B 由题知,i =2,S =2;i =3,S =8;i =4,S =12. 故应填入的条件为S <12?.3.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=x 2B .f (x )=|x |xC .f (x )=e x-e-xe x +e-xD .f (x )=1+sin x +cos x1+sin x -cos x解析:选C 由框图可知输出函数为奇函数且存在零点,依次判断各选项,A 为偶函数,B 不存在零点,均不符合,对于C ,由于f (-x )=e -x-exe -x +e x =-f (x ),即函数为奇函数,且存在零点为x =0,对于D ,由于其定义域不关于原点对称,故其为非奇非偶函数.4.执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]解析:选A 当-1≤t <1时,s =3t ,则s ∈[-3,3). 当1≤t ≤3时,s =4t -t 2.函数在[1,2]上单调递增,在[2,3]上单调递减. ∴s ∈[3,4]. 综上知s ∈[-3,4].5.执行如图所示的程序框图,则输出S 的值为( )A .3B .-6C .10D .-15解析:选D 第一次执行程序,得到S =0-12=-1,i =2; 第二次执行程序,得到S =-1+22=3,i =3; 第三次执行程序,得到S =3-32=-6,i =4; 第四次执行程序,得到S =-6+42=10,i =5; 第五次执行程序,得到S =10-52=-15,i =6, 到此结束循环,输出的S =-15. 二保高考,全练题型做到高考达标1.(2016·北京东城模拟)如图给出的是计算12+14+16+18+…+1100的一个程序框图,其中判断框内应填入的条件是( ) A .i <50? B .i >50? C .i <25? D .i >25?解析:选B 因为该循环体需要运行50次,i 的初始值是1,间隔是1,所以i =50时不满足判断框内的条件,而i =51时满足判断框内条件,所以判断框内的条件可以填入i >50?.2.(2016·郑州模拟)执行如图所示的程序框图,输出的S 值是( )A.22B .-1C .0D .-1-22解析:选D 由程序框图可知n =1,S =0;S =cos π4,n =2;S =cos π4+cos 2π4,n =3;这样依次循环,一直到S =cos π4+cos2π4+cos 3π4+…+cos 2 014π4=251⎝ ⎛⎭⎪⎫cos π4+cos 2π4+…+cos 8π4+cos π4+cos 2π4+…+cos 6π4=251×0+22+0+⎝ ⎛⎭⎪⎫-22+(-1)+⎝ ⎛⎭⎪⎫-22+0 =-1-22,n =2 015. 3.(2015·全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .14解析:选B a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4; 第二次循环:14≠4且14>4,a =14-4=10; 第三次循环:10≠4且10>4,a =10-4=6; 第四次循环:6≠4且6>4,a =6-4=2; 第五次循环:2≠4且2<4,b =4-2=2; 第六次循环:a =b =2, 跳出循环,输出a =2,故选B.4.(2015·安徽皖南八校三联)如图所示是用模拟数方法估计椭圆x 24+y 2=1的面积S 的程序框图,则图中空白框内应填入( )A .S =N500B .S =M500C .S =4N500D .S =4M500解析:选D 从0到2产生的2 000个随机数中,落入椭圆内部或边界的有M 个,则M2 000=S44,故S =4M 500. 5.如图(1)是某县参加2 016年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,则在流程图中的判断框内应填写( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 统计身高在160~180 cm的学生人数,则求A4+A5+A6+A7的值.当4≤i≤7时,符合要求.6.某程序框图如图所示,则该程序运行后输出的s值为________.解析:根据程序框图,所求的值可以通过逐次循环求得,i=5,s=1;i=4,s=2×1+1=3;i=3,s=7;i=2,s=15;i=1,s=31,循环结束,故输出的s=31.答案:317.(2016·江西八校联考)执行如图所示的程序框图,输出的s是________.解析:第一次循环:i=1,s=1;第二次循环:i=2,s=-1;第三次循环:i=3,s =2;第四次循环:i=4,s=-2,此时i=5,执行s=3×(-2)=-6.答案:-68.(2016·黄冈模拟)数列{a n}满足a n=n,阅读如图所示的程序框图,运行相应的程序,若输入n=5,a n=n,x=2的值,则输出的结果v=________.解析:该程序框图循环4次,各次v 的值分别是14,31,64,129,故输出结果v =129. 答案:1299.(2015·安徽高考)执行如图所示的程序框图(算法流程图),输出的n 为________.解析:执行第一次判断:|a -1.414|=0.414>0.005,a =32,n =2;执行第二次判断:|a -1.414|=0.086>0.005,a =75,n =3;执行第三次判断:|a -1.414|=0.014>0.005,a =1712,n =4;执行第四次判断:|a -1.414|<0.005,输出n =4. 答案:410.给出以下10个数:5,9,80,43,95,73,28,17,60,36.要求把大于40的数找出来并输出.试画出该问题的程序框图.解:程序框图如下:三上台阶,自主选做志在冲刺名校1.执行如图所示的程序框图,若输入的a的值为3,则输出的i=( )A.4 B.5C.6 D.7解析:选C 第1次循环,得M=100+3=103,N=1×3=3,i=2;第2次循环,得M=103+3=106,N=3×3=9,i=3;第3次循环,得M=106+3=109,N=9×3=27,i=4;第4次循环,得M=109+3=112,N=27×3=81,i=5;第5次循环,得M=112+3=115,N=81×3=243,i=6,此时M<N,退出循环,输出的i的值为6.2.执行如图所示的程序框图,若输入x=9,则输出y=________.解析:第一次循环:y =5,x =5;第二次循环:y =113,x =113;第三次循环:y =299,此时|y -x |=⎪⎪⎪⎪⎪⎪299-113=49<1,故输出y =299.答案:2993.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表格所示:统计该6名队员在最近三场比赛中投进的三分球总数的程序框图如图所示. (1)试在判断框内填上条件; (2)求输出的s 的值.解:(1)依题意,程序框图是统计6名队员投进的三分球的总数. ∴判断框内应填条件“i ≤6?”.(2)6名队员投进的三分球数分别为a 1,a 2,a 3,a 4,a 5,a 6. 故输出的s =a 1+a 2+…+a 6.第二节 随机抽样1.简单随机抽样(1)抽取方式:逐个不放回抽取; (2)每个个体被抽到的概率相等; (3)常用方法:抽签法和随机数法. 2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. 3.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号l +k ,再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[小题体验]1.(教材习题改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )A .随机抽样B .分层抽样C .系统抽样D .以上都不是解析:选C 因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样. 2.(教材习题改编)某校高中生有900名,其中高一有400名,高二有300名,高三有200名,打算抽取容量为45的一个样本,则高三学生应抽取________人.答案:103.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x 名学生,则x 50=310.解得x =15. 答案:151.简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.2.系统抽样中,易忽视抽取的样本数也就是分段的段数,当N n不是整数时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差数列.3.分层抽样中,易忽视每层抽取的个体的比例是相同的,即样本容量n总体个数N .[小题纠偏]1.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取男生人数为( )A .27B .30C .33D .36解析:选B 因为男生与女生的比例为180∶120=3∶2, 所以应该抽取男生人数为50×33+2=30.2.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:每组袋数:d =3 000150=20,由题意知这些号码是以11为首项,20为公差的等差数列.a 61=11+60×20=1 211.答案:1 211考点一 简单随机抽样基础送分型考点——自主练透[题组练透]1.(2016·陕西西工大附中模拟训练)某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生、6名女生, 则下列命题正确的是( )A .这次抽样可能采用的是简单随机抽样B .这次抽样一定没有采用系统抽样C .这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D .这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率解析:选A 利用排除法求解.这次抽样可能采用的是简单随机抽样,A 正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,B 错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C 和D 均错误,故选A.2.(易错题)(2015·唐山二模)用简单随机抽样的方法从含有100个个体的总体中抽取一个容量为5的样本,则个体M 被抽到的概率为( )A.1100 B.199 C.120D.150解析:选C 一个总体含有100个个体,某个个体被抽到的概率为1100,用简单随机抽样方法从该总体中抽取容量为5的样本,则某个个体被抽到的概率为1100×5=120.3.(2016·海口一模)假设要考察某企业生产的袋装牛奶质量是否达标,现从500袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将500袋牛奶按000,001,…,499进行编号,如果从随机数表(下面摘取了随机数表第7行至第9行)第8行第4列的数开始按三位数连续向右读取,则依次写出最先检测的5袋牛奶的编号分别为( )84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A.163,198,175,128,395 B .163,199,175,128,395 C .163,199,175,128,396D .163,199,175,129,395解析:选B 随机数表第8行第4列的数是1,从1开始读取:163 785 916 955 567 199 810 507 175 128 673 580 744 395.标波浪线的5个即是所取编号.[谨记通法]一个抽样试验用抽签法的2个注意事项一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.考点二 系统抽样 (重点保分型考点——师生共研)[典例引领](2015·广州二模)将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9解析:选B 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.[由题悟法]解决系统抽样问题的2个关键步骤(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.[即时应用]为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽到一个容量为4的样本.已知7号,33号,46号同学在样本中,那么样本中另一位同学的编号应是( )A .13B .19C .20D .51 解析:选C 由系统抽样的原理知,抽样的间隔为52÷4=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号,20号,33号,46号,从而可知选C.考点三 分层抽样的交汇命题 (常考常新型考点——多角探明)[命题分析]分层抽样是历年高考的重要考点之一,高考中常把分层抽样、频率分布、概率综合起来进行考查,反映了当前高考的命题方向.这类试题难度不大,但考查的知识面较为宽广,在解题中要注意准确使用所学知识,不然在一个点上的错误就会导致整体失误.常见的命题角度有:(1)与频率分布相结合问题;(2)与概率相结合问题.[题点全练]角度一:与频率分布相结合问题1.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如图所示的部分频率分布直方图.观察图中的信息,回答下列问题.(1)求分数在[120,130)内的频率;(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.解:(1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.(2)估计平均分为x -=95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,得[110,120)分数段的人数为60×0.15=9(人),[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,分别记为m ,n ;在[120,130)分数段内抽取4人,分别记为a ,b ,c ,d.设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A ,所有基本事件有(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ),(n ,c ),(n ,d ),(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共15个,其中事件A 包含9个.∴P (A )=915=35. 角度二:与概率相结合问题2.(2015·郑州二检)最新高考改革方案已在上海和浙江实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:z =2y .(1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?(2)在(1)中所抽取的“不赞成改革”的人中,随机选出3人进行座谈,求至少有1名教师被选出的概率.解:(1)由题意知x500=0.3,所以x =150,所以y +z =60, 因为z =2y ,所以y =20,z =40,则应抽取“不赞成改革”的教师人数为50500×20=2, 应抽取“不赞成改革”的学生人数为50500×40=4. (2)所抽取的“不赞成改革”的2名教师记为a ,b,4名学生记为1,2,3,4,随机选出3人的不同选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),(1,2,3),(1,2,4),(1,3,4),(2,3,4),共20种,至少有1名教师的选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),共16种,故至少有1名教师被选出的概率P =1620=45. [方法归纳]进行分层抽样的相关计算时,常用到的2个关系(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.一抓基础,多练小题做到眼疾手快1.某学校礼堂有30排座位,每排有20个座位.一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生.这里运用的抽样方法是( )A .抽签法B .随机数法C .系统抽样D .分层抽样解析:选C 由留下的学生座位号均相差一排可知是系统抽样.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( ) 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481A .08B .07C .02D .01解析:选D 从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,01,所以第5个个体的编号为01.3.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法从中抽取样本.若样本中具有初级职称的职工为10人,则样本容量为( )A .10B .20C .40D .50解析:选C 设样本容量为n ,则10n =200800,解得n =40. 4.某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n 的样本.已知3个区人口数之比为2∶3∶5,如果最多的一个区抽出的个体数是60,那么这个样本的容量为( )A .96B .120C .180D .240解析:选B 设样本容量为n ,则52+3+5=60n. 解得n =120.5.哈六中2015届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:选B 使用系统抽样方法,从840名学生中抽取42人,即从20人中抽取1人.所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.二保高考,全练题型做到高考达标1.(2016·珠海摸底)为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为( )A.9 B.8C.10 D.7解析:选A 由系统抽样方法知,72人分成8组,故分段间隔为72÷8=9.2.(2016·兰州双基测试)从一个容量为N的总体中抽取一个容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析:选D 根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p1=p2=p3.3.(2016·邯郸摸底)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=( )A.660 B.720C.780 D.800解析:选B 由已知条件,抽样比为13780=1 60,从而35600+780+n =160,解得n=720.4.(2016·江西八校联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )A.480 B.481C.482 D.483解析:选C 根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482.5.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )A.40 B.36C.30 D.20解析:选C 利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90. 解得n =30.6.某市有大型超市100家、中型超市200家、小型超市700家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为80的样本,应抽取中型超市________家.解析:根据分层抽样的知识,设应抽取中型超市t 家,则801 000=t 200,解得t =16. 答案:167.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析:因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学.所以第8组中抽出的号码为5×7+2=37.答案:378.(2016·陕西师大附中模拟)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为________.解析:设第n 组抽到的号码为a n ,则a n =9+30(n -1)=30n -21,由750<30n -21≤960,得25.7<n ≤32.7,所以n 的取值为26,27,28,29,30,31,32,共7个,因此做问卷C 的人数为7人.答案:79.(2016·北京海淀区期末)某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015.答案:50 1 01510.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 解:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,在大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为2745×5=3(名). (3)用分层抽样方法抽取的5名观众中,20至40岁的有2名(记为Y 1,Y 2),大于40岁的有3名(记为A 1,A 2,A 3).5名观众中任取2名,共有10种不同取法:Y 1Y 2,Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y 2A 3,A 1A 2,A 1A 3,A 2A 3.设A 表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A 中的基本事件有6种:Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y 2A 3,故所求概率为P (A )=610=35. 三上台阶,自主选做志在冲刺名校1.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为 a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800B .1 000C .1 200D .1 500解析:选C 因为a ,b ,c 成等差数列,所以2b =a +c .所以a +b +c3=B.所以第二车间抽取的产品数占抽样产品总数的13.根据分层抽样的性。
高考数学一轮复习 第10单元 算法初步、统计、统计案例听课学案 理

——————————新学期新成绩新目标新方向——————————第十单元算法初步、统计、统计案例第63讲算法初步课前双击巩固1.算法(1)算法通常是指按照解决某一类问题的和的步骤.(2)应用:算法通常可以编成计算机,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用、流程线及来表示算法的图形.3.三种基本逻辑结构4.基本算法语句(1)输入语句、输出语句和赋值语句的格式与功能:(2)条件语句的格式及框图:①IF-THEN格式:图10-63-1 ②IF-THEN-ELSE格式:图10-63-2(3)循环语句的格式及框图:①UNTIL语句:图10-63-3 ②WHILE语句:图10-63-4题组一常识题1.[教材改编]执行如图10-63-5所示的程序框图,运行相应的程序,若输入x的值为2,则输出S的值为.图10-63-52.[教材改编]运行如图10-63-6所示的程序后输出的结果是3,则输入的x值是.图10-63-6题组二常错题◆索引:注意循环结构中控制循环的条件;注意区分程序框图是条件结构还是循环结构.3.若[x]表示不超过x的最大整数,执行如图10-63-7所示的程序框图,则输出S的值为.图10-63-74.操作图10-63-8中的流程图,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则①处填,②处填.图10-63-85.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”图10-63-9是关于该算法的程序框图,如果输入a= 153,b= 119,则输出的a的值是.图10-63-9课堂考点探究探究点一算法的基本结构1 (1)[2017·咸阳三模]已知如图10-63-10所示的程序框图的输入值x∈[-1,4],则输出y值的取值范围是()A.[0,2]B.[-1,2]C.[-1,15]D.[2,15]图10-63-10(2)如图10-63-11所示的程序框图的运行结果为S=20,则判断框中可以填入的关于k的条件是()图10-63-11A.k>9?B.k≤8?C.k<8?D.k>8?[总结反思] 解决程序框图问题时一定要注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件结构还是循环结构;(3)注意区分“当型循环结构”和“直到型循环结构”;(4)处理关于循环结构的问题时,一定要正确控制循环次数;(5)要注意各个程序框的顺序.式题 (1)[2017·雅安三诊]执行如图10-63-12所示的程序框图,为使输出的数据为31,则判断框中可以填入的条件为()A.i≤3?B.i≤4?C.i≤6?D.i≤7?图10-63-12(2)[2017·银川一中二模]执行如图10-63-13所示的程序框图,输入n=6,m=4,那么输出的p 等于()A.720B.360C.240D.120图10-63-13探究点二算法的交汇性问题考向1与统计的交汇问题2 图10-63-14(1)是某县参加2017年高考的学生身高(单位:cm)的条形统计图,将从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在[160,180)内的学生人数,则在程序框图中的判断框内应填写()图10-63-14A.i<6?B.i<7?C.i<8?D.i<9?[总结反思] 与统计交汇的程序框图问题,多体现在将统计的图表知识(如频率分布直方图、茎叶图等)与程序框图交汇在一起,解决此类问题时应根据题意读懂统计的图表数据后,再根据程序框图的算法进行推理演算.考向2与函数的交汇问题3 [2017·四川绵阳中学三模]某市乘坐出租车的收费办法如下:图10-63-15(1)不超过3千米的里程收费10元;(2)超过3千米的里程按每千米2元收费(对于其中不足千米的部分, 若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费),当车程超过3千米时,另收燃油附加费1元.相应系统收费的程序框图如图10-63-15所示,其中x(单位:千米)为行驶里程,y(单位:元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填 ()A.y=2[x+0.5]+4B.y=2[x+0.5]+5C.y=2[x-0.5]+4D.y=2[x-0.5]+5[总结反思] 与函数交汇的程序框图问题,常见的有条件结构的应用、分段函数的求值问题,读图时应正确理解题意,根据相应条件选择与之对应的运算法则求值.考向3与数列求和的交汇问题4 图10-63-16图10-63-16是一个算法的程序框图,如果输入i=0,S=0,那么输出的结果为()A.B.C.D.[总结反思] 解决与数列求和交汇的程序框图问题的关键有以下两个方面:一是循环结构的识图、推理,将其输出结果呈现为一个数列求和的形式;二是结合数列求和的知识对结果进行求和运算.常见题型为等差数列、等比数列求和,裂项相消法求和以及周期分组法求和.强化演练1.【考向3】[2017·岳阳二模]执行如图10-63-17所示的程序框图,输出s的值为()图10-63-17A.1B.C.D.2.【考向2】[2017·江西八校联考]执行如图10-63-18所示的程序框图,若输出S的值为4,则判断框中填入的条件可能是()图10-63-18A.k<18?B.k<17?C.k<16?D.k<15?3.【考向3】执行如图10-63-19所示的程序框图,若输出的结果是,则输入的a为()A.6B.5C.4D.3图10-63-194.【考向2】[2017·福州一中质检]执行如图10-63-20所示的程序框图,则输出的结果是()A.1B.C.D.2图10-63-205.【考向1】图10-63-21是计算某年级500名学生期末考试成绩(满分为100分)及格率q 的程序框图,则图中处理框内应填入.图10-63-21探究点三基本算法语句5 图10-63-22为一个求50个数的平均数的程序,在横线上应填充的语句为 ()图10-63-22A.i>50B.i<50C.i>=50D.i<=50[总结反思] 应用基本算法语句的四个关注点:(1)输入、输出语句:在输入、输出语句中加提示信息时要加引号,变量之间用逗号隔开.(2)赋值语句:左、右两边不能对换,赋值号左边只能是变量.(3)条件语句:条件语句中包含其他条件语句时,要分清内外条件结构,保证结构完整性.(4)循环语句:分清“UNTIL”语句和“WHILE”语句的格式和特征,不能混用.式题 (1)当a=3时,如图10-63-23所示的程序输出的结果是()A.9B.3C.10D.6图10-63-23(2)在执行图10-63-24中的程序时,如果输入n的值为6,那么输出的结果为()A.6B.720C.120D.1图10-63-24第64讲随机抽样课前双击巩固1.简单随机抽样(1)抽取方式:逐个;(2)每个个体被抽到的概率;(3)常用方法:和.2.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由组成时,往往选用分层抽样.3.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体;(2)确定,对编号进行,当(n是样本容量)是整数时,取k=;(3)在第1段用确定第1个个体编号l(l≤k);(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号,依次进行下去,直到获取整个样本.题组一常识题1.[教材改编]为了了解一批零件的长度,抽测了其中200个零件的长度,在这个抽样中,总体的一个样本是.2.[教材改编]某中学从编号为1~60的60个班级中,随机抽取6个班级进行卫生检查,所抽班级的号码是6,16,26,36,46,56,则这种抽样方法是.3.[教材改编]某学校高三年级有男同学200人,女同学300人,用分层抽样的方法抽取一个容量为50的样本,则应抽取男同学人,女同学人.4.[教材改编]总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为.7816657208026314021443199714019832049234493682003623486969387181题组二常错题◆索引:系统抽样中剔除的个体随机;分层抽样每层抽取的个数比例是相同的;简单随机抽样、系统抽样、分层抽样都是等可能抽样.5.某学校为了解高一年级1203 名学生对某项教改试验的意见,打算从中抽取一个容量为40 的样本,若采用系统抽样,则分段间隔为.6.某公司有员工500人,其中不到35岁的有125人,35~50岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从员工中抽取了100人,则应在这三个年龄段中抽取的人数分别为.7.某校要从高一、高二、高三共2012名学生中选取50名组成志愿团,若先用简单随机抽样的方法从2012名学生中剔除12名,再从剩下的2000名学生中按分层抽样的方法抽取50名,则下面对每名学生入选的概率描述正确的是.(填序号)①都相等且为;②都相等且为;③不完全相等.课堂考点探究探究点一简单随机抽样1 (1)某班级有男生20人,女生30人,从中抽取10人组成样本,其中一次抽样结果是抽到了4名男生、6名女生, 则下列说法正确的是()A.这次抽样可能采用的是简单随机抽样B.这次抽样一定没有采用系统抽样C.这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D.这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率(2)[2017·辽宁实验中学模拟]福利彩票“双色球”中红色球的号码可以从01,02,03,…,32,33这33个两位数号码中选取,小明利用下面的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第4个被选中的红色球号码为()81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 8506 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49A.12B.33C.06D.16[总结反思] (1)简单随机抽样满足:①抽取的个体数有限;②逐个抽取;③不放回抽取;④等可能抽取.(2)抽签法适用于总体中个体数较少的情况,随机数表法适用于总体中个体数较多的情况.式题假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋牛奶进行检测,利用随机数表抽样时,先将800袋牛奶按000,001,…,799进行编号,如果从下面随机数表第2行第7列开始向右读取,那么抽取检测的第5袋牛奶的编号为.8442 1753 3157 2455 0688 7704 7447 6721 7633 5025 8392 12066301 6378 5916 9556 6719 9810 5071 7512 8673 5807 4439 52383321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279探究点二系统抽样2 某学校高一、高二、高三年级学生人数分别为720,720,800,现从全校学生中随机抽取56人参加防火防灾问卷调查.先采用分层抽样方法确定各年级参加调查的人数,再在各年级内采用系统抽样方法确定参加调查的学生.若将高三年级的学生依次编号为001,002,…,800,则高三年级抽取的学生的编号不可能为()A.001,041,…,761B.031,071,…,791C.027,067,…,787D.055,095,…,795[总结反思] 解决系统抽样问题的两个关键步骤:(1)分组的方法应依据抽样比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.式题 (1)某种饮料每箱装6瓶,库存23箱未开封的饮料,现欲对这种饮料进行质量检测,工作人员需从中随机取出10瓶,若采用系统抽样法,则要剔除的饮料的瓶数是 ()A.2B.8C.6D.4(2)[2018.长沙长郡中学月考]某中学将参加摸底测试的1200名学生编号为1,2,3, (1200)从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为()A.68B.92C.82D.170探究点三分层抽样3 (1)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为k∶5∶3,现用分层抽样方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则抽取的C种型号产品件数为()A.24B.30C.36D.40(2)[2017·衡水中学二模]某学校为了解学生学习的情况,采用分层抽样的方法从高一年级的2400名学生、高二年级的2000名学生、高三年级的n名学生中,抽取90人进行问卷调查.已知高一年级被抽取的学生人数为36,那么高三年级被抽取的学生人数为()A.20B.24C.30D.32[总结反思] 进行分层抽样的相关计算时,常用到的两个关系:(1)=;(2)总体中某两层的个体数之比等于样本中这两层所抽取的个体数之比.式题 (1)为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新三县空气质量进行调查,按地域特点在三县内设置空气质量观测点.已知三县内观测点的个数分别为6,y,z,依次构成等差数列,且6,y,z+6成等比数列,若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为()A.8B.6C.4D.2(2)[2017·乌鲁木齐模拟]某高中有学生2000人,其中高一年级有760人,若从全校学生中随机抽出1人,抽到的学生是高二年级学生的概率为0.37,现采用分层抽样(按年级分层)方法在全校抽取20人,则应在高三年级中抽取的学生人数为.第65讲用样本估计总体课前双击巩固1.作频率分布直方图的步骤(1)求极差(即一组数据中与的差);(2)决定与;(3)将数据 ; (4)列 ; (5)画 . 2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的 ,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时 增加, 减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 3.茎叶图的优点茎叶图的优点是不但可以保留所有信息,而且可以 记录,这对数据的记录和表示都能带来方便. 4.样本的数字特征 (1)众数、中位数、平均数= (2)标准差、方差①标准差:样本数据到平均数的一种平均距离,一般用s 表示,s=.②方差:标准差的平方s 2.s2=[(x1-)2+(x2-)2+…+(x n-)2],其中x i(i=1,2,3,…,n)是,n是,是.题组一常识题1.[教材改编]如图10-65-1是100位居民月均用水量的频率分布直方图,则月均用水量在[2,2.5)(单位:t)范围内的居民有人.图10-65-12.[教材改编]某赛季甲、乙两名篮球运动员每场比赛得分数据用茎叶图(如图10-65-2)表示,从茎叶图的分布情况看,运动员的发挥更稳定.图10-65-23.[教材改编]某射手在一次训练中五次射击的成绩(单位:环)分别为9.4,9.4,9.4,9.6,9.7,则该射手成绩的方差是.4.[教材改编]从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为.题组二常错题◆索引:频率分布直方图与茎叶图中识图不清致误;中位数、平均数、众数的概念混淆不清致误;方差、平均数的统计意义不清楚致误.5.如图10-65-3所示的茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x= ,y= .图10-65-36.如图10-65-4是某学校抽取的部分学生体重的频率分布直方图,已知图中从左到右的前3个分组的频率依次成等差数列,第2个分组的频数为10,则抽取的学生人数为.图10-65-47.甲、乙、丙三个班各有20名学生,一次数学考试后,三个班学生的成绩与人数统计如下:甲班成绩乙班成绩丙班成绩用s1,s2,s31,s2,s3的大小关系是.课堂考点探究探究点一 频率分布直方图1 某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,使其对手机进行打分,得分的频数分布表如下:(1)完成如图10-65-5所示的频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);图10-65-5(2)根据评分的不同,利用分层抽样的方法从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和数学期望.[总结反思] (1)绘制频率分布直方图时的两个注意点:①制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;②频率分布直方图的纵坐标是,而不是频率.(2)由频率分布直方图进行相关计算时,需掌握的两个关系式:①×组距=频率;②=频率,此关系式的变形为=样本容量,样本容量×频率=频数.式题 [2017·淮北二模]交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.一般早高峰时段T≥3,从贵阳市交通指挥中心随机选取了早高峰时段二环以内50个交通路段,依据交通指数数据绘制的频率分布直方图如图10-65-6所示.(1)据此直方图估算T∈[4,8)时交通指数的中位数和平均数.(2)据此直方图求出早高峰时段二环以内的3个路段中至少有2个严重拥堵的概率.(3)某人上班路上所用时间:畅通时为20分钟,基本畅通时为30分钟,轻度拥堵时为35分钟,中度拥堵时为45分钟,严重拥堵时为60分钟.求此人早高峰时所用时间的数学期望.图10-65-6探究点二茎叶图2 “一带一路”经济带的发展规划已经得到了越来越多相关国家的重视和参与.某市顺潮流、乘东风,闻迅而动,决定利用旅游资源优势,撸起袖子大干一场.该市相关部门为了了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如图10-65-7所示.(1)若景点甲中的数据的中位数是125,景点乙中的数据的平均数是124,求x,y的值;(2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,今从这段时期中任取4天,记其中游客数超过120人的天数为ξ,求P(ξ≤2);(3)现从图中共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115人且不高于125人的天数为η,求η的分布列和数学期望.图10-65-7[总结反思] 使用茎叶图时的两个注意点:(1)观察所有的样本数据,弄清图中数字的特点,注意不要漏掉数据;(2)注意不要混淆茎叶图中茎与叶的含义.式题 (1)[2017·北京海淀区一模]《中国诗词大会》是中央电视台首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵.如图10-65-8是2016年《中国诗词大会》节目中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关图10-65-8(2)[2017·宜宾二诊]某生产车间的甲、乙两位工人生产同一种零件,这种零件的标准尺寸为85 mm,现分别从他们生产的零件中各随机抽取8件进行检测,其尺寸(单位:mm)用茎叶图表示如图10-65-9所示,则估计 ()A.甲、乙生产的零件尺寸的中位数相等B.甲、乙生产的零件质量相当C.甲生产的零件质量比乙生产的零件质量好D.乙生产的零件质量比甲生产的零件质量好图10-65-9探究点三样本数字特征3[2017·蚌埠质检]某学校高一、高二、高三三个年级共有300名教师,为了调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,统计数据如下表(单位:小时):(1)试估计该校高三年级的教师人数;(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,求该周甲的备课时间不比乙的备课时间长的概率;(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8,9,10(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中数据的平均数记为,试判断与的大小(结论不要求证明).[总结反思] 利用频率分布直方图估计样本数字特征的方法:(1)中位数:在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数.(2)平均数:平均数的估计值等于每个小矩形的面积乘矩形底边中点横坐标之和.(3)众数:最高的矩形底边中点的横坐标.式题 (1)[2017·广西贵港、玉林联考]随着人民生活水平的提高,对城市空气质量的关注度也逐渐增高,图10-65-10是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格空气,下面叙述不正确的是()图10-65-10A.1月至8月空气质量合格天数超过20天的月份有5个B.第二季度与第一季度相比,空气质量达标天数的比重下降了C.8月份是空气质量最好的一个月D.6月份的空气质量最差(2)[2017·佛山一模]本学期王老师任教高三(1)班、高三(2)班两个平行班,两个班都是50名学生,如图10-65-11反映的是两个班学生在本学期5次数学测试中班级平均分的对比,由图可知不正确的结论是()图10-65-11A.(1)班的数学成绩平均水平好于(2)班B.(2)班的数学成绩没有(1)班稳定C.下次考试(2)班的数学平均分要高于(1)班D.在第1次考试中,(1),(2)两个班的总平均分为98第66讲变量间的相关关系、统计案例课前双击巩固1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系;另一类是,与函数关系不同,是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为,点散布在从左上角到右下角的区域内,两个变量的相关关系为.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有,这条直线叫作.(2)回归方程为=x+,其中=,=-.(3)通过求Q=(y i-bx i-a)2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫作最小二乘法.(4)相关系数:当r>0时,表明两个变量;当r<0时,表明两个变量.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间.通常|r|大于时,认为两个变量有很强的线性相关性.3.独立性检验假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:K2=(其中n=a+b+c+d为样本容量).题组一常识题1.[教材改编]下列关系中,属于相关关系的是.(填序号)①正方形的边长与面积;②农作物的产量与施肥量;③人的身高与眼睛近视的度数;④哥哥的数学成绩与弟弟的数学成绩.2.[教材改编]对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图10-66-1①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判断变量x 与y, u与v .(填正相关、负相关或不相关)图10-66-13.[教材改编]某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和K2统计量研究患肺病是否与吸烟有关.计算得K2的观测值k≈4.453,经查对临界值表知P(K2≥3.841)=0.05,现给出下列四个结论,其中正确的是.(填序号)①在100个吸烟的人中约有95个人患肺病;②若某人吸烟,则他有95%的可能性患肺病;③有95%的把握认为“患肺病与吸烟有关”;④只有5%的把握认为“患肺病与吸烟有关”.4.[教材改编]对具有线性相关关系的变量x和y,测得一组数据如下表所示.若已求得x与y之间的回归直线的斜率为6.5,则这条回归直线的方程为.题组二常错题◆索引:易混淆相关关系与函数关系;误认为样本数据必在回归直线上;利用回归方程分析问题时,所得的数据易误认为是准确值.5.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图10-66-2所示的人体脂肪含量与年龄关系的散点图.根据该图知,人体脂肪含量与年龄相关,且脂肪含量的中位数20%.图10-66-26.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是.(填序号)①y与x具有正的线性相关关系;②回归直线过样本点的中心(,);③若该大学某女生身高增加1 cm,则其体重约增加0.85 kg;④若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg.7.某产品在某销售点的零售价x(单位:元)与每天的销售量y(单位:个)的统计数据如下表所示.由表中数据可得回归直线方程=x+中的=-5,根据模型预测零售价为20元时,每天的销售量约为个.课堂考点探究探究点一变量相关关系的判断。
高考数学一轮复习 第十章 算法初步、统计、统计案例学案 理

第十章算法初步、统计、统计案例第一节算法初步1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.(2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.三种基本逻辑结构及相应语句1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)算法的每一步都有确定的意义,且可以无限地运算.( )(2)一个程序框图一定包含顺序结构,也包含条件结构和循环结构.( ) (3)一个循环结构一定包含条件结构.( )(4)当型循环是给定条件不成立时,执行循环体,反复进行,直到条件成立为止.( ) 答案:(1)× (2)× (3)√ (4)×2.如图所示的程序框图的运行结果为________.解析:因为a =2,b =4,所以输出S =24+42=2.5.答案:2.53.执行如图所示的程序框图,如果输出的结果为0,那么输入的x 的值为________.解析:当x ≤0时,由-x 2+1=0,得x =-1;当x >0时,第一次对y 赋值为3x+2,第二次对y 又赋值为-x 2+1,最后y =-x 2+1,于是由-x 2+1=0,得x =1,综上知输入的x 的值为-1或1.答案:-1或14.执行如图所示的程序框图,则输出的结果为________.解析:进行第一次循环时,S =1005=20,i =2,S =20>1; 进行第二次循环时,S =205=4,i =3,S =4>1;进行第三次循环时,S =45,i =4,S =45<1,此时结束循环,输出的i =4. 答案:45.执行如图所示的程序框图,则输出的结果为________.解析:第一次循环:S =12,n =4;第二次循环:n =4<8,S =12+14,n =6;第三次循环:n =6<8,S =12+14+16,n =8;第四次循环:n =8<8不成立,输出S =12+14+16=1112.答案:1112考点一 基本算法语句基础送分型考点——自主练透 [考什么·怎么考]A .25B .30C .31D .61解析:选C 该语句表示分段函数y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+x -,x >50,当x =60时,y =25+0.6×(60-50)=31. 故输出y 的值为31.2.按照如图程序运行,则输出K 的值是________.解析:第一次循环,X =7,K =1; 第二次循环,X =15,K =2; 第三次循环,X =31,K =3,X >16, 终止循环,则输出K 的值是3. 答案:3[怎样快解·准解]1.解决算法语句的3步骤(1)通读全部语句,把它翻译成数学问题; (2)领悟该语句的功能;(3)根据语句的功能运行程序,解决问题. 2.算法语句应用的4关注考点二 顺序结构和条件结构基础送分型考点——自主练透[考什么·怎么考]A.π6B .-π6 C.π3 D .-π3解析:选D 由输出y =-3<0,排除A 、C ,又当θ=-π3时,输出y =-3,故选D.2.某程序框图如图所示,现输入如下四个函数,则可以输出的函数为( )A .f (x )=cos x x ⎝ ⎛⎭⎪⎫-π2<x <π2,且x ≠0 B .f (x )=2x-12x +1C .f (x )=|x |xD .f (x )=x 2ln(x 2+1)解析:选B 由程序框图知该程序输出的是存在零点的奇函数,选项A 、C 中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A 、C.选项D 中的函数是偶函数,故排除D.选B.3.定义[x ]为不超过x 的最大整数,例如[1.3]=1.执行如图所示的程序框图,当输入的x 为4.7时, 输出的y 值为( )A .7B .8.6C .10.2D .11.8解析:选C 当输入的x 为4.7时,执行程序框图可知,4.7>3,4.7-[4.7]=0.7,即4.7-[4.7]不等于0,因而可得y =7+([4.7-3]+1)×1.6=10.2,即输出的y 值为10.2.[怎样快解·准解]顺序结构和条件结构的运算方法(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(2)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断.(3)对于条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.考点三循环结构题点多变型考点——追根溯源由程序框图求输出输入结果;完善程序框图角度(一) 由程序框图求输出(输入)结果1.(2017·全国卷Ⅱ)执行如图所示的程序框图,如果输入的a=-1,则输出的S=( )A.2 B.3C.4 D.5解析:选B 运行程序框图,a=-1,S=0,K=1,K≤6成立;S=0+(-1)×1=-1,a=1,K=2,K≤6成立;S=-1+1×2=1,a=-1,K=3,K≤6成立;S=1+(-1)×3=-2,a=1,K=4,K≤6成立;S=-2+1×4=2,a=-1,K=5,K≤6成立;S=2+(-1)×5=-3,a=1,K=6,K≤6成立;S=-3+1×6=3,a=-1,K=7,K≤6不成立,输出S=3.2.(2017·全国卷Ⅲ)执行如图所示的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )A.5 B.4C.3 D.2解析:选D 法一:执行程序框图,S=0+100=100,M=-10,t=2;S=100-10=90,M=1,t=3,S<91,输出S,此时,t=3不满足t≤N,所以输入的正整数N的最小值为2.法二:要求的是最小值,观察选项,发现选项中最小的为2,不妨将2代入检验.当输入的N为2时,第一次循环,S=100,M=-10,t=2;第二次循环,S=90,M=1,t=3,此时退出循环,输出S=90,符合题意,故选D.3.(2017·山东高考)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为( )A.0,0 B.1,1C.0,1 D.1,0解析:选D 当输入x=7时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x成立,故a=1,输出a的值为1.当输入x =9时,b =2,因为b 2>x 不成立且x 不能被b 整除,故b =3,这时b 2>x 不成立且x 能被b 整除,故a =0,输出a 的值为0.[题型技法] 循环结构程序框图求输出结果的方法解决此类问题最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体的过程中:第一,要明确是当型循环结构还是直到型循环结构,根据各自特点执行循环体; 第二,要明确框图中的累加变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环终止的条件是什么,什么时候要终止执行循环体. 角度(二) 完善程序框图4.(2017·全国卷Ⅰ)如图所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n ,那么在◇和▭两个空白框中,可以分别填入( )A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2解析:选D 程序框图中A =3n-2n,且判断框内的条件不满足时输出n ,所以判断框中应填入A ≤1 000,由于初始值n =0,要求满足A =3n-2n>1 000的最小偶数,故执行框中应填入n =n +2.5.(2018·广东五校协作体诊断)已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1fx .执行如图所示的程序框图,若输出的结果S >2 0172 018,则判断框中可以填入的关于n 的判断条件是( )A .n ≤2 017?B .n ≤2 018?C .n >2 017?D .n >2 018?解析:选B f ′(x )=3ax 2+x ,则f ′(-1)=3a -1=0,解得a =13,g (x )=1f x=1x 2+x =1xx +=1x -1x +1,则g (n )=1n -1n +1,即S =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,因为输出的结果S >2 0172 018,分析可知判断框中可以填入的判断条件是“n ≤2 018?”,选B.[题型技法] 程序框图补全问题的求解方法 (1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图.[题“根”探求]1.当型循环与直到型循环的区别要明确直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”.两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.2.解决程序框图问题要注意的几个常用变量要谨记 (1)计数变量:用来记录某个事件发生的次数,如i =i +1. (2)累加变量:用来计算数据之和,如S =S +i . (3)累乘变量:用来计算数据之积,如p =p ×i .[冲关演练]1.(2017·北京高考)执行如图所示的程序框图,输出的s 值为( )A .2 B.32C.53D.85解析:选C 运行该程序,k =0,s =1,k <3;k =0+1=1,s =1+11=2,k <3; k =1+1=2,s =2+12=32,k <3; k =2+1=3,s =32+132=53,此时不满足循环条件,输出s ,故输出的s 值为53.2.(2017·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为()A .0B .1C .2D .3解析:选C 第一次循环,24能被3整除,N =243=8>3;第二次循环,8不能被3整除,N =8-1=7>3; 第三次循环,7不能被3整除,N =7-1=6>3; 第四次循环,6能被3整除,N =63=2<3,结束循环,故输出N 的值为2.3.如图,给出的是计算12+14+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框内的(2)处应填的语句是()A .i >100,n =n +1B .i >100,n =n +2C .i >50,n =n +2D .i ≤50,n =n +2解析:选C 经第一次循环得到的结果是⎩⎪⎨⎪⎧S =12,n =4,i =2;经第二次循环得到的结果是⎩⎪⎨⎪⎧ S =12+14,n =6,i =3;经第三次循环得到的结果是⎩⎪⎨⎪⎧S =12+14+16,n =8,i =4.据观察S 中最后一项的分母与i 的关系是分母=2(i -1), 令2(i -1)=100,解得i =51,即需要i =51时输出S .故图中判断框内(1)处和执行框中的(2)处应填的语句分别是i >50,n =n +2.普通高中、重点高中共用作业(高考难度一般,无须挖潜)A 级——基础小题练熟练快1.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 24⊗⎝ ⎛⎭⎪⎫13-1的值为( )A.13 B .1 C.43D .2解析:选B log 24=2<3=⎝ ⎛⎭⎪⎫13-1,由题意知所求值为3-12=1.2.执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s ∈( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]解析:选A 当-1≤t <1时,s =3t , 则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2.函数s =4t -t 2在[1,2]上单调递增,在[2,3]上单调递减. ∴s ∈[3,4]. 综上知s ∈[-3,4].3.(2017·山东高考)执行如图所示的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( )A.x>3 B.x>4C.x≤4 D.x≤5解析:选B 当x=4时,若执行“是”,则y=4+2=6,与题意矛盾;若执行“否”,则y=log24=2,满足题意,故应执行“否”.故判断框中的条件可能为x>4.4.(2018·合肥质检)执行如图所示的程序框图,如果输出的k的值为3,则输入的a 的值可以是( )A.20 B.21C.22 D.23解析:选A 根据程序框图可知,若输出的k=3,则此时程序框图中的循环结构执行了3次,执行第1次时,S=2×0+3=3,执行第2次时,S=2×3+3=9,执行第3次时,S =2×9+3=21,因此符合题意的实数a的取值范围是9≤a<21,故选A.5.执行如图所示的程序框图,若输入的n=4,则输出的s=( )A.10 B.16C.20 D.35解析:选C 执行程序框图,第一次循环,得s=4,i=2;第二次循环,得s=10,i=3;第三次循环,得s=16,i=4;第四次循环,得s=20,i=5.不满足i≤n,退出循环,输出的s=20.6.如图所示的程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=( )A.0 B.5C.45 D.90解析:选C 该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的m=45,故选C.7.(2018·石家庄模拟)程序框图如图,若输入的S=1,k=1,则输出的S为________.解析:执行程序框图,第一次循环,k=2,S=4;第二次循环,k=3,S=11;第三次循环,k=4,S=26;第四次循环,k=5,S=57.此时,终止循环,输出的S=57.答案:578.执行如图所示的程序框图,如果输入的a,b的值分别为56,140,则输出的a=________.解析:执行程序框图,第一次循环:a =56,b =140-56=84; 第二次循环:a =56,b =84-56=28; 第三次循环:a =56-28=28,b =28, 退出循环,输出的a =28. 答案:289.执行如图所示的程序框图,若输入的N =20,则输出的S =________.解析:依题意,结合题中的程序框图知,当输入的N =20时,输出S 的值是数列{2k -1}的前19项和,即+2=361.答案:36110.(2018·宝鸡质检)阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为________.解析:依题意,执行题中的程序框图,当输入x 的值为1时,进行第一次循环,S =1<50,x =2;进行第二次循环,S =1+23=9<50,x =4; 进行第三次循环,S =9+43=73>50, 此时结束循环,输出S 的值为73. 答案:73B 级——中档题目练通抓牢1.(2018·合肥质检)执行如图所示的程序框图,则输出n 的值为( )A .9B .11C .13D .15解析:选C 由程序框图可知,S 是对1n 进行累乘,直到S <12 018时停止运算,即当S =1×13×15×17×19×111<12 018时循环终止,此时输出的n =13.2.如图所示,程序框图的功能是( )A .求⎩⎨⎧⎭⎬⎫1n 的前10项和B .求⎩⎨⎧⎭⎬⎫12n 的前11项和C .求⎩⎨⎧⎭⎬⎫1n 的前11项和D .求⎩⎨⎧⎭⎬⎫12n 的前10项和解析:选D 依题意可得S =12+14+16+…+12n,故程序框图的功能是求⎩⎨⎧⎭⎬⎫12n 的前10项和,选D. 3.(2018·长春质检)运行如图所示的程序框图,则输出的结果为( )A .1 008B .1 009C .2 017D .2 018解析:选B 由程序框图知,此题是求当k 取1,2,…,2 018这些值时,(-1)k·k 的和,所以输出的S =0-1+2-3+4-…+2 016-2 017+2 018=0+(-1+2)+(-3+4)+…+(-2 017+2 018)=1 009.4.(2018·湘中名校联考)执行如图所示的程序框图,如果运行结果为5 040,那么判断框中应填入( )A .k <6?B .k <7?C .k >6?D .k >7?解析:选D 执行程序框图,第一次循环,得S =2,k =3; 第二次循环,得S =6,k =4; 第三次循环,得S =24,k =5; 第四次循环,得S =120,k =6; 第五次循环,得S =720,k =7; 第六次循环,得S =5 040,k =8,此时满足题意,退出循环,输出的S =5 040, 故判断框中应填入“k >7?”.5.(2018·惠州三调)执行如图所示的程序框图,则输出的结果为________.解析:法一:i =1,S =lg 13=-lg 3>-1;i =3,S =lg 13+lg 35=lg 15=-lg 5>-1;i =5,S =lg 15+lg 57=lg 17=-lg 7>-1; i =7,S =lg 17+lg 79=lg 19=-lg 9>-1;i =9,S =lg 19+lg 911=lg 111=-lg 11<-1,故输出的i =9.法二:因为S =lg 13+lg 35+…+lg ii +2=lg 1-lg 3+lg 3-lg 5+…+lg i -lg(i +2)=-lg(i +2),当i =9时,S =-lg(9+2)<-lg 10=-1,所以输出的i =9.答案:96.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.解析:当条件x ≥0,y ≥0,x +y ≤1不成立时,输出S 的值为1,当条件x ≥0,y ≥0,x +y ≤1成立时,输出S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分所示,由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.答案:2第二节随机抽样1.简单随机抽样(1)抽取方式:逐个不放回抽取; (2)特点:每个个体被抽到的概率相等;(3)常用方法:抽签法和随机数法. 2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. 3.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号l +k ,再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次被抽到的可能性最大.( )(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.( )(3)系统抽样适用于元素个数很多且均衡的总体.( )(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )(6)某校即将召开学生代表大会,现从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.( )答案:(1)× (2)× (3)√ (4)× (5)× (6)√2.(教材习题改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )A .随机抽样B .分层抽样C .系统抽样D .以上都不是解析:选C 因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.3.利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个数为N =8,样本容量为M =4,则每一个个体被抽到的概率为P =M N =48=12.答案:124.(教材习题改编)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x 名学生,则x 50=310,解得x =15. 答案:155.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:每组袋数:d =3 000150=20,由题意知这些号码是以11为首项,20为公差的等差数列.a 61=11+60×20=1 211.答案:1 211考点一 简单随机抽样 基础送分型考点——自主练透[考什么·怎么考]A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验解析:选D 选项A 、B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C 不是简单随机抽样,因为总体的个体有明显的层次;选项D 是简单随机抽样.2.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 C .02D .01解析:选D 由随机数法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.14B.13C.514D.1027解析:选C 根据题意,9n -1=13, 解得n =28.故在整个抽样过程中每个个体被抽到的概率为1028=514.[怎样快解·准解]1.简单随机抽样的特点(1)抽取的个体数较少;(2)是逐个抽取;(3)是不放回抽取;(4)是等可能抽取.只有四个特点都满足的抽样才是简单随机抽样.2.抽签法与随机数法的适用情况(1)抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况. (2)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.[易错提醒] 利用随机数法抽取样本时,一定要注意“重复的号码”只能记一次,如第2题易误认为第5个个体编号为02而误选.考点二 系统抽样重点保分型考点——师生共研1.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )A .480B .481C .482D .483解析:选C 根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,故d =25,所以7+25(n -1)≤500,所以n ≤20,最大编号为7+25×19=482.2.中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.解析:把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10.答案:2 10[解题师说]1.掌握“4特点”(1)适用于元素个数很多且均衡的总体. (2)每个个体被抽到的机会均相等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =N n. 2.谨防“1易错”用系统抽样法抽取样本,当N n不为整数时,取k =⎣⎢⎡⎦⎥⎤N n ,即先从总体中用简单随机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.(如典题领悟第2题)[冲关演练]1.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:选B 由系统抽样定义可知,所分组距为84042=20,每组抽取一人,因为包含整数个组,所以抽取个体在区间[481,720]的数目为720-48020=12.2.某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( )A .5B .7C .11D .13解析:选B 把800名学生分成50组,每组16人,各小组抽到的数构成一个公差为16的等差数列,39在第3组,所以第1组抽到的数为39-32=7.考点三 分层抽样重点保分型考点——师生共研1.(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.解析:应从丙种型号的产品中抽取 60×300200+400+300+100=18(件).答案:182.为了了解高一、高二、高三学生的身体状况,现用分层抽样的方法抽取一个容量为1 200的样本,三个年级学生人数之比依次为k ∶5∶3,已知高一年级共抽取了240人,则高三年级抽取的人数为________.解析:因为高一年级抽取学生的比例为2401 200=15,所以k k +5+3=15,解得k =2,故高三年级抽取的人数为1 200×32+5+3=360.答案:3603.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.解析:由题意知1245+15=3045+15+30+10+a +20,解得a =30.答案:30[解题师说]1.牢记“2关系”进行分层抽样的相关计算时,常用到的2个关系 (1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比. 2.谨防“1失误”分层抽样时,每层抽取的个体可以不一样多,但必须满足抽取n i =n ·N iN(i =1,2,…,k )个个体(其中i 是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体容量).[冲关演练]1.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽取容量为n 的样本,其中甲种产品有18件,则样本容量n =( )A .54B .90C .45D .126解析:选B 依题意得33+5+7×n =18,解得n =90,即样本容量为90.2.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A ,B ,C 三所中学抽取60名教师进行调查,已知A ,B ,C 三所学校中分别有180,270,90名教师,则从C 学校中应抽取的人数为( )A .10B .12C .18D .24解析:选A 根据分层抽样的特征,从C 学校中应抽取的人数为90180+270+90×60=10.普通高中、重点高中共用作业(高考难度一般,无须挖潜)A 级——基础小题练熟练快1.从2 018名学生中选取50名学生参加全国数学联赛,若采用以下方法选取:先用简单随机抽样法从2 018名学生中剔除18名学生,剩下的2 000名学生再按系统抽样的方法抽取,则每名学生入选的概率( )A .不全相等B .均不相等C .都相等,且为502 018D .都相等,且为140解析:选C 从N 个个体中抽取M 个个体,则每个个体被抽到的概率都等于M N,故每名学生入选的概率都相等,且为502 018.2.(2018·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是( )A .①简单随机抽样,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,②分层抽样D .①②都用分层抽样解析:选B 因为社会购买能力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以①用分层抽样法;从某中学的15名艺术特长生中选出3名调查学习负担情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样法.3.从30个个体(编号为00~29)中抽取10个样本,现给出某随机数表的第11行到第15行(见下表),如果某人选取第12行的第6列和第7列中的数作为第一个数并且由此数向右读,则选取的前4个的号码分别为( )9264 4607 2021 3920 7766 3817 3256 1640 5858 7766 3170 0500 2593 0545 5370 78142889 6628 6757 8231 1589 0062 0047 3815 5131 8186 3709 4521 6665 5325 5383 2702 9055 7196 2172 3207 1114 1384 4359 4488 A .76,63,17,00 B .16,00,02,30 C .17,00,02,25D .17,00,02,07解析:选D 在随机数表中,将处于00~29的号码选出,满足要求的前4个号码为17,00,02,07.4.(2017·怀化二模)某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的方法抽取一个容量为6的样本,已知学号为3,11,19,35,43的同学在样本中,则还有一个同学的学号应为( )A .27B .26C .25D .24解析:选A 根据系统抽样的规则——“等距离”抽取,则抽取的号码差相等,易知相邻两个学号之间的差为11-3=8,所以在19与35之间还有27.5.某小学共有学生 2 000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”的活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( )A .120B .40C .30D .20解析:选B ∵一年级学生共400人,抽取一个容量为200的样本,∴用分层抽样的方法抽取的一年级学生人数为4002 000×200=40. 6.采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A ,编号落入区间[401,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( )A .12B .13C .14D .15解析:选A 根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d =1 00050=20的等差数列{a n },∴通项公式a n =8+20(n -1)=20n -12,令751≤20n -12≤1 000,得76320≤n ≤2535,又∵n ∈N *,∴39≤n ≤50,∴做问卷C 的共有12人.7.某商场有四类食品,食品类别和种数见下表:则抽取的植物油类与果蔬类食品种数之和为________.解析:因为总体的个数为40+10+30+20=100,所以根据分层抽样的定义可知,抽取的植物油类食品种数为10100×20=2,抽取的果蔬类食品种数为20100×20=4,所以抽取的植物油类与果蔬类食品种数之和为2+4=6.答案:68.某市教育主管部门为了全面了解2018届高三学生的学习情况,决定对该市参加2018年高三第一次全国大联考统考(后称统考)的32所学校进行抽样调查,将参加统考的32所学校进行编号,依次为1到32,现用系统抽样的方法抽取8所学校进行调查,若抽到的最大编号为31,则最小的编号是________.解析:根据系统抽样法,将总体分成8组,组距为328=4,若抽到的最大编号为31,则最小的编号是31-4×7=3.答案:39.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):A 类轿车10辆,则z 的值为________.解析:由题意可得50100+300+150+450+z +600=10100+300,解得z =400. 答案:40010.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.。
北师版高考文科数学一轮总复习课后习题 第10章 算法初步、 统计与统计案例 算法初步

课时规范练49 算法初步基础巩固组1.如图,若依次输入的x 分别为5π6,π6,相应输出的y 分别为y 1,y 2,则y 1,y 2的大小关系是( )A.y 1=y 2B.y 1>y 2C.y 1<y 2D.无法确定 答案:C解析:由算法框图可知,当输入的x 为5π6时,sin 5π6>cos 5π6成立,所以输出的y 1=sin5π6=12;当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=√32,所以y 1<y 2.2.(河南六市一模)已知[x]表示不超过x的最大整数.执行如图所示的算法框图,若输入x的值为2.4,则输出z的值为( )A.1.2B.0.6C.0.4D.-0.4答案:D解析:执行该算法框图,输入x=2.4,y=2.4,x=[2.4]-1=1,满足x≥0,x=1.2,y=1.2,x=[1.2]-1=0,满足x≥0,x=0.6,y=0.6,x=[0.6]-1=-1,不满足x≥0,终止循环,z=-1+0.6=-0.4,输出z的值为-0.4.3.(河北石家庄四模)如图是计算1+13+15+…+131的值的算法框图,则图中①②处可以填写的语句分别是( )A.n=n+2,i>16B.n=n+2,i≥16C.n=n+1,i>16D.n=n+1,i≥16答案:A解析:式子1+13+15+…+131中所有项的分母构成公差为2的等差数列1,3,5,…,31,则①处填n=n+2.令31=1+(k-1)×2,k=16,共16项,而1到129共15项,需执行最后一次循环,此时i=16,所以②中应填“i>16”.故选A.4.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,其算法的算法框图如图所示,若输入的a0,a1,a2,…,a n分别为0,1,2,…,n.若n=5,根据该算法计算当x=2时多项式的值,则输出的结果为( )A.248B.258C.268D.278答案:B解析:该算法框图是计算多项式f(x)=5x5+4x4+3x3+2x2+x当x=2时的值,f(2)=258,故选B.5.某算法框图如图所示,运行该程序后输出S=( )A.53B.74C.95D.116答案:D解析:根据算法框图可知其功能为计算:S=1+11×2+12×3+…+1n(n+1)=1+1-12+12−13+…+1n−1n+1=1+1-1n+1=2n+1n+1,初始值为n=1,当n=6时,输出S,可知最终赋值S时n=5,所以S=2×5+15+1=116,故选D.6.(湖北武汉模拟)元朝时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个算法框图,若输入的a,b 分别为5,2,则输出的n=( )A.2B.3C.4D.5 答案:C解析:执行算法框图得n=1,a=152,b=4,a≤b 不成立;n=2,a=454,b=8,a≤b 不成立;n=3,a=1358,b=16,a≤b 不成立;n=4,a=40516,b=32,a≤b 成立.故输出的n=4,故选C.综合提升组7.执行如图的算法框图,如果输入的x ∈-π4,π,则输出y 的取值范围是( )A.[-1,0]B.[-1,√2]C.[1,2]D.[-1,1]答案:B解析:流程图计算的输出值为分段函数: y={2cos 2x +sin2x -1,x <π2,cos 2x +2sinx -1,x ≥π2,原问题即求解函数在区间[-π4,π]上的值域.当-π4≤x<π2时,y=2cos 2x+sin2x-1=cos2x+1+sin2x-1=√2sin (2x +π4),-π4≤x<π2,则-14π≤2x+π4<54π,此时函数的值域为[-1,√2]. 当π2≤x≤π时,y=cos 2x+2sinx-1=-sin 2x+2sinx,π2≤x≤π,则0≤sinx≤1,此时函数的值域为[0,1].综上可得,函数的值域为[-1,√2]∪[0,1],即[-1,√2]. 即输出y 的取值范围是[-1,√2].故选B.8.(河南开封一模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的算法框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的语句是( )A.i<7,s=s-1i ,i=2iB.i≤7,s=s -1i,i=2iC.i<7,s=s2,i=i+1D.i≤7,s=s2,i=i+1答案:D解析:由题意可知第一天后剩下12,第二天后剩下122……由此得出第7天后剩下127,结合选项分析得,①应为i≤7,②应为s=s2,③应为i=i+1,故选D.9.如图所示的程序,若最终输出的结果为6364,则在程序中“ ”处应填入的语句为( )A.i>=8B.i>=7C.i<7D.i<8答案:B解析:S=0,n=2,i=1,执行S=12,n=4,i=2;S=12+14=34,n=8,i=3;S=34+18=78,n=16,i=4;S=78+116=1516,n=32,i=5;S=1516+132=3132,n=64,i=6;S=3132+164=6364,n=128,i=7.此时满足题目条件输出的S=6364,∴“ ”处应填上i>=7.故选B.10.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个算法框图(图2),用A i(i=1,2, (10)表示第i个同学的身高,计算这些同学身高的方差,则算法框图①中要补充的语句是( )图1图2A.B=B+A iB.B=B+A i2C.B=(B+A i-A)2D.B=B2+A i2答案:B解析:由s2=(x1-x)2+(x2-x)2+…+(xn-x)2n=x 12+x 22+…+x n 2-2(x 1+x 2+…+x n )x+nx 2n =x 12+x 22+…+x n 2-2nx 2+nx 2n =x 12+x 22+…+x n 2n −x 2,循环退出时i=11,知x 2=(Ai -1)2. 所以B=A 12+A 22+…+A 102,故算法框图①中要补充的语句是B=B+A i 2.故选B.11.执行如图所示的算法框图,若输入的m,n 分别为385,105(图中“m MOD n”表示m 除以n 的余数),则输出的m= .答案:35解析:执行算法框图,可得m=385,n=105,r=70,m=105,n=70,不满足条件r=0;r=35,m=70,n=35,不满足条件r=0;r=0,m=35,n=0,满足条件r=0,退出循环,输出的m 值为35.创新应用组12.(河南郑州二模)执行如图的算法框图,如果输入的ε为0.01,则输出s 的值为( )A.2-124B.2-125C.2-126D.2-127答案:C解析:执行算法框图,s=1,x=12,不满足条件x<0.01; s=1+12,x=122,不满足条件x<0.01; s=1+12+122,x=123,不满足条件x<0.01; ……由于126>0.01,而127<0.01,可得当s=1+12+122+…+126,x=127时,满足条件x<0.01,输出s=1+12+122+…+126=2-126.故选C. 13.(河南郑州模拟)我们可以用随机数法估计π的值,如图所示的算法框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A.3.119B.3.126C.3.132D.3.151答案:B解析:在空间直角坐标系O-xyz 中,不等式组{0<x <1,0<y <1,0<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组{0<x <1,0<y <1,0<z <1,x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211000,即π≈3.126,故选B.。
2017版高考数学人教A版(全国)一轮复习 课件 第十章 统计、统计案例与概论 第1讲

解析 (1)①不是简单随机抽样.因为被抽取样本的总体的个数是 无限的,而不是有限的. ②不是简单随机抽样.因为它是有放回抽样. ③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取 . ④不是简单随机抽样.因为不是等可能抽样. (2)从第1行第5列和第6列组成的数65开始由左到右依次选出的 数为08,02,14,07,01,所以第5个个体编号为01. 答案 (1)①②③④ (2)D
第十七页,编辑于星期六:二十点 十二分。
【训练2】 采用系统抽样方法从960人中抽取32人做问卷 调查,为此将他们随机编号为1,2,…,960,分组后
在第一组采用简单随机抽样的方法抽到的号码为9.抽到的
32人中,编号落入区间[1,450]的人做问卷A,编号 落入区间[451,750]的人做问卷B,其余的人做问卷 C.则抽到的人中,做问卷B的人数为( )
的数字舍去.
第十四页,编辑于星期六:二十点 十二分。
【训练1】 下列抽样试验中,适合用抽签法的有( ) A.从某厂生产的5 000件产品中抽取600件进行质量检验 B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检
验
C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质
量检验
D.从某厂生产的5 000件产品中抽取10件进行质量检验
中按人数比例抽取部分学生进行调查,则最合理的抽样方法
是( )
A.抽签法
B.系统抽样法
C.分层抽样法
D.随机数法
解析 因为总体由有明显差异的几部分构成,所以用分层抽样
法.故选C.
答案 C
第八页,编辑于星期六:二十点 十二分。
4.为规范学校办学,省教育厅督察组对某所高中进行了抽样调 查.抽到的班级一共有52名学生,现将该班学生随机编号, 用系统抽样的方法抽取一个容量为4的样本,已知7号、33号
高考数学一轮复习第十章算法初步、统计与统计案例单元质检文新人教B版

单元质检十算法初步、统计与统计案例(时间:45分钟满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.(2017江西鹰潭一模拟)如图的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b,i的值分别为6,8,0,则输出a和i的值分别为()A.2,4B.2,5C.0,4D.0,52.某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是()A.300B.400C.500D.6003.某校共有2 000名学生,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.18.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()一年级二年级三年级女生363 x y男生387 390 zA.12B.16C.18D.244.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据某地某日早7点到晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图如图所示,则甲、乙两地PM2.5的方差较小的是()A.甲B.乙C.甲、乙相等D.无法确定5.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机调查了24名笔试者的成绩,如下表所示:分数段[60,65) [65,70) [70,75) [75,80) [80,85) [85,90]人数 2 3 4 9 5 1据此估计允许参加面试的分数线是()A.75B.80C.85D.906.由下列表格中的数据求得的线性回归方程为=0.8x-155,则实数m的值为()x196 197 200 203 204y 1 3 6 7 mA.8B.8.2C.8.4D.8.5二、填空题(本大题共3小题,每小题7分,共21分)7.(2017河北衡水金卷一)在高三某次数学测试中,40名优秀学生的成绩如图所示.若将成绩由低到高编为1~40号,再用系统抽样的方法从中抽取8人,则其中成绩在区间[123,134]上的学生人数为.8.某高中1 000名学生的身高情况如下表,已知从这批学生随机抽取1名,抽到偏矮男生的概率为0.12,若用分层抽样的方法,从这批学生中随机抽取50名,偏高学生有名.偏矮正常偏高女生/人100 273 y男生/人x287 z9.(2017湖北武汉二月调考改编)执行如图所示的程序框图,若输出的结果为80,则判断框内应填入.三、解答题(本大题共3小题,共37分)10.(12分)从某校随机抽取200名学生,获得了他们的一周课外阅读时间(单位:小时)的数据,整理得到数据的频数分布表和频数分布直方图(如图).编号分组频数1 [0,2) 122 [2,4) 163 [4,6) 344 [6,8) 44续表编号分组频数5 [8,10) 506 [10,12) 247 [12,14) 128 [14,16) 49 [16,18) 4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.11.(12分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2012 2013 2014 2015 2016时间代号t 1 2 3 4 5储蓄存款y/千亿元 5 6 7 8 10(1)求y关于t的线性回归方程t+;(2)用所求回归方程预测该地区2018年(t=7)的人民币储蓄存款.附:回归方程t+中,.12.(13分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据频率分布直方图中的数据填写下面的2×2列联表,并通过计算判断是否有99%的把握认为“课外体育达标”与性别有关.课外体育不达标课外体育达标合计男60女110合计(2)现从“课外体育达标”学生中按分层抽样抽取5人,再从这5名学生中随机抽取2人参加体育知识问卷调查,求抽取的这2人课外体育锻炼时间都在[40,50)内的概率.附参考公式与数据:χ2=P(χ2>k0) 0.05 0.010k03.841 6.635参考答案单元质检十算法初步、统计与统计案例1.A解析执行程序框图,可得a=6,b=8,i=0,i=1,不满足a>b,不满足a=b,b=8-6=2;i=2,满足a>b,a=6-2=4;i=3,满足a>b,a=4-2=2;i=4,不满足a>b,满足a=b,输出a的值为2,i的值为4,故选A.2.D解析依题意得,题中的1000名学生在该次自主招生水平测试中成绩不低于70分的学生数是1000×(0.035+0.015+0.010)×10=600,故选D.3.B解析由题意可得二年级的女生的人数为2000×0.18=360,则一、二年级学生总数363+387+360+390=1500,故三年级学生总数是2000-1500=500.因此,用分层抽样法在三年级抽取的学生数为64×=16.故选B.4.A解析从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地PM2.5的方差较小.5.B解析因为参加笔试的400人中择优选出100人,所以每个人被择优选出的概率P=.因为随机调查24名笔试者,所以估计能够参加面试的人数为24×=6.观察表格可知,分数在[80,85)的有5人,分数在[85,90)的有1人,故面试的分数线大约为80分,故选B.6.A解析=200,.样本中心点为,将样本中心点代入=0.8x-155,可得m=8.故A正确.7.3解析根据茎叶图,成绩在区间[123,134]上的学生有15人,所以用系统抽样的方法从40人中抽取8人,成绩在区间[123,134]上的学生人数为8×=3.8.11解析由题意可知x=1000×0.12=120,所以y+z=220.所以偏高学生占学生总数的比例为,所以随机抽取50名学生中偏高学生有50×=11(名).9.n>7解析模拟程序的运行,可得S=0,n=1,a=3,执行循环体,S=3,a=5,不满足条件,执行循环体,n=2;S=8,a=7,不满足条件,执行循环体,n=3;S=15,a=9,不满足条件,执行循环体,n=4;S=24,a=11,不满足条件,执行循环体,n=5;S=35,a=13,不满足条件,执行循环体,n=6;S=48,a=15,不满足条件,执行循环体,n=7;S=63,a=17,不满足条件,执行循环体,n=8;S=80,a=19,由题意,此时满足条件,退出循环,输出的S结果为80,则判断框内应填入n>7.10.解(1)由频率分布表可知该周课外阅读时间不少于12小时的频数为12+4+4=20,故可估计该周课外阅读时间少于12小时的概率为1-=0.9.(2)由频率分布表可知数据在[4,6)的频数为34,故这一组的频率为0.17,即a=0.085,数据在[8,10)的频数为50,故这一组的频率为0.25,即b=0.125.(3)数据的平均数为(12×1+3×16+5×34+7×44+9×50+11×24+13×12+15×4+17×4)=7.68(小时),故样本中的200名学生该周课外阅读时间的平均数在第四组.11.解(1)列表计算如下:i t i y i t i y i1 1 5 1 52 2 6 4 123 3 7 9 214 4 8 16 325 5 10 25 50∑15 36 55 120这里n=5,t i==3,y i==7.2.又-n=55-5×32=10,t i y i-n=120-5×3×7.2=12,从而=1.2,=7.2-1.2×3=3.6,故所求回归方程为=1.2t+3.6.(2)将t=7代入回归方程可预测该地区2018年的人民币储蓄存款为=1.2×7+3.6=12(千亿元).12.解(1)根据频率分布直方图,得“课外体育达标”的学生数为200×(0.020+0.005)×10=50.又由2×2列联表可知“课外体育达标”的男生人数为30,女生人数为20.补全2×2列联表如下:课外体育不达标课外体育达标合计男60 30 90女90 20 110合计150 50 200因为χ2=≈6.061<6.635,所以没有99%的把握认为“课外体育达标”与性别有关.(2)从“课外体育达标”学生中按分层抽样抽取5人,其中课外锻炼时间在[40,50)内有5×=4人,分别记为a,b,c,d;在[50,60]上有1人,记为E.从这5人中抽取2人,总的基本事件有ab,ac,ad,aE,bc,bd,bE,cd,cE,dE共10种,其中2人都在[40,50)内的基本事件有ab,ac,ad,bc,bd,cd共6种,故所求的概率为=0.6.。
高考数学一轮复习第十章算法初步统计与统计案例10.1算法初步课件新人教A版
-21-
考点1
考点2
考点3
考点4
对点训练1(1)(2018宁夏银川一模)阅读程序框图,如果输出的
函数值在区间
1 4
,
1 2
上,那么输入的实数
x
的取值范围是(
B
)
A.(-∞,-2] C.[-1,2]
B.[-2,-1] D.[2,+∞)
来表示算法的图形.在程序框
图中,一个或n个程序框的组合表示算法中的一个步骤;带有方向箭
头的流程线将程序框连接起来,表示算法步骤的执行顺序.
知识梳理 双基自测
知识梳理
1234
(2)程序框图的图形符号及其功能
-5-
起始和结束
输入和输出的信息 赋值、计算
成立与否 先后顺序
知识梳理
-6-
知识梳理 双基自测
知识梳理 双基自测
名称 内容
顺序结构
பைடு நூலகம்
1234
条件结构
循环结构
程序
(1)
(1)
框图
(2)
(2)
知识梳理
-8-
知识梳理 双基自测
1234
4.基本算法语句 (1)输入、输出、赋值语句的格式与功能
语 句 一般格式
功能
输入语句 INPUT“提示内容”;变量 输入信息
输出常量、变量的值和 输出语句 PRINT“提示内容”;表达式 系统信息
1
1+1 2
32
14,i=5,…,最后输出
S=N-T=1-12
+
1 3
−
14+…+919
2017届高三数学(文)一轮复习第十章 算法初步、统计、统计案例 10-1
[规律方法] (1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间、框与框之 间是按从上到下的顺序进行的。 (2)条件结构:利用条件结构解决算法问题时,重点是判断框,判断框内的 条件不同,对应的下一图框中的内容和操作要相应地进行变化,故要重点分析 判断框内的条件是否满足。
1 【微练 1】一算法的程序框图如图所示,若输出的 y=2,则输入的 x 可能 为( )
)
(第 4 题图)
解析:|x1-x2|=3,|x2-x3|=|x3-9|, 故当|x1-x2|<|x2-x3|, x1+x2 15 即 3<|x3-9|时,p= 2 = 2 与 p=8.5 不符; 当|x1-x2|≥|x2-x3|, x2+x3 9+x3 即 3≥|x3-9|时,p= 2 = 2 =8.5, ∴x3=8。 答案:B
1 3 7 4 A.s>2? B.s>5? C.s>10? D.s>5?
9 8 7 7 解析:当输出 k 的值为 6 时,s=1×10×9×8=10,结合题中的程序框图 知,选 C。 答案:C
[规律方法] 循环结构的考查类型及解题思路 (1)确定循环次数:分析进入或退出循环体的条件,确定循环次数。 (2)完善程序框图:结合初始条件和输出结果,分析控制循环的变量应满足 的条件或累加、累乘的变量的表达式。 (3)辨析循环结构的功能:执行程序若干次,即可判断。
微知识❼ 循环语句 (1)算法中的 循环结构 与循环语句相对应。 (2)循环语句的格式及框图。 ①UNTIL 语句:
②WHILE 语句:
二、小题查验 1.思维辨析(在括号内打“√”或“×”) (1)算法可以无限次的操作下去。(× )
解析:错误。算法必须在有限步完成。
(2)一个程序可以只有顺序结构组成。( √)
高考数学一轮复习 第十章 算法、统计与统计案例10
高考数学一轮复习 第十章 算法、统计与统计案例10.3 用样本估计总体考试要求 1.会用统计图表对总体进行估计.2.能用数字特征估计总体集中趋势和总体离散程度.知识梳理1.平均数、中位数和众数(1)平均数:x =1n(x 1+x 2+…+x n ).(2)中位数:将一组数据按从小到大或从大到小的顺序排列,处在最中间的一个数据(当数据个数是奇数时)或最中间两个数据的平均数(当数据个数是偶数时).(3)众数:一组数据中出现次数最多的数据(即频数最大值所对应的样本数据). 2.方差和标准差(1)方差:s 2=1n ∑i =1n (x i -x )2或1n ∑i =1n x 2i -x 2. (2)标准差:s =1n ∑i =1nx i -x 2.常用结论巧用三个有关的结论(1)若x 1,x 2,…,x n 的平均数为1,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m +a ; (2)数据x 1,x 2,…,x n 与数据x 1′=x 1+a ,x 2′=x 2+a ,…,x n ′=x n +a 的方差相等,即数据经过平移后方差不变;(3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)对一组数据来说,平均数和中位数总是非常接近.(×)(2)方差与标准差具有相同的单位.(×)(3)如果一组数中每个数减去同一个非零常数,则这组数的平均数改变,方差不变.(√)(4)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.(√)教材改编题1.给出一组数据:1,3,3,5,5,5,下列说法不正确的是()A.这组数据的极差为4B.这组数据的平均数为3C.这组数据的中位数为4D.这组数据的众数为5答案 B解析这组数据的极差为5-1=4,A正确;平均数为1+3×2+5×36=113,B错误;中位数为3+52=4,C正确;众数为5,D正确.2.下列说法正确的是()A.众数可以准确地反映出总体的情况B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越小答案 C解析对于A,众数体现了样本数据的最大集中点,但对其他数据信息的忽略使得无法客观反映总体特征,所以A错误;对于B,一组数的平均数不可能大于这组数据中的每一个数据,所以B错误;对于C,平均数、众数与中位数从不同的角度描述了一组数据的集中趋势,所以C正确;对于D,方差可以用来衡量一组数据波动的大小,方差越小,数据波动越小,方差越大,数据波动越大,所以D 错误.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A .0.01 B .0.1 C .1 D .10 答案 C解析 ∵样本数据x 1,x 2,…,x n 的方差为0.01,根据任何一组数据同时扩大几倍,方差将变为平方倍增长, ∴数据10x 1,10x 2,…,10x n 的方差为 100×0.01=1.题型一 样本的数字特征例1 (1)在一次歌咏比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93.去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为( ) A .92,2.8 B .92,2 C .93,2 D .93,2.8答案 A解析 由题意得所剩数据为90,90,93,94,93. 所以平均数x =90+90+93+94+935=92.方差s 2=15[(90-92)2+(90-92)2+(93-92)2+(93-92)2+(94-92)2]=2.8.(2)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为s 2,则( ) A.x =4,s 2<2 B.x =4,s 2=2 C.x >4,s 2<2 D.x >4,s 2>2 答案 A解析 设7个数为x 1,x 2,x 3,x 4,x 5,x 6,x 7, 则x 1+x 2+x 3+x 4+x 5+x 6+x 77=4,x 1-42+x 2-42+x 3-42+x 4-42+x 5-42+x 6-42+x 7-427=2,所以x 1+x 2+x 3+x 4+x 5+x 6+x 7=28,(x 1-4)2+(x 2-4)2+(x 3-4)2+(x 4-4)2+(x 5-4)2+(x 6-4)2+(x 7-4)2=14, 则这8个数的平均数为x =18(x 1+x 2+x 3+x 4+x 5+x 6+x 7+4)=18×(28+4)=4,方差为s 2=18×[(x 1-4)2+(x 2-4)2+(x 3-4)2+(x 4-4)2+(x 5-4)2+(x 6-4)2+(x 7-4)2+(4-4)2]=18×(14+0)=74<2. 教师备选某高校分配给某中学一个保送名额,该中学进行校内举荐评选,评选条件除了要求该生获得该校“三好学生”称号,还要求学生在近期连续3次大型考试中,每次考试的名次都在全校前5名(每次考试无并列名次).现有甲、乙、丙、丁四位同学都获得了“三好学生”称号,四位同学在近期连续3次大型考试名次的数据分别为甲同学:平均数为3,众数为2;乙同学:中位数为3,众数为3; 丙同学:众数为3,方差小于3;丁同学:平均数为3,方差小于3. 则一定符合推荐要求的同学有( ) A .甲和乙 B .乙和丁 C .丙和丁 D .甲和丁答案 D解析 对于甲同学,平均数为3,众数为2,则3次考试的成绩的名次为2,2,5,满足要求; 对于乙同学,中位数为3,众数为3, 可举反例:3,3,6,不满足要求;对于丙同学,众数为3,方差小于3, 可举特例:3,3,6,则平均数为4,方差s 2=13×[2×(3-4)2+(6-4)2]=2<3,不满足要求;对于丁同学,平均数为3,方差小于3,设丁同学3次考试的名次分别为x 1,x 2,x 3, 若x 1,x 2,x 3中至少有一个大于等于6, 则方差s 2=13[(x 1-3)2+(x 2-3)2+(x 3-3)2]>3,与已知条件矛盾,所以x 1,x 2,x 3均不大于5,满足要求.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其离散程度.跟踪训练1 (1)从某小学随机抽取100名同学,将他们的身高(单位:厘米)分布情况汇总如下,由此表估计这100名小学生身高的中位数为(结果保留4位有效数字)( ) A .119.3 B .119.7 C .123.3 D .126.7答案 C解析 由题意知身高在(100,110],(110,120],(120,130]内的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x ,则(x -120)×0.310=0.1,解得x ≈123.3.(2)(2021·新高考全国Ⅰ改编)有一组样本数据x 1,x 2,…,x n ,由这组数据得到新样本数据y 1,y 2,…,y n ,其中y i =x i +c (i =1,2,…,n ),c 为非零常数,则( ) A .两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差不同答案 C解析设样本数据x1,x2,…,x n的平均数、中位数、标准差、极差分别为x,m,σ,t,依题意得,新样本数据y1,y2,…,y n的平均数、中位数、标准差、极差分别为x+c,m+c,σ,t,因为c≠0,所以C正确,D不正确.题型二总体集中趋势的估计例2棉花是我国纺织工业重要的原料.新疆作为我国最大的产棉区,对国家棉花产业发展、确保棉粮安全以及促进新疆农民增收、实现乡村振兴战略都具有重要意义.准确掌握棉花质量现状、动态,可以促进棉花产业健康和稳定的发展.在新疆某地收购的一批棉花中随机抽测了100根棉花的纤维长度(单位:mm),得到样本的频数分布表如下:(1)在图中作出样本的频率分布直方图;(2)根据(1)中作出的频率分布直方图求这一棉花样本的众数、中位数与平均数,并对这批棉花的众数、中位数和平均数进行估计. 解 (1)样本的频率分布直方图如图所示.(2)由样本的频率分布直方图, 得众数为250+3002=275(mm);设中位数为x ,(x -250)×0.008=50%-48%, 解得x =252.5,即中位数为252.5 mm ; 设平均数为x ,则x =25×0.04+75×0.08+125×0.1+175×0.1+225×0.16+275×0.4+325×0.12 =222(mm),故平均数为222 mm.由样本的这些数据,可得购进的这批棉花的众数、中位数和平均数分别约为275 mm 、252.5 mm 和222 mm. 教师备选某城市在创建文明城市的活动中,为了解居民对“创建文明城市”的满意程度,组织居民给活动打分(分数为整数,满分100分),从中随机抽取一个容量为100的样本,发现数据均在[40,100]内.现将这些分数分成6组并画出样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,则下列说法不正确的是()A.频率分布直方图中第三组的频数为10B.根据频率分布直方图估计样本的众数为75分C.根据频率分布直方图估计样本的中位数为75分D.根据频率分布直方图估计样本的平均数为75分答案 D解析分数在[60,70)内的频率为1-10×(0.005+0.020+0.030+0.025+0.010)=0.10,所以第三组的频数为100×0.10=10,故A正确;因为众数的估计值是频率分布直方图中最高矩形底边的中点的横坐标,从图中可看出众数的估计值为75分,故B正确;因为(0.005+0.020+0.010)×10=0.35<0.5,(0.005+0.020+0.010+0.030)×10=0.65>0.5,所以中位数位于[70,80)内,设中位数为x,则0.35+0.03(x-70)=0.5,解得x=75,所以中位数的估计值为75分,故C正确;样本平均数的估计值为45×(10×0.005)+55×(10×0.020)+65×(10×0.010)+75×(10×0.030)+85×(10×0.025)+95×(10×0.010)=73(分),故D错误.思维升华频率分布直方图的数字特征(1)众数:最高矩形的底边中点的横坐标.(2)中位数:中位数左边和右边的矩形的面积和应该相等.(3)平均数:平均数在频率分布直方图中等于各组区间的中点值与对应频率之积的和.跟踪训练2首次实施新高考的八省(市)于2021年1月23日统一举行了新高考适应性考试,在联考结束后,根据联考成绩,考生可了解自己的学习情况,作出升学规划,决定是否参加强基计划.在本次适应性考试中,某学校为了解高三学生的联考情况,随机抽取了100名学生的联考数学成绩作为样本,并按照分数段[50,70),[70,90),[90,110),[110,130),[130,150]分组,绘制了如图所示的频率分布直方图.(1)求出图中a的值并估计本次考试及格率(“及格率”指得分为90分及以上的学生所占比例);(2)估计该校学生联考数学成绩的众数、平均数.解(1)由频率分布直方图的性质,可得(0.004+a+0.013+0.014+0.016)×20=1,解得a=0.003.所以及格率为(0.016+0.014+0.003)×20=0.66=66%.(2)由图可得,众数估计值为100分.平均数估计值为0.08×60+0.26×80+0.32×100+0.28×120+0.06×140=99.6(分).题型三总体离散程度的估计例3(12分)(2021·全国乙卷)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7 新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为s21和s22.(1)求x,y,s21,s22;[切入点:方差的公式](2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y-x≥2s21+s2210,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高). [关键点:显著提高的理解]教师备选从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125] 频数62638228(1)根据上表补全如图所示的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解(1)补全后的频率分布直方图如图所示.(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+02×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数约为100,方差约为104.(3)质量指标值不低于95的产品所占比例约为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.思维升华总体离散程度的估计标准差(方差)反映了数据的离散与集中、波动与稳定的程度.标准差(方差)越大,数据的离散程度越大;标准差(方差)越小,数据的离散程度越小.跟踪训练3(2022·蚌埠质检)某校计划在秋季运动会期间开展“运动与健康”知识大赛,为此某班开展了10次模拟测试,以此选拔选手代表班级参赛,下表为甲、乙两名学生的历次模拟测试成绩.甲、乙两名学生测试成绩的平均数分别记作x,y,方差分别记作s21,s22.(1)求x,y,s21,s22;(2)以这10次模拟测试成绩及(1)中的结果为参考,请你从甲、乙两名学生中选出一人代表班级参加比赛,并说明你作出选择的理由.解(1)x=110(98+94+97+97+95+93+93+95+93+95)=95,y=110(92+94+93+94+95+94+96+97+97+98)=95,s21=110[32+(-1)2+22+22+0+(-2)2+(-2)2+0+(-2)2+0]=3,s22=110[(-3)2+(-1)2+(-2)2+(-1)2+0+(-1)2+12+22+22+32]=3.4.(2)答案一:由(1)可知,x=y,s21<s22,甲、乙两人平均分相同,但甲发挥更稳定,所以可以派甲同学代表班级参赛.答案二:由(1)可知,x =y ,s 21<s 22,甲、乙两人平均分相同,两人成绩的方差差距不大,但从10次测试成绩的增减趋势可以发现,甲的成绩总体呈下降趋势,乙的成绩总体呈上升趋势,说明乙的状态越来越好,所以可以派乙同学代表班级参赛.课时精练1.某机构调査了10种食品的卡路里含量,结果如下:107,135,138,140,146,175,179,182,191,195.则这组数据的中位数是( ) A .160.5 B .146 C .175 D .135 答案 A解析 中位数为146+1752=160.5.2.给定一组数据5,5,4,3,3,3,2,2,2,1,则这组数据( ) A .众数为2 B .平均数为2.5 C .方差为1.6 D .标准差为4答案 C解析 由题中数据可得,众数为2和3, 故A 错误; 平均数为x =5+5+…+2+110=3,故B 错误;方差s 2= 5-32+5-32+…+2-32+1-3210=1.6,标准差为 1.6≠4,故C 正确,D 错误.3.若数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则4x 1-3,4x 2-3,…,4x n -3的平均数和标准差分别为( )A.x ,s B .4x -3,s C .4x -3,4sD .4x -3,16s 2-24s +9 答案 C解析 因为x =1n(x 1+x 2+…+x n ),s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],所以4x 1-3,4x 2-3,…,4x n -3的平均数为 x ′=1n [(4x 1-3)+(4x 2-3)+…+(4x n -3)]=1n [4(x 1+x 2+…+x n )-3n ]=4x -3, 标准差为1n [4x 1-3-4x +32+4x 2-3-4x +32+…+4x n -3-4x +32]=41n[x 1-x 2+x 2-x 2+…+x n -x 2]=4s 2=4s .4.某市为推进垃圾分类工作的实施,开展了“垃圾分类进小区”的评比活动.现对该市甲、乙两个小区进行评比,从中各随机选出20户家庭进行评比打分,每户成绩满分为100分,评分后得到如下茎叶图.通过茎叶图比较甲、乙两个小区成绩的平均数及方差大小( )A.x甲<x乙,s2甲<s2乙B.x甲>x乙,s2甲<s2乙C.x甲<x乙,s2甲>s2乙D.x甲>x乙,s2甲>s2乙答案 C解析由茎叶图知,乙小区成绩低的户数少于甲小区,且成绩大多高于甲小区,所以乙小区成绩的平均数大于甲小区.因为乙小区成绩分布比较集中,所以乙小区成绩的方差比甲小区小.5.某大学共有12 000名学生,为了了解学生课外图书阅读量情况,该校随机地从全校学生中抽取1 000名,统计他们每年阅读的书籍数量,由此来估计全体学生当年的阅读书籍数量的情况,下列估计中正确的是(注:同一组数据用该组区间的中点值作为代表)()A.中位数为6B.众数为10C.平均数为6.88D.该校读书不低于8本的人数约为3 600答案 C解析由图知,中位数x在[4,8)内,所以0.06×4+0.1×(x-4)=0.5,解得x=6.6,A错误;由图知,众数在[4,8)内,故众数为6,B错误;平均数为4×(2×0.06+6×0.1+10×0.07+14×0.015+18×0.005)=6.88,C正确;由图知,该校读书不低于8本的频率之和为1-0.16×4=0.36,所以该校读书不低于8本的人数约为0.36×12 000=4 320,D错误.6.(2022·深圳模拟)若甲组样本数据x1,x2,…,x n(数据各不相同)的平均数为2,方差为4,乙组样本数据3x1+a,3x2+a,…,3x n+a的平均数为4,则下列说法不正确的是() A.a的值为-2B.乙组样本数据的方差为36C.两组样本数据的样本中位数一定相同D.两组样本数据的样本极差不同答案 C解析由题意可知,3×2+a=4,故a=-2,故A正确;乙组样本数据方差为9×4=36,故B正确;设甲组样本数据的中位数为x i,则乙组样本数据的中位数为3x i-2,所以两组样本数据的样本中位数不一定相同,故C错误;甲组数据的极差为x max-x min,则乙组数据的极差为(3x max-2)-(3x min-2)=3(x max-x min),所以两组样本数据的样本极差不同,故D正确.7.2021年高考某题的第(1)问的得分情况如下:其中得分的众数是________.答案0解析众数是指一组数据中出现次数最多的数据,根据所给表格知,百分率最高的是0. 8.已知数据x1,x2,…,x9的方差为5,则数据3x1+1,3x2+1,…,3x9+1的方差为________.答案45解析 原数据的方差为5,则线性变换后的数据的方差为32×5=45.9.自中国进入工业化进程以来,个人的文化水平往往影响或在某种程度上决定了个人的薪酬高低,文化水平较高的人往往收入较高.将个人的文化水平用数字表示,记“没有接受过系统学习或自学的成年人”为最低分25分,“顶级尖端人才”为最高分95分.为了分析A 市居民的受教育程度,从A 市居民中随机抽取1 000人的文化水平数据X ,将样本分成小学[25,35),初中[35,45),高中[45,55),专科[55,65),本科[65,75),硕士[75,85),博士[85,95]七组,整理后得到如图所示的频率分布直方图.(1)求样本数据的众数和中位数(保留一位小数);(2)请估计该市居民的平均文化水平.(同组中的每个数据用该组区间的中点值代替) 解 (1)样本数据的众数为65+752=70.0.X ∈[25,65)的频率为0.05+0.05+0.15+0.20=0.45<0.50, X ∈[25,75)的频率为0.05+0.05+0.15+0.20+0.30=0.75>0.50. 所以中位数在区间[65,75)上,中位数为 65+10×0.50-0.450.30=65+53≈66.7.(2)平均文化水平X =30×0.05+40×0.05+50×0.15+60×0.20+70×0.30+80×0.20+90×0.05=64.5.10.某家水果店的店长为了解本店苹果的日销售情况,记录了近期连续120天苹果的日销售量(单位:kg),并绘制频率分布直方图如图.(1)请根据频率分布直方图估计该水果店苹果日销售量的众数、中位数和平均数;(同一组中的数据以这组数据所在区间中点的值作代表)(2)一次进货太多,水果会变得不新鲜;进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能90%地满足顾客的需求(在10天中,大约有9天可以满足顾客的需求).请问每天应该进多少千克苹果?解 (1)由题图可知,区间[80,90)的频率最大, 所以众数为85,中位数设为x ,则0.025+0.1+(x -80)×0.04=0.5,可得x =89.375.平均数为x =(65×0.002 5+75×0.01+85×0.04+95×0.035+105×0.01+115×0.002 5) ×10=89.75.(2)日销售量[60,100)的频率为0.875<0.9, 日销售量[60,110)的频率为0.975>0.9, 故所求的量位于[100,110).由0.9-0.025-0.1-0.4-0.35=0.025, 得100+0.0250.01=102.5,故每天应该进102.5千克苹果.11.已知一组数据1,2,a ,b ,5,8的平均数和中位数均为4,其中a ,b ∈N *,在去掉其中的一个最大数后,该组数据一定不变的是( )A .平均数B .众数C .中位数D .标准差答案 B解析 由题意知,16+a +b6=4,可得a +b =8,又中位数为4,则⎩⎪⎨⎪⎧ a =3,b =5或⎩⎪⎨⎪⎧ a =4,b =4,或⎩⎪⎨⎪⎧b =3,a =5, 当⎩⎪⎨⎪⎧ a =3,b =5或⎩⎪⎨⎪⎧b =3,a =5,时, 众数为5,标准差为433;当⎩⎪⎨⎪⎧ a =4,b =4时,众数为4,标准差为 5. ∴去掉其中的一个最大数后,数据为1,2,a ,b ,5,当⎩⎪⎨⎪⎧ a =3,b =5或⎩⎪⎨⎪⎧b =3,a =5,时,平均数为165,众数为5,中位数为3,标准差为85;当⎩⎪⎨⎪⎧a =4,b =4时,平均数为165,众数为4,中位数为4,标准差为365.综上,数据变化前后一定不变的是众数.12.(2022·东三省四市联考)某同学掷骰子5次,并记录了每次骰子出现的点数,得出平均数为2,方差为2.4的统计结果,则下列点数中一定不出现的是( ) A .1 B .2 C .5 D .6 答案 D解析 因为6-225=3.2,根据方差的计算公式知,方差大于2.4,因此不能出现点数6,因为5-225=1.8<2.4,2-225=0<2.4,1-225=0.2<2.4,则其余的点数1,2,5都有可能出现.13.小华同学每天晚上睡觉前要求自己背诵15个英文单词,若超出记为“+”,不足记为“-”,则上周一至周五,他的完成情况分别为-2,-1,x ,+4,y ,已知这五个数据的平均数是0,方差是5.2,则上周一至周五,小华背诵的单词数量的众数和中位数分别是( ) A .13,14 B .-2,-1 C .13,13 D .-2,-2答案 A解析 因为-2,-1,x ,+4,y 这五个数据的平均数是0,方差是5.2,所以有⎩⎨⎧-2-1+x +4+y5=0,-2-02+-1-02+x -02+4-02+y -025=5.2,解得⎩⎪⎨⎪⎧ x =-2,y =1或⎩⎪⎨⎪⎧x =1,y =-2,不管取哪一组解,这5天的单词量均是以下几个数,13,14,13,19,16, 所以众数和中位数分别是13,14.14.已知一组数据a ,b ,3,5的中位数为7,平均数为8,则ab =________. 答案 135解析 因为一组数据a ,b ,3,5的平均数为8, 所以14(a +b +3+5)=8,解得a +b =24,若a =b ,则a =b =12,此时4个数为3,5,12,12,显然中位数不是7,不妨设a <b ,若a ≤3,则b ≥21,此时4个数排列为a ,3,5,b ,中位数为4,不符合题意, 若3<a ≤5,则19≤b <21,此时4个数排列为3,a ,5,b ,显然中位数不是7, 若a >5,则4个数排列为3,5,a ,b ,则中位数为5+a2=7,解得a =9,则b =15,所以ab =9×15=135.15.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,得到的数据分别为36,36,37,37,40,43,43,44,44,若用样本估计总体,则年龄在(x -s ,x +s )内的人数占公司人数的百分比是( )(其中x 是平均数,s 为标准差,结果精确到1%)A .14%B .25%C .56%D .67%答案 C解析 因为x =36+36+37+37+40+43+43+44+449=40, s 2=19×(16+16+9+9+0+9+9+16+16)=1009,即s =103, 所以年龄在(x -s ,x +s ),即⎝⎛⎭⎫1103,1303内的人数为5,所以年龄在(x -s ,x +s )内的人数占公司人数的百分比为59≈56%. 16.中国独有的文书工具,即笔、墨、纸、砚,有文房四宝之名,起源于南北朝时期.其中宣纸是文房四宝的一种,宣纸“始于唐代,产于泾县”,因唐代泾县隶属宣州管辖,故因地得名宣纸.宣纸按质量等级分为正牌(优等品)、副牌(合格品)、废品三等.某公司生产的宣纸为纯手工制作,年产宣纸10 000刀(1刀=100张),该公司按照某种质量指标x 给宣纸确定等级如表所示: x 的范围(44,48]∪(52,56] (48,52] [0,44]∪(56,60] 质量等级副牌 正牌 废品在该公司所生产的宣纸中随机抽取了一刀进行检验,得到频率分布直方图如图所示,已知每张正牌宣纸的利润为15元,副牌宣纸的利润为8元,废品的利润为-20元.(1)试估计该公司的年利润;(2)市场上有一种售价为100万元的机器可以改进宣纸的生产工艺,但这种机器的使用寿命为一年,只能提高宣纸的质量,不能增加宣纸的年产量.据调查这种机器生产的宣纸的质量指标x如表所示:x的范围(x-2,x+2)(x-6,x+6)频率0.682 70.954 5其中x为质量指标x的平均值,但是由于人们对传统手工工艺的认可,改进后的正牌和副牌宣纸的利润都将下降3元/张,请问该公司是否购买这种机器,请你为公司提出合理建议,并说明理由.(同一组的数据用该组区间的中点值作代表)解(1)由频率分布直方图得,一刀宣纸有正牌100×0.1×4=40(张),有副牌100×0.05×4×2=40(张),有废品100×0.025×4×2=20(张),∴该公司一刀宣纸的利润的估计值为40×15+40×8-20×20=520(元),∴估计该公司的年利润为520万元.(2)由频率分布直方图得,x=42×0.025×4+46×0.05×4+50×0.1×4+54×0.05×4+58×0.025×4=50.这种机器生产的宣纸的质量指标x如表所示:x的范围(48,52)(44,56)∴一刀宣纸中正牌的张数估计为100×0.682 7=68.27,废品的张数估计为100×(1-0.954 5)=4.55,副牌的张数为100×(0.954 5-0.682 7)=27.18,∴一刀宣纸的利润为68.27×12+27.18×5-4.55×20=864.14(元),∴公司改进后该公司的利润为864.14-100=764.14(万元),∵764.14>520,∴建议该公司购买这种机器.。
高考数学一轮复习 第10章 统计、统计案例及算法初步 第1讲 抽样方法课件 理 北师大版.pptx
差.
用样本 3.能从样本数据中提取基本的数字特征(如平均数、标准
估计总 差),并作出合理的解释.
体 4.会用样本的频率分布估计总体分布,会用样本的基本
数字特征估计总体的基本数字特征,理解用样本估计总体
的思想.
5.会用随机抽样的基本方法和样本估计总体的思想解决
一些简单的实际问题.
2
第十章 统计、统计案例及算法初步
算 法 初 2.理解程序框图的三种基本逻辑结构:顺序、条件分
步
支、循环;了解几种基本算法语句——输入语句、输
出语句、赋值语句、条件语句、循环语句的含义.
3
第十章 统计、统计案例及算法初步
第1讲 抽样方法
4
1.简单随机抽样 (1) 定 义 : 一 般 地 , 设 一 个 总 体 含 有 N 个 个 体 , 从 中 __逐__个__不__放__回__地__抽__取_________n 个个体作为样本(n≤N),且每 次抽取时各个个体被抽到的_机__会__都__相__等___,就称这样的抽样 方法为简单随机抽样. (2)常用方法:_抽__签__法___和随__机___数__法____.
16
1. 下列抽 取样本 的方 式不属 于简 单随机 抽样的 有 ____①__②__③__④_______. ①从无限多个个体中抽取 100 个个体作为样本. ②盒子里共有 80 个零件,从中选出 5 个零件进行质量检 验.在抽样操作时,从 中任意拿出一个零件进行质量检验后 再把它放回盒子里 . ③从 20 件玩具中一次性抽取 3 件进行质量检验. ④某班有 56 名同学,指定个子最高的 5 名同学参加学校组 织的篮球赛.
14
[解析] A、B 是系统抽样,因为抽取的个体间的间隔是固定 的;C 是分层抽样,因为总体的个体有明显的层次;D 是简 单随机抽样.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:由题知,在区间[10,50)上的数据的频数是 2+3+4+5=14,故其频 14 率为20=0.7。 答案:D
4.从某小学随机抽取 100 名同学,将他们的身高(单位:厘米)数据绘制成 频率分布直方图。由图中数据可知身高在[120,130]内的学生人数为( )
A.20 B.25 C.30 D.35
解析:正确。由方差的意义知结论正确。
(4)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间 内的频率越高。( √)
解析:正确。由频率分布直方图的意义知结论正确。
(5)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记一 次。(× )
解析:错误。茎叶图要求不能丢失数据。
2.在如图所示的茎叶图表示的数据中,众数和中位数分别是(
解析:由题意知 a×10+0.35+0.2+0.1+0.05=1,则 a=0.03,故学生人 数为 0.3×100=30。 答案:C
5.甲、乙两人比赛射击,两人所得的平均环数相同,其中甲所得环数的方 差为 5 ,乙所得环数如下: 5 、6 、9 、 10 、 5 ,那么这两人中成绩较稳定的是 __________。
微知识❺ 利用频率分布直方图估计样本的数字特征 (1) 中位数:在频率分布直方图中,中位数左边和右边的直方图的面 积 相等 ,由此可以估计中位数的值。 (2)平均数:平均数的估计值等于频率分布直方图中每个小矩形的面积 乘以小矩形底边中点的 横坐标之和 。 (3)众数:在频率分布直方图中,众数题查验 1.思维辨析(在括号内打“√”或“×”) (1)一组数据的平均数一定大于这组数据中的每个数据。(× )
解析:错误。平均数一定不大于这组数据中的最大值。 (2)平均数、众数与中位数都可以描述数据的集中趋势。(√ )
解析:正确。平均数表示一组数据的平均水平,众数表示一组数据中出 现次数最多的数,中位数等分样本数据所占频率,都可以从不同的角度描述 数据的集中趋势。 (3)一组数据的方差越大,说明这组数据的波动越大。(√ )
解析:(1)由频率分布直方图知 40~60 分的频率为(0.005+0.015)×10=0.2, 故估计不少于 60 分的学生人数为 600×(1-0.2)=480。
(2)由频率分布直方图知识可知:在区间[15,20)和[25,30)上的概率为 0.04×5 +[1-(0.02+0.04+0.06+0.03)×5]=0.45。
微知识❹ 标准差和方差 (1)标准差是样本数据到平均数的一种 平均距离 。
(2)标准差:s= (3)方差:s2=
1 2 2 2 [ x 1- x +x2- x +„+xn- x ] n
1 2 2 2 [( x 1- x ) +(x2- x ) +„+(xn- x ) ] n
。
(xn 是样本数据,n 是样本容量, x 是样本平均数)。
[规律方法] (1)已知频率分布直方图中的部分数据,求其他数据。可根据频率分布直方 图中的数据求出样本与整体的关系,利用频率和等于 1 就可求出其他数据。 (2)已知频率分布直方图,求某种范围内的数据。可利用图形及某范围结合 求解。
【微练 1】有一个容量为 200 的样本,其频率分布直方图如图所示。根据 样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )
2 2 解析: x =7,s2 乙=4.4,则 s甲>s乙,故乙的成绩较稳定。
答案:乙
微考点
大课堂
考点例析 对点微练
微考点
频率分布直方图及其应用
【典例 1】(1)某校从高一年级学生中随机抽取部分学生,将他们的模块测 试成绩分成 6 组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统 计,得到如图所示的频率分布直方图。已知高一年级共有学生 600 名,据此估 计,该模块测试成绩不少于 60 分的学生人数为( B )
A.588 C.450
B.480 D.120
(2)对一批产品的长度(单位:毫米)进行抽样检测,右图为检测结果的频率 分布直方图。根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和 [25,30)上为二等品,在区间[10,15)和[30,35]上为三等品。用频率估计概率,现 从该批产品中随机抽取 1 件,则其为二等品的概率是( D ) A.0.09 C.0.25 B.0.20 D.0.45
第十章 算法初步、统计、统计案例
第三节
用样本估计总体
微知识
微考点 微考场
小题练
大课堂 新提升
微知识
小题练
教材回扣 基础自测
一、知识清单 微知识❶ 频率分布直方图 (1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布 估计总体的分布。另一种是用
样本的数字特征
估计总体的数字特征。
频率 (2)在频率分布直方图中,纵轴表示 组距 ,数据落在各小组内的频 各小长方形的面积 率用 表示。各小长方形的面积总和 等于 1 。
微知识❷ 频率分布折线图和总体密度曲线 (1)频率分布折线图:连接频率分布直方图中各小长方形上端的 中点 ,就得到频率分布折线图。 (2)总体密度曲线:随着样本容量 的增加,作图时 所分的组数 增加,
组距
减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称
这条光滑曲线为总体密度曲线。 微知识❸ 茎叶图的优点 用茎叶图表示数据有两个突出的优点:一是从统计图上没有原始信息 的损失,所有的 数据信息 都可以从茎叶图中得到;二是茎叶图可以在比 赛时 随时记录 ,方便记录与表示。
)
A.23 与 26 C.24 与 30
B.31 与 26 D.26 与 30
解析:观察茎叶图可知,这组数据的众数是 31,中位数是 26。 答案:B
3. 把样本容量为 20 的数据分组, 分组区间与频数如下: [10,20), 2; [20,30), 3;[30,40),4;[40,50),5;[50,60),4;[60,70],2,则在区间[10,50)上的数据 的频率是( A.0.05 C.0.5 ) B.0.25 D.0.7