最新人教版八年级数学上册第十五章《分式》精品教案

合集下载

最新人教版初中八年级上册数学第十五章《分式》精品教案

最新人教版初中八年级上册数学第十五章《分式》精品教案
有字母. 三个条件缺一不可.
判断一个式子是否为分式,不能将其化简后再判断,只需看原式的本 来“面目”是否符合分式的概念.
新知探究
知识点1 分式的概念
辨析:分数与分式 分式的概念可类比分数得到,分式的形式与分数类似,都有分子与分母,不同 的是分数的分子与分母都是整数,而分式的分子与分母都是整式,且分式的分 母中含有字母.
④ 2a - 5 3
⑧c 3(a - b)
解:分式有①③⑤⑥⑦⑧ 整式有②④
随堂练习 3
x-4 分式 x2 -16 中的字母满足什么条件时,分式无意义?
解:要使分式无意义,只要使分式的分母为0即可. x-4
∵分式 x2 -16 无意义, ∴分式的分母 x2 -16为0.
∴ x2 -16 0,则 x=4 或 x=-4.
x2 1
A.
x2
x -1
B.
x2 -1
x 1 C. x2 1
x -1
D.
x 1
解析:若使得分式有意义,则分式的分母不为0. 当x为任何实数时,分式都有意义,即是说明当x为任何实数时,分式的分母 都不等于0. 只要选项分式的分母能满足这个条件即是正确选项.
拓展提升 1
当x为任何实数时,下列分式一定有意义的是( C )
(2)由于字母可以表示不同的数,所以分式比分数更具有一般性.
新知探究 知识点2 分式有意义、无意义的条件
分式有意义的条件:分式的分母表示除数,由于除数不能为0,所以分式
的分母不能为0,即当B≠0时,分式
A B
才有意义.
分式无意义的条件:分式的分母为0,即当B=0时,分式
A
无意义.
B
新知探究 知识点2 分式有意义、无意义的条件

人教版数学八年级上册15.3分式方程的解法(教案)

人教版数学八年级上册15.3分式方程的解法(教案)
三、教学难点与重点
1.教学重点
(1)理解分式方程的定义:重点强调分式方程的形式特点,即方程中包含有分母,且分母不为零,让学生充分理解这一核心内容。
举例:如方程2/x = 3/(x+1),其中x≠0。
(2)掌握分式方程的解法:包括消元法、代入法、加减法等,特别是消元法在求解分式方程中的应用。
举例:消元法求解方程2/x = 3/(x+1):
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是指含有分母的方程,它是代数方程的一种特殊形式。分式方程在解决实际问题时具有重要作用,能够帮助我们处理比例、速率、百分比等问题。
2.案例分析:接下来,我们来看一个具体的案例。假设小明和小红的糖果总数为10个,要平均分给两人,我们可以建立分式方程x/2 = 10,其中x表示每人应得的糖果数。通过解这个方程,我们可以得到答案。
2.提升学生的数学建模素养:使学生能够将实际问题抽象为分式方程模型,并运用所学方法求解,从而提高解决实际问题的能力;
3.增强学生的数学运算能力:让学生熟练掌握分式方程的消元、代入、加减等解法,培养他们准确、迅速地进行数学运算的能力。
这些核心素养目标与新教材的要求相符,旨在帮助学生形成系统的数学知识体系,提高数学思维品质和解决问题的综合能力。
难点解析:代入法中,学生可能会遇到以下困难:
-不清楚应该将哪个表达式代入另一个表达式中;
-在代入过程ቤተ መጻሕፍቲ ባይዱ,容易忽视方程中的限制条件(如分母不为零);
-计算过程中可能因粗心导致错误。
(3)分式方程在实际问题中的应用:学生需要学会将实际问题抽象为分式方程,并正确求解。
难点解析:实际问题抽象为分式方程时,学生可能会遇到以下问题:

人教版八年级数学第十五章《分式》全章教案

人教版八年级数学第十五章《分式》全章教案

人教版八年级数学第十五章《分式》全章教案第十五章分式15.1.1从分数到分式教学目标1.了解分式的概念,能用分式表示实际问题中的数量关系.2.能确定分式有意义的条件.教学重、难点分式的概念教学过程设计一、创设问题,激发兴趣XXX:一艘轮船在静水中的最大航速为30km/h,它沿江以最大航速顺流航行90km所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?问题1顺流航行的速度、逆流航行的速度与轮船在静水中的速度、水流速度之间有什么关系?顺流航行的速度=轮船在静水中的速度+水流速度;逆流航行的速度=轮船在静水中的速度-水流速度.问题2这个问题的等量关系是什么?顺流航行90 km所用时间=逆流航行60 km所用时间.问题3应怎样设未知数?如何根据等量干系列出方程?解:设江水的流速为XXX.依题意得:追问式子与分数有甚么相同点和分歧点?它们与你学过的整式有甚么分歧?问题4填空:(1)长方形的面积为10 cm2,长为7 cm,宽应为cm;长方形的面积为S,长为a,宽应为cm.问题4填空:(2)把体积为200cm3的水倒入底面积为33cm2的圆柱描述器中,水面高度为cm;把体积为V的水倒入底面积为S 的圆柱描述器中,水面高度为.追问1上面问题中得到的式子,,,哪些不是我们学过的整式?追问2式子的特性?二、常识使用,巩固提高分式的定义:,,与以前学过的整式分歧,这些代数式有甚么配合一般地,如果A,B表示两个整式,并且B中含有字母,那末式子叫做分式(fraction).分式中,A叫做分子,B叫做分母.问题5我们知道,要使分数有意义,分数中的分母不能为.要使分式有意义,分式中的分母应满足什么条件?为什么?例1下列分式中的字母满足甚么条件时分式成心义?三、使用提高、拓展创新讲义128页操演1、2、3四、归纳小结(1)本节课研究了哪些主要内容?(2)你能举例说明什么是分式吗?(3)如何确定分式有意义的条件?五、布置作业:教科书题15.1第1、2、3题.教后反思:15.1.2分式的基本性质(1)教学目标1.了解分式的基本性质,体会类比的思想方法.2.掌握分式的约分,了解最简分式的概念.教学重、难点分式的基本性质和分式的约分教学过程设计一、创设问题,激起兴趣问题1下列分数是否相等?追问这些分数相等的依据是什么?问题2你能叙述分数的基本性质吗?分数的根本性质:一个分数的分子、分母乘(或除以)同一个不为的数,分数的值不变.问题3你能用字母的形式表示分数的基本性质吗?问题4类比分数的根本性质,你能想出分式有甚么性质吗?分式的根本性质:分式的分子与分母乘(或除以)同一个不等于的整式,分式的值不变.追问1如何用式子表示分式的基本性质?二、常识使用,巩固提高追问2应用分式的基本性质时需要注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.例2填空:问题5观察上例中(1)中的两个分式在变形前后的分子、分母有甚么变化?类比分数的相应变形,你联想到甚么?像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.例3约分:追问1由上例你能归纳出在分式中,找分子和分母的公因式的方法是什么吗?追问2如果分式的分子或分母是多项式,那么该如何思考呢?三、应用提高、拓展创新教科书132页操演1四、归结小结(1)本节课研究了哪些主要内容?(2)运用分式的根本性质时应注意甚么?(3)分式约分的关键是甚么?如何找公因式?(4)探究分式的基本性质和分式的约分的过程,你认为体现了哪些数学思想方法?五、布置作业:教科书题15.1第4、6题.教后反思:15.1.2分式的基本性质(2)教学目标1.了解最简公分母的概念,会确定最简公分母.2.经由进程类比分数的通分来探究分式的通分,能进行分式的通分,体会数式通性和类比的思想.教学重、难点正确确定分式的最简公分母教学过程设计一、创设问题,激起兴趣问题1通分:追问1分数通分的依据是什么?追问2如何确定异分母分数的最小公分母?问题2填空:像这样,根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.追问1你认为分式通分的关键是什么?分式通分的关键是找出分式各分母的公分母.追问2上面问题中的两个分式的公分母是甚么?为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.追问3两个分式的最简公分母是如何确定的?最简公分母的确定方法:取各分母系数的最小公倍数与各字母因式的最高次幂的乘积.分母是多项式时,最简公分母的确定方法是:先因式分解,再将每一个因式算作一个团体,最后确定最简公分母.二、知识应用,巩固提高例通分:三、应用提高、拓展创新教科书132页练1四、归结小结(1)本节课研究了哪些首要内容?(2)分式通分的关键是什么?(3)分式通分时,确定最简公分母的办法是甚么?五、布置作业:教科书题15.1第7题教后反思:15.2.1分式的乘除(1)教学目标1.理解分式的乘除法法则,体会类比的思想.2.会根据分式的乘除法法则进行简单的运算,并理解其算理教学重、难点分式的乘除法法则的运用教学过程设计一、创设问题,激发兴趣问题1一个水平放置的长方体,其容积为V,底面的长为a,宽为b,当内的水占容积的m时,水面的高度为多少?n(1)这个长方体的高怎么表示?(2)内水面的高与内的水所占容积间有何关系?内水面的高与高的比和内的水所占容积的比相等.问题2大拖拉机m天耕地ahm2,小拖拉机n天耕地bhm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1)本题中出现的“工作效率”的含义是什么?(2)大拖沓机和小拖沓机的事情效率怎样表示?观察上述两个问题中所列出的式子中,其中涉及到分式的有哪些运算?你能用学过的运算法则求出结果吗?问题3计较:在计算的过程中,你运用了分数的什么法则?你能叙述这个法则吗?如果将分数换成分式,那末你能类比分数的乘除法法则,说出分式的乘除法法则吗?怎样用字母来表示分式的乘除法法则呢?二、知识应用,巩固提高分式的乘除法法则如何用笔墨语言来描述?乘法法则:分式乘分式,用分子的积作为积的分子,分母的积为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.例1计算:三、应用提高、拓展创新教科书138页练2四、归纳小结(1)本节课研究了哪些首要内容?(2)分式的乘除法运算与分数的乘除法运算有甚么区别和联系?五、布置作业:讲义第144页第1题;第145页第10、11题.教后反思:15.2.1分式的乘除(2)教学目标1.能运用分式的乘除法法则进行复杂计算.2.能运用分式的乘除法解决一些简单的实际问题.教学重、难点用分式的乘除法法则进行计较,并解决一些实践问题.教学过程设计一、创设问题,激起兴趣问题1约分:分子与分母分别是多项式的分式如何约分?问题2计较:分子与分母都是单项式的两个分式如何乘除?二、知识应用,巩固提高例1计较:分子或分母是多项式的两个分式如何乘除呢?解题战略:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式.而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.例2“丰收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1 m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)m的正方形,两块试验田的小麦都收获了500 XXX.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?考虑以下问题:①你能说出小麦的“单位产量”的含义吗?②如何表示这两块试验田的单位产量?③怎样确定哪类小麦的单位产量高?④你能列式表示(2)的问题吗?归结解题步调:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后经由进程计较解决问题.三、使用提高、拓展创新教科书138页练3四、归纳小结运用分式的乘除法法则计算分子或分母含有多项式的分式主要步骤是什么?五、布置作业:教材第144页第2题.教后反思:15.2.1分式的乘方教学目标1.理解分式乘方的运算法则,能根据法则进行乘方运算,体会数式通性.2.能根据混合运算法则进行分式乘除、乘方混合运算.教学重、难点分式的乘方及分式乘除、乘方夹杂运算教学过程设计一、创设问题,激起兴趣例1计算:2x3x.5x-325x2-95x+3练1计算:2m2n5p2q5mnp()1;223q3pq4mn2m2-n2(n-m)m+n(2);222m(m-n)mn16-a2a-4a-2(3)2.2a+8a+2a+8a+16考虑你能结合有理数乘方的概念和分式乘法的法则写出结果吗?(a2a3a10)=?()=?()=?bbba猜测:n为正整数时?b你能写出推导过程吗?试试看.你能用笔墨语言叙述得到的结论吗?分式的乘方法则:一般地,当n是正整数时,n这就是说,分式乘方要把分子、分母分别乘方.二、常识使用,巩固提高例2计较:例3计算:分式的乘除、乘方混合运算与分数的乘除、乘方混合运算有什么联系和区别吗?练2计算:三、应用提高、拓展创新教科书139页练2四、归纳小结(1)本节课研究了哪些主要内容?(2)运用分式乘办法则计较的步调是甚么?它与整式的乘方运算有甚么区别和联系?(3)分式的乘方与乘除夹杂运算的运算顺序是甚么?五、布置作业:教科书题15.2第3(3)(4)题.教后反思:15.2.2分式的加减教学目标1.理解分式的加减法法则,体会类比思想.2.会运用法则进行分式的加减运算,体会化归思想.教学重、难点分式的加减法法则教学过程设计一、创设问题,激发兴趣问题1甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才干完成这项工程,两队配合事情一天完成这项工程的几分之几?(1)甲工程队一天完成这项工程的几分之几?(2)乙工程队一天完成这项工程的几分之几?(3)甲乙两队共同工作一天完成这项工程的几分之几?问题年、2010年、2011年某地的森林面积(单位:km2)分别是S1,S2,S3,2011年与2010年比拟,丛林面积增长率提高了多少?(1)甚么是增长率?(2)2010年、2011年的丛林面积增长率分别是多少?(3)2011年与2010年相比,森林面积增长率提高了多少?分式的加减法与分数的加减法类似,它们实质相同.观察下列分数加减运算的式子,你能将它们推广,得出分式的加减法法则吗?分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.二、常识使用,巩固提高例计算:11(2)+.2p+3q2p-3q三、应用提高、拓展创新讲义141页操演1、操演2练:你能应用本节课所学知识解决“问题1”和“问题2”吗?四、归结小结(1)本节课研究了哪些主要内容?(2)我们是怎么引出分式加减法法则的?(3)在进行分式的加减运算时要注意哪些问题?五、布置作业:教科书题15.2第4、5题.教后反思:15.2.2分式的夹杂运算教学目标1.理解分式混合运算的顺序.2.会正确进行分式的混合运算.3.体会类比方法在研究分式混合运算过程中的重要价值.教学重、难点分式的混合运算.教学过程设计一、创设问题,激起兴趣问题数的混合运算的顺序是什么?你能将它们推广,得出分式的混合运算顺序吗?分式的混合运算顺序:“从高到低、从左到右、括号从小到大”.例1计算:这道题的运算顺序是怎样的?经由进程对例1的解答,同学们有何播种?对于不带括号的分式混合运算:(1)运算顺序:先乘方,再乘除,然后加减;(2)计算结果要化为最简分式.二、常识使用,巩固提高例2计算:52m-4() 1m+2+3-m;2-mx+2x-1x-4(2)-.x2-2xx2-4x+4x通过对例2的解答,同学们有何收获?对于带括号的分式夹杂运算:(1)将各分式的分子、分母分解因式后,再进行计较;(2)注意处理好每一步运算中遇到的符号;(3)计算结果要化为最简分式.三、应用提高、拓展创新练1计算:四、归结小结(1)本节课研究了哪些主要内容?(2)分式混合运算的顺序是什么?我们是怎么得到它的?(3)在进行分式混合运算时要注意哪些问题?五、布置作业:教科书题15.2第6题.教后反思:15.2.3整数指数幂教学目标1.了解负整数指数幂的意义.2.了解整数指数幂的性质并能运用它进行计算.3.会利用10的负整数次幂,用科学记数法表示一些小于1的正数.教学重、难点幂的性质(指数为全体整数),并会用于计算,以及用科学记数法表示一些小于1的正数.教学过程设计一、创设问题,激发兴趣问题1你们还记得正整数指数幂的意义吗?正整数指数幂有哪些运算性质呢?将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗?问题2am中指数m可以是负整数吗?如果可以,那末负整数指数幂am表示甚么?(1)根据分式的约分,当a≠时,如何计较a(2)如果把正整数指数幂的运算性质中的条件m >n去掉,即假设这本性质对于像a数学中规定:当n是正整数时,a这就是说,XXXXXX33a5?(a≠,m,n是正整数,m >n)a5景遇也能使用,如何计较?1aaa是an的倒数.问题3引入负整数指数和指数后,am an am n(m,n是正整数)这条性质能否推广到m,n是任意整数的情形?问题4类似地,你可以用负整数指数幂或指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是不是还适用?(1)am an am n(m,n是整数);n(am)amn(m,n是整数)(2);(ab)ab(n是整数)(3);mnm n(4)a a a(m,n是整数);XXXa(5)bnann(n是整数).b二、知识应用,巩固提高例1计算:三、应用提高、拓展创新问题5能否将整数指数幂的5条性质进行适当合并?这样,整数指数幂的运算性质可以归结为:(1)am an am n(m,n是整数);n(am)amn(m,n是整数)(2);(ab)ab(n是整数)(3);探索:XXX110 1101.0110 21001.00110 310001.000110 40.1归纳:如何用科学记数法表示0.003 5和0.000 098 2呢?规律:对于一个小于1的正小数,从小数点前的第一个算起至小数点后第一个非数字前有几个,用科学记数法表示这个数时,10的指数就是负几.例2用科学记数法表示下列各数:(1)0.3;(2)-0.000 78;(3)0.000 020 09.例3纳米(nm)是非常小的长度单位,1 nm =10-9m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?四、归结小结(1)本节课研究了哪些首要内容?(2)整数指数幂的运算性质与正整数指数幂的运算性质有什么区别和联系?五、布置作业:教科书题15.2第7、8、9题教后反思:15.3分式方程(1)教学目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.教学重、难点利用去分母的方法解分式方程教学过程设计一、创设问题,激发兴趣问题1为了解决弁言中的问题,我们得到了方程程,未知数的位置有甚么特点?追问1方程9060.仔细观察这个XXX30v30vx2x;2;1与上面的方程有甚么共2xx3x5x25x13x 3同特征?分母中含有未知数.分式方程的概念:分母中含有未知数的方程叫做分式方程.追问2你能再写出几个分式方程吗?注意:我们以前研究的方程都是整式方程,它们的未知数不在分母中.9060吗?30v30v问题3这些解法有什么共同特点?总结:这些解法的共同特点是先去分母,将分式方程转化为整式方程,再解整式方程.思考:(1)如何把分式方程转化为整式方程呢?问题2你能试着解分式方程(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了.(2)利用等式的性质2可以在方程双方都乘同一个式子——各分母的最简公分母.追问你得到的解v=6是分式方程二、常识使用,巩固提高问题4解分式方程:9060的解吗?30v30v110=2.x-5x-25110的解吗?该如何验证呢?x=5是原2x5x25分式方程变形后的整式方程的解,但不是原分式方程的解.追问2上面两个分式方程的求解进程当中,同样是去分母将分式方程化为整式方程,为追问1你得到的解x=5是分式方程(30-v)=60(30+v)甚么整式方程90的解v=6是分式方程整式方程x+5=10的解x=5却不是分式方程9060的解,而30v30v110的解?2x5x25原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右双方是不是相等;(2)将整式方程的解代入最简公分母,看是否为.显然,第2种方法比较简便!问题5你能概括出解分式方程的基本思路和一般步骤吗?解分式方程应该注意什么?根本思绪将分式方程化为整式方程一般步调:(1)去分母;(2)解整式方程;(3)检验.注意:因为去分母后解得的整式方程的解不一定是原分式方程的解,以是需要检修.三、使用提高、拓展创新例解下列方程:四、归纳小结(1)本节课研究了哪些主要内容?(2)解分式方程的基本思路和一般步骤是什么?解分式方程应该注意什么?五、布置作业:教科书题15.3第1(1)~(4)题.教后反思:15.3分式方程(2)教学目标1.会解较复杂的分式方程和较简朴的含有字母系数的分式方程.2.能够列分式方程解决简朴的实践问题.3.经由进程研究分式方程的解法,体会转化的数学思想.教学重、难点分式方程的解法教学过程设计一、创设问题,激发兴趣例1解方程x3-1=.x-1(x-1)(x+2)解分式方程的步骤:(1)去分母,将分式方程转化为整式方程;(2)解这个整式方程;(3)检验.用框图的方式总结为:二、知识应用,巩固提高例2解关于x的方程a+b=1(b1).x-a例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?三、应用提高、拓展创新某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2000个零件所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?四、归结小结(1)本节课研究了哪些主要内容?(2)解分式方程的一般步调有哪些?关键是甚么?解方程的进程当中要注意的问题有哪些?(3)列分式方程解使用题的步调是甚么?与列整式方程解使用题的进程有甚么区别和联系?五、布置作业:教科书题15.3第1(2)(4)(6)(8)、4、5题.教后反思:。

第十五章 分式【教案】八年级上册数学

第十五章  分式【教案】八年级上册数学

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“分式”.1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,“数与式”是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,现阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性.“数与式”的教学:教师应该把握“数与式”的整体性,一方面,通过负数、有理数和实数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表述,进而体会实数与数轴上的点一一对应的数形结合的意义,会进行实数的运算;另一方面,通过代数式和代数式运算的教学,让学生进一步理解字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材八年级上册第十五章“分式”,本章包括三个小节:15.1分式;15.2分式的运算;15.3分式方程.“数与式”主题通过从计算物体个数的活动中抽象出整数的概念,从把一个具体物体分为若干份的活动中抽象出分数的概念,这是一种从实物到数的抽象;为更好地反映这个一般规律,在研究整数和分数的过程中,又抽象出整式和分式的概念,这是一种从数到式的抽象.分数与分式是具体与抽象、特殊与一般的关系,即相对于分式而言,分数是具体的、特殊的对象,分式是把具体的分数一般化后的抽象形式.本单元强调的是“从具体到抽象,从特殊到一般”的认识事物的一般规律,处处突出类比在本单元学习中的重要作用,在概念、基本性质、约分与通分、四则运算法则等方面,分数与分式均相对应,两者具有一致性,也可以说是数式通性.本单元自始至终重视分式与实际的联系,选择一些适合分式内容又接近学生生活的实际问题展开编写.一方面要体现与研究分数类似,研究分式同样也是实际需要;另一方面以分式为工具,分析、解决实际问题,提高学生把实际问题转化为数学问题的能力,让学生认识到代数式(包含分式)、分式方程是解决现实问题的数学模型,体会数学中的建模思想,进一步培养学生应用数学知识解决实际问题的兴趣和意识,这将有助于培养学生的创新精神.三、单元学情分析本单元内容是人教版教材数学八年级上册第十五章分式,它是“数与代数”中重要的一部分,学生在前面已经学习了整数与整式、一元一次方程、二元一次方程组等知识,初步积累了一定的用字母表示数以及四则混合运算的数学学习经验,特别是对一元一次方程的解法及基本思路已经比较熟悉,因此本单元运用类比的数学思想来展开分式教学,大大降低了学生学习的难度,同时这种“从具体到抽象、由特殊到一般”的认识事物的基本方法,会潜移默化地引导学生养成良好的学习习惯.建立分式方程的模型来解决实际问题是本单元的一个重要任务,能否以分式方程为工具,分析和解决问题是对学生应用意识和模型观念的一个重要考量,也是教学的关键.虽然分式整章的学习接近学生的最近发展区,但利用分式方程解决问题的特殊性,对学生来说仍是一个难点,分式方程化整式方程的基本思路是基础,对解出的未知数进行检验确认是必不可少的步骤,所以在此体会解分式方程的基本思路是非常自然、合理的,这对学生认识水平的提高,知识体系的构建是不可缺少的.四、单元学习目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.能通过类比分数的基本性质,了解分式的基本性质,并利用分式的基本性质进行约分和通分,提高学生的知识类比和迁移能力,发展学生的推理能力.3.通过类比分数的四则运算法则,探究分式的四则运算法则,能进行简单的分式加、减、乘、除运算,逐步提高学生的运算能力.4.结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数,发展学生的抽象能力、运算能力和模型观念.5.掌握可化分式方程为一元一次方程的解法,体会解分式方程过程中的化归思想,发展学生的运算能力和推理能力.6.经历利用分式方程解决实际问题的过程,进一步体会方程是刻画实际问题中数量关系的一种重要模型,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。

数学八年级上册第15章分式 教案 新人教版

数学八年级上册第15章分式 教案 新人教版
2.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分.
【预习速填】
第十五章 分式
15.1 分式
1.分式的概念.分式有三个要素:①形如 的式子;②A,B 都是 ;③分母 B 中含有 .满足 这三个条件的式子即为分式.区别整式和分式的唯一标准是看分母中是否含有字母,若分母 中含有字母,则式子就是分式,若分母中字母,则分子是整式.此外,在列分式表示实际问题中 的某个量时,一定要注量关系的转化. 2.分式有(无)意义及分式值为 0 的条件.理解时注意以下几点:①分式的分母表示除数,由于
a,则宽为 (2)把体积为 200 cm3的水倒入底面积为 33 cm2的圆柱形容器中,则水面的高度为
cm;把体积为 V 的水倒入底面积为 S 的圆柱形容器中,则水面的高度为 学生举手回答,教师与学生一起及时纠正学生出现的错误,并将正确答案填入横线中. 然后教师引入本节课题,并板书.
探究 1:分式的定义 让学生观察刚才的四个式子,看它们有什么相同点和不同点?
教师板书(1)(2)的解答过程,学生独立完成(3)(4).
解:(1)要使分式 有意义,则分母 3x≠0,即 x≠0.因此,当 x≠0 时,分式 有意 义.
(2)要使分式
有意义,则分母 x-1≠0,即 x≠1.因此,当 x≠1 时,分式

意义.
(3)要使分式 有意义.
有意义,则分母 5-3b≠0,即 b≠53.因此,当 b≠53 时,分式
教师引导学生总结:①定符号:只把负号留给分式;②定分子与分母的公因式:各项系 数的最大公因数和相同因式的最低次幂的积;③分式约分的最后结果应为最简分式或整式, 即分子、分母没有公因式.
学生先练习,教师再根据情况指导.
教师总结方法:如果分子或分母是多项式,要先分解因式,再找出分子、分母的公因式, 最后根据分式的基本性质进行约分.

人教版八年级数学上册第十五章分式单元教材分析优秀教学案例

人教版八年级数学上册第十五章分式单元教材分析优秀教学案例
2.问题导向:在教学过程中,我注重引导学生提出问题,通过问题驱动的方式激发学生的思考。这种教学方式培养了学生的批判性思维能力,使学生在解决问题的过程中深入理解和掌握分式的知识。
3.小组合作:在教学过程中,我将学生分成若干小组,引导学生共同探讨分式的性质、运算规则等。这种教学方式培养了学生的合作精神,使学生在交流互动中学习和掌握分式的知识。
4.学生通过分式学习,能够总结出分式的性质和运算规则,培养学生的归纳总结能力。
(三)情感态度与价值观
1.学生能够积极参与分式的学习,对分式学科产生浓厚的兴趣,形成积极的学习态度。
2.学生能够通过分式的学习,感受到数学的乐趣,培养对数学学科的热爱。
3.学生能够理解分式在实际生活中的应用,提高学生学习数学的实用性意识。
其次,针对学生的认知水平,本章节分为三个层次进行教学。第一层次:让学生通过观察、实践、探究,理解分式的概念和性质;第二层次:培养学生运用分式解决实际问题的能力;第三层次:提高学生分析、解决问题的能力,为高中数学学习奠定基础。
最后,教学目标围绕知识与技能、过程与方法、情感态度与价值观三个维度设定。知识与技能目标:掌握分式的概念、性质、运算及分式方程的求解;过程与方法目标:通过自主学习、合作交流,培养学生的数学思维能力和问题解决能力;情感态度与价值观目标:激发学生对数学学科的兴趣,培养积极的学习态度和良好的学习习惯。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,每组学生共同探讨分式的性质、运算规则等,通过小组讨论,让学生在交流互动中学习和掌握分式的知识。我会引导学生关注小组成员之间的交流和合作,鼓励学生提出问题,互相解答,共同提高。
(四)总结归纳
在总结归纳环节,我会让学生回顾本节课所学的内容,引导学生自己总结出分式的概念、性质和运算规则。通过总结归纳,让学生加深对分式知识的理解和记忆。

最新人教版初中八年级上册数学第十五章《分式》精品教案(小结复习)

最新人教版初中八年级上册数学第十五章《分式》精品教案(小结复习)

24 - 3(x 4) (x 4)(x - 4)
- 3(x - 4) (x 4)(x - 4)
- 3 x4
本题源自《教材帮》
重点解析 4
计算:
(1)
24 x2 -16
4
3 -
x
(2) a 2 - a2 a-2
解:(2)原式 (a 2)(a - 2) - a2 a-2 a-2
(a 2)(a - 2) - a2 a-2
分式
小结
知识梳理-重点解析-深化练习 人教版-数学-八年级上册
知识梳理
分式及分式的性质 分 式
分式的运算
分式的概念、分式有意 义、无意义的条件
分式的基本性质、约分 及通分
分式的乘除、乘方、 加减运算
分式的混合运算
知识梳理
分式:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子 A 叫
做分式. 分式 A 中,A叫做分子,B叫做分母.
x2 - 4
(1)分式 (x -1)( x - 2)有意义的条件是__x_≠_1__且__x_≠__2_,值为零的条件是_x__=__-_2_. x
(2)分式 x - 3 无意义的条件是____x_=_±__3___,值为零的条件是___x_=_0___.
重点解析 2
下列等式从左到右变形一定正确的是( C )
(1)分子和分母同时做“乘法(或除法)”运算; (2)乘(或除以)的对象必须是同一个不等于0的整式.
用途
进行分式的恒等变形
知识梳理
分式的符号法则:分式的分子、分母与分式本身这三处的正负号,同时改变两处, 分式的值不变.
用式子表示: A - - A - A - A B B -B -B - A-A A --A B B -B -B

人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案

人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案
-分式的概念理解:学生容易混淆分式与整式的区别,需要通过实例和直观图形帮助学生理解。
-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
(x (x
-
2 y)2 2 y)3
=
x
1 -2y
当x=-2,y=3时,原式= - 1 .
8
(2)a2 - 9b2 ab + 3b 2
=
(a+3b)(a - 3b) b(a +3b)
=
a
- 3b b
当a=-4,b=2时,原式=-5.
本题源自《教材帮》
课后反思
1、和同桌说说今天学习的收获好吗? 2、师引导学生归纳本课知识重点。
新知探究
知识点1 分式的约分
分式的约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,
叫做分式的约分.
例如:
a a2b
=
1 ab
最简分式:分子与分母没有公因式的分式,叫做最简分式.
例如: y2 、a - b 、2n .
x ab 3m
新知探究 知识点1 分式的约分
例:根据分式的基本性质,把分子、分母 的公因式3x约去,不改变分式的值.
新知探究 知识点3 分式的约分、通分
约分和通分的联系与区别: 联系:约分和通分都是根据分式的基本性质对分式进行恒等变形,二者均不改 变分式的值. 区别:约分是针对一个分式而言的,把分式的分子和分母的公因式约去,将分 式化为最简分式或整式;而通分是针对多个异分母的分式而言的,将分式的分 子和分母乘同一个适当的整式,使这几个异分母的分式化为同分母的分式.
3x2 +3xy 6x2
=
x+ y 2x
约分不改变分式的值,但可能改变分式中字母的取值范围,因此在确定分 式中字母的范围时,不能进行约分.
新知探究 知识点1 分式的约分
分式的约分的一般步骤: (1)若分式的分子、分母都是单项式,就直接约去分子、分母的公因式,即分 子、分母系数的最大公约数和分子、分母中的相同字母的最低次幂的乘积; (2)若分式的分子或分母含有多项式,应先分解因式,再确定公因式并约去.
=
3x2 x2
-15 x - 25
随堂练习 1
约分:
(1) 6a2b3c - 8abc2
(2) mx 2 - my 2 nx + ny
(3) 4 - a2 a2b - 4ab+4b
解析:(1)中分子、分母都是单项式,可直接约分(注意:分母中含有负 号,可以将负号提到分式的前面); (2)(3)中分子、分母都是多项式,应先将分子、分母分别分解因式, 再约分.
nx + ny
n(x+ y)
n
n
(3)
a
2b
4- a2 - 4ab+
4b
=
(2 - a)( b(2 -
2+a) a)2
=
2+a b(2 - a
)
=
2+a 2b - ab
本题源自《教材帮》
随堂练习 2
通分:
(1)
a 2x2
y
与b 3xyz
(2)
3a
x -
3b

x- y (a - b)
2
解析:(1)最简公分母是6x2 yz .
新知探究
例题解析2
通分:
(1)
3 2a2b
与 a-b ab2c
(2) 2x 与 3x x -5 x+5
解:(2)最简公分母是(x-5)(x+5).
2x x-5
=
2 x( x + 5) (x - 5)( x+5)
=
2x2 x2
+10 - 25
x
3x x+5
=
(
3x(x - 5) x+5)( x - 5)
新知探究 知识点1 分式的约分
分式的约分的重点: (1)约分的依据是分式的基本性质,约分的关键是确定分子和分母的公因式; (2)约分是针对分式的分子和分母整体进行的,而不是针对其中的某些项,因 此约分前一定要确认分子和分母都是乘积的形式; (3)约分一定要彻底,要约到分子与分母没有公因式为止,即约分的结果必须 是最简分式或整式.
分式
15.1.3 分式的约分、通分
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升 人教版-数学-八年级上册
知识回顾
分式的基本性质
基本性质
分式的分子与分母乘(或除以)同一个不为0的整式, 分式的值不变.
式子表示 A AC , A = A÷C (C≠0),其中A,B,C是整式. B BC B B÷C (1)分子和分母同时做“乘法(或除法)”运算;
注意事项 (2)乘(或除以)的对象必须是同一个不等于0的整式.
用途
进行分式的恒等变形
知识回顾
分式的符号法则:分式的分子、分母与分式本身这三处的正负号, 同时改变两处,分式的值不变. 用式子表示: A = - - A = - A = - A
B B -B -B - A=- A= A =-- A
B B -B -B 当分式的分子、分母是多项式时,不要把分子或分母第一项的 符号误认为是分子或分母的符号.
x(a - b) 3(a - b)(a -
b)
ax 3(a
- bx - b)2
x - y 3(x - y) 3x - 3y (a - b)2 = 3(a - b)2 = 3(a - b)2
本题源自《教材帮》
随堂练习 3
计算 (x y)2 - (x - y)2 的结果为( A ) 4xy
A. 1
B. 1
y
2
,其中x=-2,y=3.
(2) a2 - 9b2 ,其中a=-4,b=2. ab + 3b 2
解析:分子、分母能分解因式的先分解因式,然后根据分式的基本性质约分, 再将字母的值代入求解,一定要化简成最简分式或整式.
本题源自《教材帮》
拓展提升 1
解:(1)x 2
- 4xy + 4 y2 (x - 2y)3
(3) 6x2 -12 xy 6 y2 6(x - y)2 2(x - y)
3x - 3y
3(x - y)
新知探究
例题解析2
通分:
(1)
3 2a2b
与 a-b ab2c
(2) 2x 与 3x x -5 x+5
解:(1)最简公分母是 2a2b2c . 3 3bc 3bc
2a2b 2a2b bc 2a2b2c a - b (a - b) 2a 2a2 - 2ab ab2c ab2c 2a 2a2b2c
C. 1
2
4
解析: (x y)2 - (x - y)2 4xy
(x y x - y)(x y - x y) 4xy
4xy 4xy
1
D.0
本题源自《教材帮》
课堂小结
分式
分式的约分 分式的通分 最简分式、最简公分母
拓展提升 1
先化简,再求值:
(1)
x
2
- 4xy (x - 2
+4 y)3
新知探究 知识点2 分式的通分
确定最简公分母的一般方法: (1)若各分母是单项式,最简公分母是各分母系数的最小公倍数、相同字母的 最高次幂和所有不同字母及其指数的乘积; (2)若各分母中有多项式,一般要先分解因式,再按照分母都是单项式求最简 公分母的方法,从系数、相同因式、不同因式三个方面确定最简公分母.
新知探究
例题解析1
约分:
(1)
- 25a2bc3 15 ab 2 c
(2)
x
2
x2 -9 +6x+
9
(3)6x2 -12 xy +6 y2
3x - 3y
解析:(1)
- 25a2bc3 15ab2c
- 5abc 5ac2 5abc 3b
- 5ac2 3b
(2)
x2 - 9 ห้องสมุดไป่ตู้(x 3)( x - 3) x - 3 x2 6x 9 (x 3)2 x 3
a 2x2 y
a 3z 2x2 y 3z
3az 6x2 yz
b 3xyz
b2x 3xyz 2x
2bx 6x2 yz
本题源自《教材帮》
随堂练习 2
通分:
(1)
a 2x2
y
与b 3xyz
(2)
3a
x -
3b

x- y (a - b)
2
解析:(2)最简公分母是 3(a - b)2 .
x 3a - 3b
新知探究 知识点2 分式的通分
分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分 式相等的同分母的分式,叫做分式的通分. 最简公分母:通分时,一般取各分母的所有因式的最高次幂的积作公分母,这 样的分母叫做最简公分母.
在确定几个分式的最简公分母时,不要遗漏只在一个分式的分母中出现的 字母及其指数.
学习目标
1、了解分式的通分、约分的意义,理解最简分式的概念. 2、掌握分式的约分、通分的方法和步骤,能熟练进行计算.
课堂导入
分数的约分:把一个分数的分子、分母同时除以公因数,分数的值保持不变,这 个过程叫做分数的约分. 分数的通分:把分母不同的分数化成分母相同的分数,这个过程叫做分数的通分.
类比分数的约分、通分,你能猜想分式的约分、通分该怎 么做吗?
本题源自《教材帮》
随堂练习 1
约分:
(1) 6a2b3c - 8abc2
(2) mx 2 - my 2 nx + ny
(3) 4 - a2 a2b - 4ab+4b
解析:(1) 6a2b3c - 8abc2
- 2abc 3ab2 2abc 4c
- 3ab2 4c
(2) mx 2 - my 2 = m(x+ y)( x - y) = m(x - y) = mx - my
相关文档
最新文档