人教版八年级数学上册教案全册

合集下载

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册共168页)第十一章三角形一、课标要求(1)理解三角形及三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。

(2)理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。

(3)了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式。

二、教材分析第1节研究与三角形有关的线段。

首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类。

对于三角形的边,证明了三角形两边的和大于第三边。

然后给出三角形的高、中线与角平分线的概念。

结合三角形的中线介绍三角形的重心的概念。

最后结合实际例子介绍三角形的稳定性。

第2节研究与三角形有关的角,对于三角形的内角,证明了三角形内角和定理。

然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余。

最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和。

第3节介绍多边形的有关概念与多边形的内角和、外角和公式。

三角形是多边形的一种,因而可以借助三角形给出多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来。

三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形。

多边形的内角和公式就是利用上述方法得到的。

将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。

三、教学建议1.把握好教学要求与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到。

如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了,学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论,同样,三角形的三条中线交于一点的结论也可直接点明。

《人教版八年级上册全册数学教案》.pdf

《人教版八年级上册全册数学教案》.pdf

2 .这时它们的三个顶点、三条边和三个内角分别重合了.
3 .完全重合说明三条边对应相等,三个内角对应相等,
?对应顶点在相对应的位置.
【教师活动】根据学生交流的情况,给予补充和语言上的规范.
1 .概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,
?重合的边叫做对应边,重合的
角叫做对应角.
2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,
? 到角的两边的距离相等的点在角的平分线上. (判定定理)
教学内容 本节课主要内容是探索三角形全等的条件( SSS), ?及利用全等三角形进行证明. 教学目标 1 .知识与技能 了解三角形的稳定性,会应用“边边边”判定两个三角形全等. 2 .过程与方法 经历探索“边边边”判定全等三角形的过程,解决简单的问题. 3 .情感、态度与价值观 培养有条理的思考和表达能力,形成良好的合作意识. 重、难点与关键 1 .重点:掌握“边边边”判定两个三角形全等的方法. 2 .难点:理解证明的基本过程,学会综合分析法. 3 .关键:掌握图形特征,寻找适合条件的两个三角形. 教具准备 一块形状如图 1 所示的硬纸片,直尺,圆规.
培养观察、操作、分析能力,体会全等三角形的应用价值.
重、难点与关键
1 .重点:会确定全等三角形的对应元素.
2 .难点:掌握找对应边、对应角的方法.
3 .关键: 找对应边、对应角 有下面 两种方法 :( 1)全等三角形对应角所对的边是对应边,两个对应角
所夹的边是对应边; ( 2)对应边所对的角是对应角, ?两条对应边所夹的角是对应角.
?如果本图 11. 1─2△ ABC和
△ DBC全等,点 A 和点 D,点 B 和点 B,点 C 和点 C 是对应顶点, ?记作△ ABC≌△ DBC.

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)新人教版八班级数学上册名师教案(篇1)教学目标:1、经受数据离散程度的探究过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学预备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。

(通过对问题串的解决,使同学直观地估量从甲、乙两厂抽取的20只鸡腿的平均质量,同时让同学初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究假如丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,同学很简单比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。

这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致同学思想熟悉上的冲突,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2 设有一组数据:x1, x2, x3,,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使同学回顾了用计算器求平均数的步骤,并自由探究求方差的具体步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。

最新部编人教版八年级数学上册教学设计(全册教案)

最新部编人教版八年级数学上册教学设计(全册教案)

人教版八年级数学上册(全册)教案八年级数学上册教学计划一、教材分析第十一章三角形主要学习三角形的三边关系、分类,三角形的内角、多边形的内外角和。

本章节是后两章的基础,了解了相关的知识,教学时加强与实际的联系,加强推理能力的培养,开展好数学活动。

第十二章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。

更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十三章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十四章整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

第十五章分式主要学习分式的概念、性质、能用基本性质进行约分和通分并进行相关的四则混合运算。

教学时重视和分数类比,加强分式、分式方程与实际的联系,体现数学建模思想。

二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

有少数同学基础特差,问题较严重。

在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。

理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

人教版八年级数学上册全套教案

人教版八年级数学上册全套教案

11.1 与三角形有关的线段11.1.1 三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点) 2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点) 3.三角形在实际生活中的应用.(难点)一、情境导入 出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学. 教师利用多媒体演示三角形的形成过程,让学生观察. 问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )A .2个B .3个C .4个D .5个解析:(1)以A 为顶点的锐角三角形有△ABC 、△ADC 共2个;(2)以E 为顶点的锐角三角形有△EDC 共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n 个点,那么就有n (n -1)2条线段,也可以与线段外的一点组成n (n -1)2个三角形.探究点二:三角形的三边关系【类型一】判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是( ) A.3<x<11 B.4<x<7C.-3<x<11 D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.11.1 与三角形有关的线段11.1.1 三角形的边教学目标知识与技能1.进一步认识三角形的概念及其基本要素;2. 掌握三角形三条边之间关系.过程与方法经历度量三角形边长的实践活动中,理解三角形三边不等的关系.情感态度价值观帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣教学重点了解三角形定义、三边关系。

八年级上册数学全册教案

八年级上册数学全册教案

八年级上册数学全册教案第一章:实数与代数1.1 有理数教学目标:理解有理数的定义及其分类。

掌握有理数的加、减、乘、除运算规则。

教学内容:有理数的定义及分类。

有理数的加法、减法、乘法、除法运算规则。

教学步骤:1. 引入有理数的概念,解释有理数的定义及分类。

2. 通过示例演示有理数的加法、减法、乘法、除法运算规则。

3. 让学生进行练习,巩固所学的运算规则。

1.2 代数式教学目标:理解代数式的概念及其组成。

掌握代数式的运算规则。

教学内容:代数式的概念及其组成。

代数式的运算规则。

教学步骤:1. 引入代数式的概念,解释代数式的组成。

2. 通过示例演示代数式的运算规则。

3. 让学生进行练习,巩固所学的运算规则。

第二章:几何基础2.1 点、线、面教学目标:理解点、线、面的概念及其关系。

教学内容:点、线、面的概念及其关系。

教学步骤:1. 引入点、线、面的概念,解释它们之间的关系。

2. 通过示例展示点、线、面的特征和性质。

3. 让学生进行练习,巩固所学的概念。

2.2 直线与角教学目标:理解直线和角的概念及其性质。

教学内容:直线和角的概念及其性质。

教学步骤:1. 引入直线和角的概念,解释它们的性质。

2. 通过示例展示直线的特征和角的性质。

3. 让学生进行练习,巩固所学的概念。

第三章:方程与不等式3.1 方程的概念与解法教学目标:理解方程的概念及其解法。

教学内容:方程的概念及其解法。

教学步骤:1. 引入方程的概念,解释方程的解法。

2. 通过示例演示方程的解法。

3. 让学生进行练习,巩固所学的解法。

3.2 不等式的概念与解法教学目标:理解不等式的概念及其解法。

教学内容:不等式的概念及其解法。

教学步骤:1. 引入不等式的概念,解释不等式的解法。

2. 通过示例演示不等式的解法。

3. 让学生进行练习,巩固所学的解法。

第四章:函数与图像4.1 函数的概念与性质教学目标:理解函数的概念及其性质。

教学内容:函数的概念及其性质。

教学步骤:1. 引入函数的概念,解释函数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[教学过程] 一、情景导入 三角形是一种最常见的几何图形, [投影 1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都 有三角形的形象。
那么什么叫做三角形呢? com 二、三角形及有关概念 不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的 内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。
五、课堂练习 课本 66 面练习 1、2 题。
统称为斜三角形。
按角分类:
三角形 直角三角形
斜三角形
锐角三角形
钝角三角形
那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。
三边都相等的三角形叫做等边三角形;
有两条边相等的三角形叫做等腰三角形; 三边都不相等的三角形叫做不等边三角形。
顶角
显然,等边三角形是特殊的等腰三角形。 按边分类:
三、三角形三边的不等关系
探究:[投影 7]任意画一个△ABC,假设有一只小虫要从 B 点出发,沿三角形的边爬到 C,它有几种路线可以
选择?各条路线的长一样吗?为什么? 有两条路线:(1)从 B→C,(2)从 B→A→C;不一样, AB+AC>BC ①;因为两点之间线段最短。 同样地有 AC+BC>AB ② AB+BC>AC ③ 由式子①②③我们可以知道什么? 三角形的任意两边之和大于第三边. 四、三角形的分类 我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形
请你在图中画出△ABC 的另两条边上的中线,看看有什么发现? 三角的三条中线相交于一点。 如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。 四、三角形的角平分线 如图,画∠A 的平分线 AD,交∠A 所对的边 BC 于点 D,所得线段 AD 叫做△ABC 的角平分线,表示为∠ BAD=∠CAD 或∠BAD=∠CAD=1/2∠BAC 或 2∠BAD=2∠CAD=∠BAC。
B
c
a
A
b
(1)
C
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端 点是三角形的顶点。
三角形 ABC 用符号表示为△ABC。三角形 ABC 的顶点 C 所对的边 AB 可用 c 表示,顶点 B 所对的边 AC 可用 b 表示,顶点 A 所对的边 BC 可用 a 表示.
〔教学过程〕
一、导入新课 我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得 我们研究。 二、三角形的高 请你在图中画出△ABC 的一条高并说说你画法。 从△ABC 的顶点 A 向它所对的边 BC 所在的直线画垂线,垂足为 D,所得线段 AD 叫做△ABC 的边 BC 上的高,表示为 AD⊥BC 于点 D。
第十一章 三角形
11.1.1 三角形的边
[教学目标]1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;2、理解三 角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.
[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判 定三条线段可否组成三角形是难点。


底角
底角
底边
三角形 不等边三角形
等腰三角形
底和腰不等的等腰三角形
等边三角形
五、例题
例 用一条长为 18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的 2 倍,那么各边的长是多少?
(2)能围成有一边长为 4㎝的等腰三角形吗?为什么?
分析:(1)等腰三角形三边的长是多少?若设底边长为 x㎝,则腰长是多少?(2)“边长为 4㎝”是什
A
21
思考:三角形的角平分线与角的平分线是一样的吗?
三角形的角平分线是线段,而角的平分线是射线,是不一样的。 请你在图中再画出另两个角的平分线,看看有什么发现? 三角形三个角的平分线相交于一点。 如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。 上面的结论还成立。
BБайду номын сангаас
DC
想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?
作业:
课本 69 面 1、2、6;70 面 7 题。
11.1.2 三角形的高、中线与角平分线
〔教学目标〕1、经历画图的过程,认识三角形的高、中线与角平分线; 2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于 一点.
〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三 角形的高是难点.
么意思? 解:(1)设底边长为 x㎝,则腰长 2 x㎝。 x+2x+2x=18 解得 x=3.6 所以,三边长分别为 3.6㎝,7.2㎝,7.2㎝. (2)如果长为 4㎝的边为底边,设腰长为 x㎝,则 4+2x=18 解得 x=7 如果长为 4㎝的边为腰,设底边长为 x㎝,则 2×4+x=18 解得 x=10 因为 4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是 4㎝的等腰三角形。 由以上讨论可知,可以围成底边长是 4㎝的等腰三角形。 五、课堂练习 课本 65 面练习 1、2 题。 六、课堂小结 1、三角形及有关概念; 2、三角形的分类; 3、三角形三边的不等关系及应用。
注意:高与垂线不同,高是线段,垂线是直线。
请你再画出这个三角形 AB 、AC 边上的高,看看有什么发现? 三角形的三条高相交于一点。 如果△ABC 是直角三角形、钝角三角形,上面的结论还成立吗? 现在我们来画钝角三角形三边上的高,如图。
A
E
A
D B
C
A
F O
B
DC
B
D
C
显然,上面的结论成立。 请你画一个直角三角形,再画出它三边上的高。 上面的结论还成立。 三、三角形的中线 如图,我们把连结△ABC 的顶点 A 和它的对边 BC 的中点 D,所得线段 AD 叫做△ABC 的边 BC 上的中 线,表示为 BD=DC 或 BD=DC=1/2BC 或 2BD=2DC=BC.
相关文档
最新文档