概率模型 数学建模
数学建模-概率模型

如对均值为mu、标准差为sigma的正态分布,举例如下:
1.密度函数:p=normpdf(x,mu,sigma) (当mu=0,sigma=1时可缺省)
例 1 画出正态分布 N (0,1) 和 N (0,22 ) 的概率密度函数图形.
在MATLAB中输入以下命令: x=-6:0.01:6; y=normpdf(x); z=normpdf(x,0,2); plot(x,y,x,z)
9.1 传送系统的效率
背
传送带
景 挂钩
产品
工作台
工人将生产出的产品挂在经过他上方的空钩上运走,若 工作台数固定,挂钩数量越多,传送带运走的产品越多。
在生产进入稳态后,给出衡量传送带效 率的指标,研究提高传送带效率的途径
模型分析
• 进入稳态后为保证生产系统的周期性运转,应 假定工人们的生产周期相同,即每人作完一件产 品后,要么恰有空钩经过他的工作台,使他可将 产品挂上运走,要么没有空钩经过,迫使他放下 这件产品并立即投入下件产品的生产。 • 工人们生产周期虽然相同,但稳态下每人生产 完一件产品的时刻不会一致,可以认为是随机的, 并且在一个周期内任一时刻的可能性相同。
例:现有100个零件,其中95个长度合格,94个直径和格, 92个两个尺寸都合格。任取一个,发现长度合格,问直径 合格的概率。
设A=‘长度合格’,B=‘直径合
格’
P( A) 95 , P( AB) 92
100
100
P(B | A) P( AB) 92 P( A) 95
全概率公式和贝叶斯公式
u0 u0
L(
x)
c 2
x
0
(
x
r
)
p(r
)dr
概率统计数学模型

概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。
概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。
一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。
在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。
而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。
二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。
三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。
2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。
3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。
4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。
5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。
6、验证模型:对建立的模型进行验证,确保其准确性和适用性。
7、应用模型:将建立的模型应用于实际问题的解决和预测中。
概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。
通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。
概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。
概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。
一、概率模型的应用概率模型在投资决策中的应用广泛。
概率与统计的数学模型

概率与统计的数学模型概率与统计是数学中两个重要的分支,它们在现代科学和实际生活中都起着至关重要的作用。
概率是研究随机现象发生的规律性,而统计是用数据推断总体特征的方法。
它们的数学模型在研究和应用中具有广泛的应用和意义。
一、概率的数学模型概率的数学模型主要有概率空间和概率分布两个方面。
1. 概率空间概率空间是指由样本空间和样本空间中的事件组成的数学模型。
样本空间是指所有可能结果的集合,事件是指样本空间的某些子集。
概率空间由三个元素组成:样本空间Ω,事件的集合F和概率函数P。
概率函数P定义了事件在样本空间中的概率,它满足三个条件:非负性、规范性和可列可加性。
2. 概率分布概率分布是指随机变量在各取值上的概率分布情况。
随机变量是样本空间到实数集的映射,它描述了随机现象的数值特征。
概率分布可以分为离散型和连续型两种。
离散型概率分布可以用概率质量函数(probability mass function,PMF)来描述。
例如,二项分布是描述n重伯努利试验的概率分布,其PMF可以用来计算在n次试验中成功的次数。
连续型概率分布可以用概率密度函数(probability density function,PDF)来描述。
例如,正态分布是一种常见的连续型概率分布,它在自然界和社会科学中有广泛应用。
二、统计的数学模型统计的数学模型主要有样本和总体两个方面。
1. 样本样本是指从总体中获取的部分观察结果。
样本可以是随机抽样或非随机抽样得到的,它用来代表总体并推断总体的特征。
样本是统计推断的基础。
2. 总体总体是指研究对象的整体集合。
总体可以是有限总体或无限总体,它包含了研究对象的所有可能结果。
总体的特征可以用参数来描述,例如总体的均值、方差等。
统计的数学模型主要是通过样本推断总体的特征。
统计推断包括点估计和区间估计两个方面。
点估计是利用样本数据来估计总体参数的值,常用的点估计方法有最大似然估计和矩估计等。
区间估计是利用样本数据给出总体参数的区间范围,常用的区间估计方法有置信区间和预测区间等。
数学建模—概率模型 ppt课件

数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)
数学建模-概率模型

确定性现象的特征
条件完全决定结果
随机现象
在一定条件下可能出现也可能不出现的现象.
实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况.
结果有可能出现正面也可能出现反面.
实例2 明天的天气可
特征: 条件不能完全决定结果
能是晴 , 也可能是多云
或雨.
说明 1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性, 但在大量试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科. 如何来研究随机现象?
P( A)
m n
A
所包含样本点的个数 样本点总数
.
古典概型的基本模型:摸球模型
(1) 无放回地摸球
(2) 有放回地摸球
例1 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的.
解 假设接待站的接待时间没有
规定,且各来访者在一周的任一天
0.0000003 .
小概率事件在实际中几乎是不可能发生的 , 从 而可知接待时间是有规定的.
例2 假设每人的生日在一年 365 天中的任一天 是等可能的 , 即都等于 1/365 ,求 64 个人中至少 有2人生日相同的概率.
解 64 个人生日各不相同的概率为
p1
365
364
(365 36564
2. 假设遗传基因是由两个基因A和B控制的,则有 三种可能基因型:AA、AB和BB。
例如:金鱼草是由两个基因决定它开花的颜色,AA 型开红花,AB型开粉花,而BB型开白花。这里AA型 和AB型表示了同一外部特征,此时可以认为基因A 支配了基因B,也可以说基因B对基因A是隐性的。
数学建模中的概率统计模型1

残差及其置信区间可以用rcoplot(r,rint)画图。
3、将变量t、x、y的数据保存在文件data中。 save data t x y 4、进行统计分析时,调用数据文件data中的数 据。 load data 方法2 1、输入矩阵:
data=[78,79,80,81,82,83,84,85,86,87; 23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4; 41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0]
线性模型 (Y , X , I n ) 考虑的主要问题是: (1) 用试验值(样本值)对未知参数 和 2 作点估计和假设检验,从而建立 y 与
x1 , x 2 ,..., x k 之间的数量关系;
(2)在 x1 x01 , x2 x02 ,..., xk x0 k , 处对 y 的值作预测与控制,即对 y 作区间估计.
1 ( x0 x ) 2 ˆ 1 d n t (n 2) n Lxx 2
Q ˆ n2
2
设y在某个区间(y1, y2)取值时, 应如何控制x 的取值范围, 这样的问题称为控制问题。
可线性化的一元非线性回归 需要配曲线,配曲线的一般方法是: • 先对两个变量x和y 作n次试验观察得画出 散点图。 • 根据散点图确定须配曲线的类型。 • 由n对试验数据确定每一类曲线的未知参数 a和b采用的方法是通过变量代换把非线性 回归化成线性回归,即采用非线性回归线 性化的方法。
数学建模在概率论与数理统计的应用

数学建模在概率论与数理统计的应用
数学建模在概率论与数理统计中有广泛的应用。
下面列举一些常见的应用:
1. 随机过程建模:随机过程是描述随机现象随时间变化的数学模型,在概率论中有重要应用。
例如,布朗运动是一种随机过程,可以用来模拟金融市场的价格变动。
2. 概率模型建立:概率模型是用来描述随机事件发生的概率分布的数学模型。
在数理统计中,我们可以通过拟合数据来估计概率模型的参数,然后利用这些模型进行预测和推断。
常用的概率模型有正态分布、泊松分布、指数分布等。
3. 统计推断:统计推断是利用样本数据对总体特征进行估计和推断的方法。
通过建立合适的统计模型,可以根据样本数据对总体参数进行估计,以及对总体分布进行假设检验。
4. 决策分析:决策分析是一种基于概率模型的决策方法,用于在不确定条件下进行决策。
通过建立决策模型,并考虑各种可能的结果和概率,可以选择最佳的决策方案。
5. 置信区间估计:置信区间是对总体参数的估计结果给出的一个范围,该范围内的真实值的概率称为置信度。
通过建立合适的统计模型,可以根据样本数据计算出置信区间,从而对总体参数进行估计。
这些只是数学建模在概率论与数理统计中的一些应用,实际上数学建模在概率论与数理统计领域应用非常广泛,涉及的问题和方法非常多样化。
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。