初中数学竞赛辅导资料
初中数学竞赛辅导资料(二)

初中数学竞赛辅导资料(二)(含答案)式子的整除甲内容提要1.定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这个整式被另一个整式整除。
2.根据被除式=除式×商式+余式,设f(x),p(x),q(x)都是含x 的整式,那么式的整除的意义可以表示为:若f(x)=p(x)×q(x),则称f(x)能被 p(x)和q(x)整除例如∵x2-3x-4=(x-4)(x +1),∴x2-3x-4能被(x-4)和(x +1)整除。
显然当x=4或x=-1时x2-3x-4=0,3.一般地,若整式f(x)含有x –a的因式,则f(a)=0反过来也成立,若f(a)=0,则x-a能整除f(x)。
4.在二次三项式中若x2+px+q=(x+a)(x+b)=x2+(a+b)x+ab则p=a+b,q=ab在恒等式中,左右两边同类项的系数相等。
这可以推广到任意多项式。
乙例题例1己知x2-5x+m能被x-2整除,求m 的值。
x-3解法一:列竖式做除法(如右)x-2 x2-5x+m由余式m-6=0得m=6x2-2x解法二:∵x2-5x+m 含有x-2 的因式-3x+m∴以x=2代入x2-5x+m 得-3x+622-5×2 +m=0 得m=6 m-6解法三:设x2-5x+m 除以x-2 的商是x+a (a为待定系数)那么 x 2-5x+m =(x+a)(x -2)= x 2+(a-2)x-2a根据左右两边同类项的系数相等,得⎩⎨⎧=--=-m a a 252 解得⎩⎨⎧=-=63m a (本题解法叫待定系数法)例2 己知:x 4-5x 3+11x 2+mx+n 能被x 2-2x+1整除求:m 、n 的值及商式解:∵被除式=除式×商式 (整除时余式为0)∴商式可设为x 2+ax+b得x 4-5x 3+11x 2+mx+n =(x 2-2x+1)(x 2+ax+b )=x 4+(a-2)x 3+(b+1-2a)x 2+(a-2b)x+b根据恒等式中,左右两边同类项的系数相等,得⎪⎪⎩⎪⎪⎨⎧==-=-+-=-n b mb a a b a 12112152 解得⎪⎪⎩⎪⎪⎨⎧=-==-=4113n m n b a ∴m=-11, n=4, 商式是x 2-3x+4例3 m 取什么值时,x 3+y 3+z 3+mxyz (xyz ≠0)能被x+y+z 整除?解:当 x 3+y 3+z 3+mxyz 能被x+y+z 整除时,它含有x+y+z 因式令x+y+z =0,得x=-(y+z ),代入原式其值必为0即[-(y+z )]3+y 3+z 3-myz(y+z)=0把左边因式分解,得 -yz(y+z)(m+3)=0,∵yz ≠0, ∴当y+z=0或m+3=0时等式成立∴当x,y (或y,z 或x,z )互为相反数时,m 可取任何值 ,当m=-3时,x,y,z 不论取什么值,原式都能被x+y+z 整除。
初中数学竞赛辅导资料(22)

初中数学竞赛辅导资料(22)分式甲内容提要1. 除式含有字母的代数式叫做分式。
分式的值是由分子、分母中的字母的取值确定的。
(1)分式BA 中,当B ≠0时有意义;当A 、B 同号时值为正,异号时值为负,反过来也成立。
分子、分母都化为积的形式时,分式的符号由它们中的负因数的个数来确定。
(2)若A 、B 及BA 都是整数,那么A 是B 的倍数,B 是A 的约数。
(3)一切有理数可用B A 来表示,其中A 是整数,B 是正整数,且A 、B 互质。
2. 分式的运算及恒等变形有一些特殊题型,要用特殊方法解答方便。
乙例题例1.x 取什么值时,分式xx x x 23222+--的值是零?是正数?是负数? 解: xx x x 23222+--=)2()3)(1+-+x x x x ( 以零点-2,-1,0,3把全体实数分为五个区间,标在数轴上(如上图) 当x=-1,x=3时分子是0,分母不等于0,这时分式的值是零;当x<-2, -1<x<0, x>3时,分式的值是正数(∵负因数的个数是偶数) 当-2<x<-1, 0<x<3时,分式的值是负数(∵负因数的个数是奇数)例2.m 取什么值时,分式172-+m m 的值是正整数? 解:172-+m m =1922-+-m m =2+19-m 当例3.计算14++x x +32--x x -12-+x x -34++x x 19-m >-2且m -1是9的约数时,分式的值是正整数 即m -1=1,3,9,-9 解得m=2,4,10,-8。
答:(略)3解:用带余除法得,原式=1+13+x +1+31-x -1-13-x -1-31+x =)1)(1()1(3)1(3-++--x x x x +)3)(3()3()3(+---+x x x x =162-x -+962-x =)9)(1(4822--x x 4.已知(a+b )∶(b+c)∶(c+a)=3∶4∶5 求①a ∶b ∶c ②bcc ab a +-22 解:设a+b=3k,则b+c=4k,c+a=5k,全部相加得2(a+b+c )=12k, 即a+b+c=6k, 分别减上列各式得a=2k, b=k, c=3k∴①a ∶b ∶c =2∶1∶3 ②bc c ab a +-22=kk k k k k 3)3(2)2(22⨯⨯-+=61 例5.一个两位数除以它的两个数位上的数字和,要使商为最小值,求这个两位数;如果要使商为最大值呢?解:设这个两位数为10x+y ,那么0<x ≤9, 0≤y ≤9 y x y x ++10=1+yx x +9 当x 取最小值1,y 取最大值9时,分式y x x +9的值最小;当x 取最大值9,y 取最小值0时,分式yx x +9的值最大。
初中数学竞赛辅导资料(66)

初中数学竞赛辅导资料(66)辅助圆甲内容提要1. 经过两个点可以画无数个圆;经过三个点作圆,必须是不在同一直线上的三个点,可以作一个圆,并且只能作一个圆.2. 经过四点作圆(即四点共圆)有如下的判定定理:① 到一个定点的距离相等的所有的点在同一个圆上(圆的定义). ② 一组对角互补的四边形顶点在同一圆上. ③ 一个外角等于它的内对角的四边形顶点共圆. ④ 同底同侧顶角相等的三角形顶点共圆.推论:同斜边的直角三角形顶点共圆(斜边就是圆的直径). 3. 画出辅助圆就可以应用圆的有关性质.常用的有:① 同弧所对的圆周角相等.② 圆内接四边形对角互补,外角等于内对角. ③ 圆心角(圆周角)、弧、弦、弦心距的等量关系.④ 圆中成比例线段定理:相交弦定理4. 证明 型如ab+cd=m 2常用切割线定理 乙例题例1.已知:点O 是△ABC 的外心,BE ,CD 是高.求证:AO ⊥DE证明:延长AO 交△ABC 的外接圆于F ,连接BF. ∵O 是△ABC 的外心 ∴AF 是△ABC 外接圆的直径,∠ABF=Rt ∠.∵BE ,CD 是高,∠BDC=∠CEB=Rt ∠.∴B,C ,E ,D 四点共圆(∴∠ADE=∠ECB=∠F. ∴∠AGD=∠ABF=Rt ∠, 即AO ⊥DE. 例2.正方形ABCD 的中心为O ,面积为1989cm 2,P 为正方形内的一点,且∠OPB=45,PA ∶PB=5∶14,则PB=____cm. (1989年全国初中数学联赛题) 解:∵∠OPB=∠OAB=45∴ABOP 四点共圆(同底同侧顶角相等的三角形顶点共圆)∴∠APB=∠AOB=Rt ∠.在Rt △APB 中,设PA 为5x ,则PB 是14x. ∴(5x)2+(14x)2=1989. 解得x=3, 14x.=42. ∴PB=42 (cm).例3.已知:平行四边形ABCD 中,CE ⊥AB 于E ,AF ⊥BC 于F.求证:AB ×AE+CB ×CF=AC 2. 证明:作BG ⊥AC 交AC 于G. ∵CE ⊥AB , AF ⊥BC.∴A ,F ,B ,G 和B ,E ,C ,G 分别共圆.(对角互补的四边形顶点共圆)根据切割线定理,得 AB ×AE=AG ×AC CB ×CF=CG ×AC∴AB ×AE+CB ×CF=AC(AG+CG)=AC 2.例4.已知:AD 是Rt △ABC 斜边的高,角平分线BE 交AD 于F.求证:AE 2=AB 2-BE ×BF.分析:根据同角的余角相等,可证AE=AF.由射影定理AB 2=BD ×BC.故只要证AE ×AF =BD ×BC -BE ×BF 创造应用切割线定理的条件,作△ABC 的 外接圆并延长BE 交圆于G ,得F 、D 、C 、G 四点共圆 . ∴ BD ×BC=BF ×BG.∴右边= BF ×BG .- BE ×BF=BF(BG -BE)=BF ×EG 从而转为要证AE ×AF= BF ×BG . 即AFEGBF AE 只要证△AEG ∽△BFA ……(证明由同学自已完成)例5已知:从⊙O 外一点P 作⊙O 的两条切线PA ,PB 切点A 和B ,在AB 上任取一点C ,经过点C 作OC 的垂线交PA 于M ,交PB 于N. 求证:OM=ON.证明:连结OA ,OB .∵A ,B 是切点 ∴OA ⊥PA ,OB ⊥PB.又∵OC ⊥MN.∴A ,M ,C ,O 和B ,N ,O ,C 分别共圆.(辅助圆可以不画) 根据同弧所对的圆周角相等,得 ∠OAC=∠OMC , ∠ONC=∠OBC. ∵OA=OB , ∴∠OAC=∠OBC.∴∠OMC=∠ONC , ∴OM=ON.丙练习661.已知:AD 是△ABC 的高,DE ,DF 分别是△ADB 和△ADC 的高 求证: B ,C ,F ,E 四点共圆2.已知:两条线段AB 和CD 相交于点P ,且PA ×PB=PC ×PD. 求证:A ,B ,C ,D 四点共圆.3.已知:⊙O 和⊙O ,相交于A ,B ,过点A 作一直线交⊙O 于C ,交⊙O ,于D ,分别过 点C 和点D 作⊙O 和⊙O ,的切线相交于点P .求证:P ,C ,B ,D 四点在同一个圆上.4.已知:E 是正方形ABCD 边BC 上的一点,过点E 作AE 的垂线和∠C 的外角平分线交于点F. 求证:AE=AF.5.已知:M 是平行四边形ABCD 对角线AC 上的一点,过点M 画两组对边的垂线段分别交AB ,CD 于E ,F 交AD ,BC 于G ,H.求证:EG ∥FH.6.已知:△ABC 的三条高AD ,BE ,CF 交于点H. 求证:BH ×BE+CH ×CF=BC 2.7.已知:AB 是⊙O 的直径,C 是半圆上的一点,CD ⊥AB 于D ,G 是CD 上的一点,AG 的延长线交半圆于H. 求证:CD 2+AD 2=AG ×AH.8.已知:AD 是△ABC 的角平分线 . 求证:AD 2=AB ×AC.=DB ×DC9.已知:凸五边形ABCDE 中.∠A=3α,BC=CD=DE ,∠C=∠D=180.=2α. 求证:AC ,AD ,AE 三等分∠A. (1990年全国初中数学联赛题) 10.求证:圆上一点到圆内接四边形两组对边的距离的积相等11.求证:圆内接四边形两组对边积的和等于两对角线的积(托列密定理)12.如图已知:圆内接四边形ABCD 中,由AB 上一点M 作MP ⊥BC ,MQ ⊥CD , MR ⊥DA ,PR 交MQ 于N.C求证:MABMNR PN . (1983年福建省初中数学联赛题)13.如图已知:∠ACE=∠CDE=Rt ∠,点B 在CE 上,CA=CB=CD ,过A ,C ,D 的圆交AB 于F.求证:点F 是△CDE 的内心(1995年全国初中数学联赛题)13。
关于初中数学竞赛的书籍

关于初中数学竞赛的书籍
初中数学竞赛是许多学生热衷的学科,以下是一些相关的书籍推荐:
1.《初中数学竞赛全解析》——这本书提供了各种数学竞赛题目的详细解析和解题思路,适合准备竞赛的学生查阅。
2. 《初中数学竞赛习题集》——该书汇集了大量经典数学竞赛题目,按照题型和难易程度进行分类,帮助学生巩固知识并提高解题能力。
3. 《初中数学竞赛冲刺指南》——这本书介绍了常见竞赛的出题规律和解题技巧,通过精选的例题和训练题,帮助学生提高应试能力。
4. 《初中数学竞赛辅导教材》——该教材系统地介绍了数学竞赛中常见的知识点和题型,并提供了大量的例题和习题供学生练习。
5. 《初中数学竞赛秘籍》——这本书总结了数学竞赛中常见的解题技巧和方法,通过实例讲解帮助学生理解和掌握。
这些书籍都可以在学校教材供应店或者在线书店购买到。
希望这些书籍能够帮助到对数学竞赛感兴趣的同学们。
初中奥数竞赛辅导教案

初中奥数竞赛辅导教案通过本节课的辅导,使学生掌握奥数竞赛的基本解题技巧和方法,提高学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 数论:质数与合数、最大公约数与最小公倍数、同余与欧拉函数等。
2. 几何:平面几何中的点、线、面的关系,三角形、四边形的性质,圆的性质等。
3. 代数:一元一次方程、一元二次方程、不等式、函数等。
4. 组合数学:排列组合、计数原理、图论等。
5. 数学思维:逻辑推理、归纳总结、演绎推理等。
三、教学方法1. 实例讲解:通过具体的题目实例,讲解解题思路和方法,使学生掌握解题技巧。
2. 练习巩固:布置适量的练习题,让学生在课后进行巩固练习,提高解题能力。
3. 小组讨论:组织学生进行小组讨论,分享解题心得和方法,互相学习,共同进步。
4. 竞赛模拟:定期举办模拟竞赛,检验学生的学习成果,提高学生的应试能力。
四、教学安排1. 数论:安排4课时,讲解质数与合数、最大公约数与最小公倍数、同余与欧拉函数等基本概念和性质。
2. 几何:安排6课时,讲解平面几何中的点、线、面的关系,三角形、四边形的性质,圆的性质等。
3. 代数:安排8课时,讲解一元一次方程、一元二次方程、不等式、函数等基本概念和解法。
4. 组合数学:安排4课时,讲解排列组合、计数原理、图论等基本概念和方法。
5. 数学思维:安排4课时,讲解逻辑推理、归纳总结、演绎推理等方法。
五、教学评价1. 课后练习:检查学生的课后练习情况,了解学生对知识的掌握程度。
2. 模拟竞赛:定期举办模拟竞赛,评估学生的竞赛能力和水平。
3. 学生反馈:听取学生的反馈意见,了解教学方法的适用性和改进方向。
4. 教学总结:定期进行教学总结,调整教学计划和方法,提高教学质量。
通过以上教学安排和教学方法,相信能够有效地提高学生的奥数竞赛水平,培养学生的数学思维和解决问题的能力。
初中数学竞赛辅导材料目录

初中数学竞赛辅导材料目录一、初中数学竞赛基础知识1.数集及其运算-自然数、整数、有理数、实数、复数的概念及运算性质-数集的表示方法与运算法则2.代数式与方程-一元一次方程与一元一次不等式的解法及应用-一次函数的定义、性质与图像-一元二次方程的解法及应用3.几何基本概念-点、线、面、角的定义与性质-直线、射线、线段、平行线、垂直线的概念与判定-多边形、三角形、四边形的性质4.图形的相似与投影-图形的相似判定条件及相似比的计算-平面图形在对称、旋转、平移、投影中的性质与运用5.数据的整理与表示-数据的收集、整理、描述和分析方法-列联表的制作与应用-分组频数统计图的制作与读图6.立体几何-空间图形的基本概念及性质-空间图形的展开与剖析-空间图形的体积与表面积计算方法二、初中数学竞赛解题技巧与方法1.快速计算技巧-快速计算小技巧的应用(如乘法口诀、整数加减乘除的计算等)-快速计算较大数的方法(如分解因数、整理计算顺序等)2.思维训练与问题解决-近似计算与估算的方法与应用-分析解题条件与利用信息求解问题-数学问题的逻辑和推理方法3.策略与技巧-消元法与代入法的使用-枚举与特例法的应用-逆向思维与反证法的运用4.考试技巧与应试心理-数学竞赛常见题型的解题思路-如何正确阅读题目与审题技巧-考试时间分配与答题顺序规划-心理调适与压力应对方法三、数学竞赛真题及解析1.真题分析与解题方法讲解-分析数学竞赛真题的特点与难点-理解题目要求、辅助线的作法、巧用条件等解题技巧-真题解析与解题思路讲解2.解题思路总结与题型归纳-简述各种常见数学竞赛题型的解题思路-总结解题中常用的技巧与方法-提供大量的练习题目,以加强学生对各类题型的掌握以上为初中数学竞赛辅导材料的目录,通过系统的学习与实践,相信学生们可以提升数学竞赛的能力,取得更好的成绩。
祝学习愉快!。
初中数学竞赛辅导资料(总24页)

初中数学竞赛辅导资料-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。
2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论x 取什么值,0x =0都成立)3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解②无解③有无数多解④是正数解例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。
问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分 典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
初中数学竞赛辅导资料(初一用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除。
0能被所有非零的整数整除。
能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x ,y解:x ,y 都是0到9的整数,∵75y 能被9整除,∴y=6。
∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x =8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。
2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后,讨论它的解:当a ≠0时,有唯一的解 x =ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论x 取什么值,0x =0都成立)3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解?③有无数多解?④是正数解?例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。
问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
4. k 取什么整数值时,下列等式中的x 是整数?① x =k4 ②x =16-k ③x =k k 32+ ④x =123+-k k 5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数?6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数?7. 己知方程221463+=+-a x 的根是正数,那么a 、b 应满足什么关系?8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数?9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。
第二篇 二元一次方程的整数解第一部分 基本方法1. 二元一次方程整数解存在的条件:在整系数方程ax +by =c 中,若a ,b 的最大公约数能整除c ,则方程有整数解。
即如果(a ,b )|c 则方程ax +by =c 有整数解显然a ,b 互质时一定有整数解。
例如方程3x +5y =1, 5x -2y =7, 9x +3y =6都有整数解。
返过来也成立,方程9x +3y =10和 4x -2y =1都没有整数解,∵(9,3)=3,而3不能整除10;(4,2)=2,而2不能整除1。
一般我们在正整数集合里研究公约数,(a ,b )中的a ,b 实为它们的绝对值。
2. 二元一次方程整数解的求法:若方程ax +by =c 有整数解,一般都有无数多个,常引入整数k 来表示它的通解(即所有的解)。
k 叫做参变数。
方法一,整除法:求方程5x +11y =1的整数解解:x =5111y -=y y y y 2515101--=-- (1) , 设k k y (51=-是整数),则y =1-5k (2) , 把(2)代入(1)得x =k -2 (1-5k )=11k -2∴原方程所有的整数解是⎩⎨⎧-=-=k y k x 51211(k 是整数) 方法二,公式法:设ax +by =c 有整数解⎩⎨⎧==00y y x x 则通解是⎩⎨⎧-=+=ak y y bk x x 00(x 0,y 0可用观察法) 1, 求二元一次方程的正整数解:① 出整数解的通解,再解x ,y 的不等式组,确定k 值② 用观察法直接写出。
第二部分 典例精析例1 求方程5x -9y =18整数解的能通解例2 求方程5x+6y=100的正整数解例3 甲种书每本3元,乙种书每本5元,38元可买两种书各几本?第三部分典题精练1. 求下列方程的整数解①公式法:x+7y=4, 5x-11y=3 ②整除法:3x+10y=1, 11x+3y=42.求方程的正整数解:①5x+7y=87, ②5x+3y=1103.一根长10000毫米的钢材,要截成两种不同规格的毛坯,甲种毛坯长300毫米,乙种毛坯长250毫米,有几种截法可百分之百地利用钢材?4.兄弟三人,老大20岁,老二年龄的2倍与老三年龄的5倍的和是97,求兄弟三人的岁数。
5. 下列方程中没有整数解的是哪几个?答:(填编号)③4x+2y=11, ②10x-5y=70, ③9x+3y=111,④18x-9y=98, ⑤91x-13y=169, ⑥120x+121y=324.6.一张试巻有20道选择题,选对每题得5分,选错每题反扣2分,不答得0分,小这军同学得48分,他最多得几分?7. 用观察法写出方程3x +7y =1几组整数解:第三篇 二元一次方程组解的讨论第一部分 基本方法1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)第二部分 典例精析例1. 选择一组a ,c 值使方程组⎩⎨⎧=+=+c y ax y x 275例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数?例3. m 取何整数值时,方程组⎩⎨⎧=+=+1442y x my x 的解x 和y 都是整数?例4. (古代问题)用100枚铜板买桃,李,榄橄共100粒,己知桃,李每粒分别是3,4枚铜板,而榄橄7粒1枚铜板。
问桃,李,榄橄各买几粒?第三部分 典题精练1. 不解方程组,判定下列方程组解的情况:① ⎩⎨⎧=-=-96332y x y x ②⎩⎨⎧=-=-32432y x y x ③⎩⎨⎧=-=+153153y x y x1. a 取什么值时方程组⎪⎩⎪⎨⎧+-=--+=+229691322a a y x a a y x 的解是正数?2. a 取哪些正整数值,方程组⎩⎨⎧=--=+ay x ay x 24352的解x 和y 都是正整数?3. 要使方程组⎩⎨⎧=-=+12y x kky x 的解都是整数, k 应取哪些整数值?4.(古代问题)今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,鸡翁,鸡母,鸡雏都买,可各买多少?第四篇用交集解题第一部分基本方法1. 某种对象的全体组成一个集合。
组成集合的各个对象叫这个集合的元素。
例如6的正约数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个。
1.由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集例如6的正约数集合A ={1,2,3,6},10的正约数集合B ={1,2,5,10},6与10的公约数集合C ={1,2},集合C 是集合A 和集合B 的交集。
2. 几个集合的交集可用图形形象地表示, 右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集。
不等式组的解集是不等式组中各个不等式解集的交集。
例如不等式组⎩⎨⎧<->)2(2)1(62 x x 解的集合就是不等式(1)的解集x >3和不等式(2)的解集x >2的交集,x >3.0 2 34.一类问题,它的答案要同时符合几个条件,一般可用交集来解答。
把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。
有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案。
(如例2)第二部分 典例精析例1. 一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值。
例2. 有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这两个数。
例3. 数学兴趣小组中订阅A种刊物的有28人,订阅B种刊物的有21人,其中6人两种都订,只有一人两种都没有订,问只订A种、只订B种的各几人?数学兴趣小组共有几人?[公式一]N=N+ N(A)+N(B)-N(AB)。
例4. 在40名同学中调查,会玩乒乓球的有24人,篮球有18人,排球有10人,同时会玩乒乓球和篮球的有6人,同时会玩乒乓球和排球的有4人,三种球都会的只有1人,问:有多少人①只会打乒乓球②同时会打篮球和排球③只会打排球?19xy能被33整除,求x和y的值例5.十进制中,六位数87第三部分典题精练1. 负数集合与分数集合的交集是 . 等腰直角三角形集合是三角形集合与三角形集合的交集。
2. 12的正约数集合A={},30的正约数集合B={}12和30的公约数集合C={},集合C是集合A和集合B的__3. 某数除以3余1,除以5余1,除以7余2,求某数的最小值。
4. 九张纸各写着1到9中的一个自然数(不重复),甲拿的两张数字和是10,乙拿的两张数字差是1,丙拿的两张数字积是24,丁拿的两张数字商是3,问剩下的一张是多少?5. 求符合如下三条件的两位数:①能被3整除②它的平方、立方的个位数都不变③两个数位上的数字积的个位数与原两位数的个位数字相同。
6. 据30名学生统计,会打篮球的有22人,其中5人还会打排球;有2人两种球都不会打。
那么①会打排球有几人?②只会打排球是几人?7. 100名学生代表选举学生会正付主席,对侯选人A 和B 进行表决,赞成A 的有52票,赞成B 的有60票,其中A 、B 都赞成的有36人,问对A 、B 都不赞成的有几人?8. 数、理、化三科竞赛,参加人数按单科统计,数学24人,物理18人,化学10人;按两科统计,参加数理、数化、理化分别是13、4、5人,没有三科都参加的人。