第03章化学反应系统热力学习题及答案物理化学讲解学习

合集下载

物理化学03章_热力学第二定律

物理化学03章_热力学第二定律
Helmholtz自由能 Gibbs自由能
为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。

大学物理化学 第三章 多组分系统热力学习指导及习题解答

大学物理化学 第三章 多组分系统热力学习指导及习题解答
证明: RT d ln f =Vmdp
RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x

物理化学-课后答案-热力学第二定律

物理化学-课后答案-热力学第二定律

物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。

(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。

【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。

(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。

(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。

(4)非体积功为0,组成不变的均相封闭体系的等温过程。

(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。

A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。

(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。

无机答案第3章 化学热力学基础

无机答案第3章 化学热力学基础

kJ·mol-1.
计算反应
4NH3(g)
+
3O2(g)

2N2(g)
+
6H2O(g)的
Δ
r
H
O m
.
1
11.已知下列键能数据
键 N N N-C1 N-H C1-C1 C1-H H-H
EA-B ⁄ (kJ·mol-1) 945
201
389
243
431 436
(1)求反应
2 NH3(g)+3Cl2(g)= N2(g)+ 6HCl(g)
答(1)是 (2)以铜为体系:是;以铜和氧气为体系:不是
3-2 一体系由 A 态到 B 态,沿途径 I 放热 100J,对体系作功 50J。问 (1) 由 A 态沿途径 II 到 B 态,体系作功 80J,其 Q 值为多少? (2) 如体系再由 B 态沿途径 III 回到 A 态得到 50 J 的功,体系吸热还是放热?Q 值为 多少?
3.下列过程中,带点部分为系统,写出功和热的正负号。 (1)将水.和.水.蒸.气.贮于一恒容金属箱中,将其放在炉火上加热,温度、压力都升高; (2)一恒容绝热箱中,H2 和 O2 混.合.气.体.通电火花使其化合(电火花能量不计); (3)H2 和 O2 混.合.气.体.在大量水中成一气泡,通电火花使其化合(电火花能量不计)。
17.已知 2H2O(g)→2H2(g)+O2(g)
Δ
r
H
O m
= 483.6 kJ·mol-1,下列热化学方程式中正确的是
(A) 2H2(g) +O2(g) →2H2O(g)
Δ
r
H
O m
= 483.6 kJ·mol-1;

物理化学03章_热力学第二定律(二)

物理化学03章_热力学第二定律(二)

Ssys = 19.14 J K
Ssur = 0
1
(系统未吸热,也未做功)
Siso = Ssys + Ssur = 19.14 J K 1 > 0
(2)为不可逆过程.
例2:在273 K时,将一个 22.4 dm3 的盒子用隔板一分为二,
0.5 mol 0.5 mol O2 (g) N2 (g)
p1 V1 p2 V2 T2 p2 V2 ∵ = ∴ = T1 T2 T1 p1V1
V2 p2V2 ∴ S = nR ln + nCV ,m ln V1 p1V1
V2 p2 V2 = nR ln + nC V ,m ln + nC V ,m ln V1 p1 V1
p2 V2 ∴ S = nCV ,m ln + nC p ,m ln p1 V1
因为在可逆相变中压力恒定,所以可逆热即为相 因为在可逆相变中压力恒定, 变焓.又由于温度一定,所以, 变焓.又由于温度一定,所以,物质 B 由 α 相态 转化为 β 相态
p ,T B (α ) → B ( β )
的相变熵为: 的相变熵为:
β α H β α S = T
用上式,可计算正常熔点下的熔化熵, 用上式,可计算正常熔点下的熔化熵,正常 沸点下的蒸发熵等等. 沸点下的蒸发熵等等.
= TC S > 0
Q W
热源
R2
TC
1
W2
Q W2
TB热源做功能力低于TA
TB热源做功能力低于TA
其原因是经过了一个不可逆的热传导过程 功变为热是无条件的,而热不能无条件 地全变为功. 热和功即使数量相同,但"质量"不等, 功是"高质量"的能量. 高温热源的热与低温热源的热即使数量相 同,但"质量"也不等,高温热源的热"质量" 较高,做功能力强. 从高"质量"的能贬值为低"质量"的能 是自发过程.

物理化学答案――第三章_多组分系统热力学及其在溶液中的应用习.

物理化学答案――第三章_多组分系统热力学及其在溶液中的应用习.

第三章多组分系统热力学及其在溶液中的应用一、基本公式和内容提要1. 偏摩尔量定义:其中X为多组分系统的任一种容量性质,如V﹑U﹑S......全微分式:总和:偏摩尔量的集合公式:2. 化学势定义物质的化学势是决定物质传递方向和限度的强度因素,是决定物质变化方向和限度的函数的总称,偏摩尔吉布斯函数只是其中的一种形式。

3. 单相多组分系统的热力学公式4. 化学势判据等温等压、只做体积功的条件下将化学势判据用于多相平衡和化学平衡中,得多组分系统多相平衡的条件为:化学平衡的条件为:5.化学势与温度、压力的关系(1)化学势与压力的关系(2)化学势与温度的关系6.气体的化学势(1)纯组分理想气体的化学势理想气体压力为(标准压力)时的状态称为标准态,称为标准态化学势,它仅是温度的函数。

(2)混合理想气体的化学势式中:为物质B的分压;为物质B的标准态化学势;是理想气体混合物中B组分的摩尔分数;是B纯气体在指定T,p时的化学势,p是总压。

(3)实际气体的化学势式中:为实际气体或其混合物中物质B的化学势;为B的标准态化学势,其对应状态是B在温度T、压力、且假想具有理想气体行为时的状态,这个状态称为实际气体B的标准态;分别为物质B的逸度系数和逸度。

7. 稀溶液中的两个经验定律(1)拉乌尔定律一定温度时,溶液中溶剂的蒸气压与溶剂在溶液中的物质的量分数成正比,其比例系数是纯溶剂在该温度时的蒸气压。

用公式表示为。

对二组分溶液来说,,故拉乌尔定律又可表示为即溶剂蒸气压的降低值与纯溶剂蒸气压之比等于溶质的摩尔分数。

(2)亨利定律一定温度时,稀溶液中挥发性溶质的平衡分压与溶质在溶液中的物质的量分数成正比。

用公式表示。

式中:为溶质的浓度分别为摩尔分数、质量摩尔浓度和物质的量浓度表示时的亨利系数,单位分别为Pa、和。

使用亨利定律时应注意:①是溶质在液面上的分压;②溶质在气体和在溶液中的状态必须是相同的。

8.溶液的化学势(1)理想液态混合物中物质的化学势①定义:在一定的温度和压力下,液态混合物中任意一种物质在任意浓度均遵守拉乌尔定律的液态混合物称为理想液态混合物。

物理化学 课后答案-热力学第二定律

物理化学 课后答案-热力学第二定律

第三章热力学第二定律【复习题】【1】指出下列公式的适用范围。

(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。

【解】(1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。

(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。

(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。

(4)非体积功为0,组成不变的均相封闭体系的等温过程。

(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。

A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否;G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。

(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。

物理化学习题及答案

物理化学习题及答案

物理化学习题及答案第一章热力学第一定律选择题1.热力学第一定律ΔU=Q+W 只适用于(A) 单纯状态变化(B) 相变化(C) 化学变化(D) 封闭物系的任何变化答案:D2.关于热和功, 下面的说法中, 不正确的是(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上 (B) 只有在封闭系统发生的过程中, 功和热才有明确的意义(C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量(D) 在封闭系统中发生的过程中, 如果内能不变, 则功和热对系统的影响必互相抵消答案:B2.关于焓的性质, 下列说法中正确的是(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热力学第一定律(C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关答案:D。

因焓是状态函数。

3.涉及焓的下列说法中正确的是(A) 单质的焓值均等于零(B) 在等温过程中焓变为零(C) 在绝热可逆过程中焓变为零(D) 化学反应中系统的焓变不一定大于内能变化答案:D。

因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH<ΔU。

4.下列哪个封闭体系的内能和焓仅是温度的函数(A) 理想溶液 (B) 稀溶液 (C) 所有气体 (D) 理想气体答案:D5.与物质的生成热有关的下列表述中不正确的是(A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量(D) 通常所使用的物质的标准生成热数据实际上都是相对值答案:A。

按规定,标准态下最稳定单质的生成热为零。

6.dU=CvdT及dUm=Cv,mdT适用的条件完整地说应当是 (A) 等容过程(B)无化学反应和相变的等容过程(C) 组成不变的均相系统的等容过程(D) 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能只与温度有关的非等容过程答案:D7.下列过程中, 系统内能变化不为零的是(A) 不可逆循环过程(B) 可逆循环过程 (C) 两种理想气体的混合过程(D) 纯液体的真空蒸发过程答案:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 化学反应系统热力学习题及答案§3.1 标准热化学数据(P126)1. 所有单质的 O m f G ∆ (T )皆为零?为什么?试举例说明?答:所有处于标准态的稳定单质的O m f G ∆ (T ) 皆为零,因为由稳定单质生成稳定单质的状态未发生改变。

如:单质碳有石墨和金刚石两种,O m f G ∆ (298.15K,石墨)=0,而O m f G ∆(298.15K,金刚石)=2.9 kJ·mol -1 (课本522页),从石墨到金刚石状态要发生改变,即要发生相变,所以O m f G ∆ (298.15K,金刚石)不等于零。

2. 化合物的标准生成热(焓)定义成:“由稳定单质在298.15K 和100KPa 下反应生成1mol 化合物的反应热”是否准确?为什么?答:标准生成热(焓)的定义应为:单独处于各自标准态下,温度为T 的稳定单质生成单独处于标准态下、温度为T 的1mol 化合物B 过程的焓变。

此定义中(1)强调压力为一个标准大气压,而不强调温度;(2)变化前后都单独处于标准态。

3. 一定温度、压力下,发生单位化学反应过程中系统与环境交换的热Q p 与化学反应摩尔焓变r m H ∆是否相同?为什么?答: 等压不作其他功时(W’=0),数值上Q p =n r H ∆。

但Q p 是过程量,与具体的过程有关;而r m H ∆是状态函数,与过程无关,对一定的化学反应有固定的数值。

如将一个化学反应至于一个绝热系统中,Q p 为零,但r m H ∆有确定的数值。

§3.2 化学反应热力学函数改变值的计算(P131) 1.O mr G ∆(T )、m r G ∆(T )、Om f G ∆(B,相态,T )各自的含义是什么? 答:Om r G ∆(T ): 温度为T ,压力为P θ,发生单位反应的ΔG ;m r G ∆(T ):温度为T ,压力为P ,发生单位反应的ΔG ;Omf G ∆(B,相态,T ):温度为T ,压力为P θ,由各自处于标准状态下的稳定单质,生成处于标准态1mol 化合物反应的ΔG 。

2. 25℃时,H 2O(l)及H 2O(g)的标准摩尔生成焓分别为-285.838 kJ mol -1及-241.825 kJ mol -1。

计算水在25℃时的气化焓。

解:g l ∆H m =Δf H m θ(H 2O,g)- Δf H m θ(H 2O,l)=-241.825-(-285.838)=44.01 kJ·mol -13.用热化学数据计算下列单位反应的热效应Om r H ∆(298.15K)。

(1) 2CaO(s)+5C(s,石墨)→2CaC 2(s)+CO 2(g) (2) C 2H 2(g)+H 2O(l)→CH 3CHO(g)(3) CH 3OH(l)+21O 2(g)→HCHO(g)+H 2O(l)解: (1) 2CaO(s)+5C(s,石墨)→2CaC 2(s)+CO 2(g) Δf H m θ(kJ·mol -1): -635.09 0 59.8 -393.509Δr H m θ(298.15K)=2Δf H m θ(CaC 2(s)) + Δf H m θ(CO 2(g)) - 2Δf H m θ(CaO(s)) - 5Δf H m θ(C(s))=[2×(-59.8)+(-393.509)] - 2×(-635.09) - 0=757.07 kJ·mol -1(2) C 2H 2(g)+H 2O(l)→CH 3CHO(g)Δc H m θ(kJ·mol -1): -1300 0 -1193Δr H m θ(298.15K)= Δc H m θ(C 2H 2(g))+ Δc H m θ(H 2O(l))- Δc H m θ(CH 3CHO(g))=-1300-(-1193)=-107 kJ·mol -1注:C 2H 2(g)和CH 3CHO(g)的Δc H m θ数值本书未给出,是从其它物理化学书中查到的。

(3) CH 3OH(l)+21O 2(g)→HCHO(g)+H 2O(l)Δf H m θ(298.15K): -238.66 0 -115.9 -285.83Δr H m θ(298.15K)=Δf H m θ(HCHO(g))+Δf H m θ(H 2O(l))-Δf H m θ(CH 3OH(l))-(1/2)Δf H m θ(O 2(g)) =-115.9+(-285.83)-(-238.66)= -163.16 kJmol -14.利用附录表中O m f H ∆ (B,相态,298.15 K)数据,计算下列反应的 O m r H ∆ (298.15K)及Or mU ∆ (298.15K)。

假定反应中各气体物质可视为理想气体。

(1) H 2S(g) + 3/2O 2(g) → H 2O(l) + SO 2(g)(2) CO(g) + 2H 2(g) → CH 3OH (l) (3) Fe 2O 3(s) + 2Al(s) →Al 2O 3(α) + 2Fe (s)解:O m r H ∆=Or m U ∆+ΣνB (g)RT 。

【因为H=U+PV ,ΔH=ΔU+Δ(PV)=ΔU+Δ(n g RT)= ΔU+RTΔn g ,对一定温度压力下的化学反应则有:O m r H ∆=O r m U ∆+ ΣνB (g)RT 】(1) H 2S(g) + 3/2 O 2(g) → H 2O (l) + SO 2(g)Omr H ∆=Δf H m θ(SO 2(g))+Δf H m θ(H 2O(l))- Δf H m θ(H 2S(g))-3/2Δf H m θ(O 2(g))=-296.83+(-285.83)-(-20.63)-0=-562.03 kJ·mol -1O mr H ∆=O r m U ∆+ ΣνB (g)RT Or mU ∆=O m r H ∆-ΣνB (g)RT= -562.03+(3/2)×8.314×298.15×10-3= -558.3 kJ·mol -l(2) CO(g)+2H 2(g)→CH 3OH(l),Omr H ∆=(-238.66)-(-110.525)=-128.14 kJ·mol -1,Or mU ∆=O m r H ∆-ΣνB (g)RT=(-128.14)-(-3) ×8.314×298.15×10-3= -120.7 kJ·mol -l(3) Fe 2O 3(s)+2Al(s)→Al 2O 3(α)+2Fe(s),Omr H ∆=(-1675.7)-(-824.2)= -851.5 kJ·mol -l ,Or mU ∆=O m r H ∆-ΣνB (g)RT=O m r H ∆= -851.5 kJ·mol -l5.计算在无限稀的溶液中发生下述单位反应的热效应。

已知标准摩尔生成焓数据(单位是kJ mol -1):H 2O(l),-285.83;AgCl(s),-127.07;Na +,-329.66;K +,-251.21;Ag +,-105.90;NO 3-,-206.56;Cl -,-167.46;OH -,-229.94;SO 42-,-907.51。

(1) NaCl(∞,aq)+KNO 3(∞,aq)→(2) NaOH(∞,aq)+HCl(∞,aq)→(3) 1/2Ag 2SO 4(∞,aq)+NaCl(∞,aq)→解:(1) 实质上是:Na ++Cl -+K ++NO 3-→Na ++Cl -+K ++NO 3-,没有化学反应,所以Om r H ∆=0(2) 实质上是:OH -(∞,aq)+H +(∞,aq)→H 2O(l),Omr H ∆=Δf H m θ(H 2O(l))- Δf H m θ(H +(∞,aq))- Δf H m θ(OH -(∞,aq ))=-285.83-0-(-229.94)=-55.89 kJ·mol -1 (3) 实质上是:Ag +(∞,aq)+Cl -(∞,aq)→AgCl(s), Omr H ∆=(-127.07)-(-105.9)-(-167.46)=146.29 kJ·mol -16.(1) CO(g) + H 2O(g) —→ CO 2(g) + H 2(g) Δϑm r H (298.15K)=-41.2 kJ ·mol –1(2)CH 4(g) + 2H 2O(g) —→CO 2(g) + 4H 2(g) Δϑm r H (298.15K)=165.0 kJ ·mol –1反应 CH 4(g) + H 2O(g) —→ CO(g) + 4H 2(g) 为 (2)-(1):则:Δϑm r H (298.15K) = 165.0-(-41.2) = 206.2 kJ ·mol –17.解:CH 4(g) + Cl 2(g) —→ CH 3Cl(g) + HCl(g)Δϑm r H (298.15K) = 4ε(C-H)+ε(Cl-Cl)-3ε(C-H)-ε(C-Cl)-ε(H-Cl)=414.63+242.7-328.4-430.95= -102.02 kJ ·mol –1 C 2H 6(g) —→ C 2H 4(g) + H 2(g)Δϑm r H (298.15K) = 6ε(C-H)+ε(C-C)-ε(H-H)-4ε(C-H)-ε(C=C)=2×414.63+347.7-435.97-606.7 = 134.29 kJ ·mol –18. 由以下数据计算2,2,3,3四甲基丁烷的标准生成热。

已知:O m f H ∆[H(g)]=217.94 kJ mol -1,O m f H ∆[C(g)] =718.38 kJ mol -1,εC-C =344 kJ mol -1,εC-H = 414 kJ mol -1。

解:2,2,3,3四甲基丁烷的结构式如下:【含有7个C-C 键和18个C-H 键】9H 2(g)+8C(s,石墨)→C 8H 18, O m r H ∆=O m f H ∆(C 8H 18)【相当于9个H 2(g)变成18个H(g)原子,8个C(s,石墨)变成8个C(g)原子后(此时打开键需要吸收一定的能量),然后再组合成C 8H 18(放出一定的能量)。

】所以,O m f H ∆(C 8H 18)=O m r H ∆=18O m f H ∆[H(g)]+8O m f H ∆[C(g)] – (7εC-C +18εC-H )=18×217.94+8×718.38-7×344 -18×414= -190.04 kJ·mol -1C C CH 3CH 3CH 3CH 3CH 3CH 3石墨) C 8H 1818H(g)+8C(g)9. 将0.005kg 的正庚烷放入弹式量热计内通氧燃烧,反应的结果使量热计量温度上升2.94 K ,已知量热计总的热容量为8175.54 J K -1,开始时的平均温度为298.15 K 。

相关文档
最新文档