成型加工原理

合集下载

成型机的工作原理

成型机的工作原理

成型机的工作原理
成型机是一种用于将原材料加工成成型产品的机械设备。

它的工作原理主要包括以下几个步骤:
1. 原材料准备:首先需要将原材料准备好,通常是通过将塑料颗粒或者其他形式的原料放入机器的料斗中。

2. 加热和熔化:原材料经过传送带或者旋转螺杆进入机器内部,在内部持续加热和旋转的过程中逐渐熔化。

熔化后的原材料在机器内部形成了一个熔体。

3. 压力和注射:一旦原材料完全熔化,即形成了均匀的熔体,机器开始施加高压将熔体注射到模具中。

这个过程通过一个活塞或者螺杆进行控制。

4. 冷却和固化:一旦熔体注射到模具中,模具会迅速冷却,使熔体迅速固化成为所需的成型产品。

通常采用冷却液或者冷却气体进行冷却。

5. 开模和取出成品:当成型产品冷却完成后,机器会打开模具,并将成品从模具中取出,然后放置在合适的位置,以便后续的包装和销售等操作。

通过不断重复以上的工作步骤,成型机可以高效地生产大量的成型产品。

不同类型的成型机,比如注塑机、挤出机等,其工作原理可能有所差异,但整体上都是基于加热、压力和冷却等原理来实现原材料熔化、注射、冷却和固化的过程。

材料成型原理

材料成型原理

材料成型原理
材料成型原理是指通过加工工艺将原始材料经过一定的变形、组合或者结合等方式,使其达到预期的形状、结构和性能的过程。

该原理涉及多种加工方式,如挤压、铸造、锻造、注塑等,每种方式都有自己独特的原理和应用领域。

挤压是一种常用的材料成型方式,通过将加热至熔融状态的材料通过模具的压力,使其在一定形状的模具孔中流动,并成型为所需的形状。

这种方式适用于制造管材、线材等长条状零件。

挤压的成型原理是利用材料在受到压力作用时的流动性,使其顺应模具的形状,并形成所需的截面形状。

铸造是一种将液态材料倒入铸型中形成所需形状的成型方式。

该方式适用于制造各种形状的零件。

铸造的成型原理是利用熔融态的材料具有流动性,通过将熔融金属或合金倒入模具中并冷却凝固,得到所需的形状。

锻造是一种通过加热金属材料至一定温度后施加压力使其塑性变形、改变原始形状、提高性能的成型方式。

该方式适用于制造各种形状的零件。

锻造的成型原理是通过应用压力改变材料的组织结构,使其粒子得到重新排列并获得更好的力学性能。

注塑是一种将熔融材料注入模具中形成所需形状的成型方式。

该方式适用于制造复杂形状的零件。

注塑的成型原理是将熔融态的材料注射进模具中,并通过冷却凝固,得到所需的形状。

以上是几种常见的材料成型方式及其成型原理,每种方式都有
其独特的应用领域和适用对象。

工程师们可以根据具体需求选择不同的成型方式,以实现材料的预期形状、结构和性能。

第4章塑料成型加工原理

第4章塑料成型加工原理
均化段:螺杆最后一段,均化段的作用是使熔体进一 步塑化均匀,并使料流定量,定压由机头流道均匀挤 出,这段螺槽截面是恒等的,但螺槽深度较浅。
螺杆三段长度的分配比例
(2)螺杆的主要参数
a.螺杆直径(D)
螺杆直径是指螺纹的公称直径,表示挤出机的大小规格, 目前国内广泛使用为30mm、45mm、65mm、90mm、 120mm、150mm、180mm的挤出机,螺杆直径的选 择视制品截面而定。
第二节 口模成型
定义 借助螺杆或柱塞的挤压作用,使受热熔化的聚 合物物料在压力推动下,强行通过口模并冷却 而成为具有恒定截面的连续型材的成型方法。
管材挤出生产线
挤出成型的分类 (Classification)
1.按塑化方式分类(Plasticating Manner)p259 1)干法挤出 (Dry Extrusion) 2)湿法挤出 (Wet Extrusion)
▪ 双螺杆挤出机的组成 ▪ 双螺杆挤出机的分类 ▪ 双螺杆挤出机的工作特性
二. 双螺杆挤出机
双螺杆挤出机结构 Main Structure of a Twin Screw Extruder
双螺杆挤出机螺杆的啮合类型
•非啮合型 •部分啮合型
•全啮合型
双螺杆挤出机螺杆的旋转方向
同向
反向(向内)
反向(向外)
改进轴向强度和刚度。
(2) 后处理的作用
①后处理可提高尺寸稳定性 ②消除内应力
挤出制品不均匀性及影响因素 挤出制品的纵横向不均匀性
挤出制品的纵横向不均匀性
影响挤出制品不均匀性的因素
(1)制品的纵向不均匀性,产生的主要原因 是当熔融混合物通过口模挤出时,进入 口模的熔体温度,压力和组成随时间而 发生变化。

注塑成型的工作原理

注塑成型的工作原理

注塑成型的工作原理注塑成型是一种常见的塑料加工技术,通过将熔化的塑料注入模具中,并在固化后得到所需形状的制品。

本文将详细介绍注塑成型的工作原理,并探讨其具体步骤及相关特点。

一、工作原理注塑成型的工作原理基于热塑性塑料的特点,其主要包括以下几个步骤:1. 塑料熔化:首先,将塑料颗粒加入注射机的料斗中。

然后,通过外加热源,调节注射机的温度,使塑料颗粒迅速熔化成为黏稠的熔融塑料。

2. 注射:在塑料熔化的同时,注射机会将熔融塑料注入模具中。

注射机通过螺杆运动,将熔融塑料推动到注射筒前端,并通过喷嘴进入模具的腔体。

3. 塑料充填:一旦熔融塑料进入模具腔体,它会填充整个腔体,包括模具中所定义的产品形状。

在此过程中,注射机保持一定的压力,以确保塑料充分填充模具。

4. 塑料固化:一旦塑料充填完成,它会开始在模具中逐渐冷却,并渐渐固化。

注射机会保持模具一定的冷却时间,以确保塑料完全固化。

5. 产品脱模:当塑料完全固化后,模具会打开并释放成形的产品。

产品的脱模可以通过模具的自动弹出装置或人工操作实现。

释放后,可以开始进行下一次注射循环。

二、特点与优势注塑成型作为一种成熟的塑料加工技术,具有以下特点与优势:1. 精度高:注塑成型产品的尺寸精度高,可以满足不同行业的严格要求,如医疗器械、汽车零部件等。

2. 产品种类多样:注塑成型可以加工各种形状的产品,从小到大,从简单到复杂,包括零件、容器、玩具等。

3. 生产效率高:注塑成型具有高效连续生产的能力,可以快速完成成形循环,满足大批量生产的需求。

4. 自动化程度高:注塑成型设备智能化程度高,可以实现自动化操作,提高生产效率和产品质量。

5. 材料选择广泛:注塑成型可适用于热塑性塑料、热固性塑料和橡胶等材料,具有较广泛的应用范围。

三、应用领域注塑成型技术广泛应用于众多行业,例如:1. 汽车工业:注塑成型可制造汽车内部和外部的零部件,如仪表盘、门把手、保险杠等。

2. 电子电器:注塑成型可制造电子产品的外壳,如手机壳、电视遥控器等。

聚合物成型加工原理

聚合物成型加工原理

聚合物成型加工原理聚合物成型加工是一种通过加工工艺将原料转化为所需形状的方法。

在这个过程中,聚合物材料会经历一系列的物理和化学变化,最终形成我们所需要的成型产品。

本文将介绍聚合物成型加工的原理,包括热塑性聚合物和热固性聚合物的成型原理,以及常见的成型方法。

热塑性聚合物是一类在一定温度范围内可软化、可塑性较好的聚合物材料。

在成型加工过程中,热塑性聚合物首先需要加热至其软化温度,然后通过模具或挤出机等设备将其加工成所需形状。

热塑性聚合物的成型原理主要是利用温度的变化来改变材料的物理状态,从而实现加工成型。

常见的热塑性聚合物成型方法包括注塑、挤出、吹塑等。

而热固性聚合物则是一类在加工过程中通过化学反应形成三维网络结构的聚合物材料。

在成型加工过程中,热固性聚合物首先需要在一定温度下发生固化反应,形成不可逆的化学键,然后再进行成型加工。

热固性聚合物的成型原理主要是利用化学反应来实现材料的固化和成型。

常见的热固性聚合物成型方法包括压缩成型、注塑成型等。

除了热塑性和热固性聚合物的成型原理外,还有一些其他的成型方法,如挤压成型、发泡成型、旋转成型等。

这些成型方法都是根据聚合物材料的特性和加工要求来选择的,每种方法都有其独特的成型原理和适用范围。

总的来说,聚合物成型加工的原理是通过控制温度、压力、化学反应等因素,将聚合物材料加工成所需形状的过程。

不同类型的聚合物材料和不同的成型方法都有其特定的成型原理,只有深入理解这些原理,才能更好地掌握聚合物成型加工技术,实现高质量的成型产品。

在实际应用中,我们需要根据具体的产品要求和材料特性来选择合适的成型方法,并且合理控制加工参数,以确保成型产品的质量和性能。

同时,还需要不断探索和创新,不断改进成型工艺,以适应不断变化的市场需求和技术发展。

通过深入研究聚合物成型加工的原理,不断提高我们的技术水平和创新能力,为聚合物成型加工行业的发展做出贡献。

高分子材料成型加工原理

高分子材料成型加工原理

1注射成型的特点:生产周期快,适应性强,生产率高和易于自动化2注射成型加工三要素:材料,设备,模具3成型工艺三要素:温度T 压力P 时间t 。

压力:塑化压力,注射压力,保压压力4什么是注射成型:注射成型亦称注射模塑或利用注塑机的注塑,是热塑性塑料的一种重要成型方法 5注塑成型就是将塑料在气塑成型机的料筒内加热熔化,当呈流动状态时在栓塞或螺杆加压下熔融塑料被压缩并向前移动,进而通过料筒前端的喷嘴以很快速度注入温度较低的闭合磨具内,经过一定的时间冷却定型后,开启磨具即得制品(间歇操作)6螺杆分类:1加料段,作用,输送物料,物料状态,固体状态,部分熔化,螺纹特点,等距等深,最深2压缩段,压实物料,熔融状态,等距不等深,渐变3均化段,定温定量定压,熔融状态,等距等深,最浅均化段,定温定量定压,熔融状态,等距等深,最浅 7填料的表面处理:作用1使颗粒分散均匀,不凝结在一起2所有填充剂粒子被聚合物包围润湿3使其充剂表面与聚合物有良好的粘合力 8偶联剂(硅烷类):一是具有良性结构物质分子中一部分基团与无机物表面化学基团反应形成顽固的化学键,另一部分有亲有机性质,可与有机物反应,从而把两种性质不同材料结合起来9什么是挤出成型:挤出成型亦称挤压模塑或挤塑,即借助螺杆或柱塞的挤压作用,使受热熔化的塑料在压力推动下,强行推动口模而成为具有恒定截面的连续型材料的一种定型方法10挤出成型适用范围:挤出法几乎能成型所有的热塑性塑料,也可加工某些热固性塑料11挤出成型制品:生产的制品有管材,板材,薄膜,线缆包覆物以及塑料与其它材料的复合材料等12挤出成型的设备:单螺杆挤出机的基本结构:主机,挤出机辅助设备 挤出机分类:单螺杆,双螺杆,立式,卧式,排气式,非排气式,螺杆,柱塞13什么是一次成型:在大多数情况下一次成型是通过加热使塑料处于粘流态的条件下,在大多数情况下一次成型是通过加热使塑料处于粘流态的条件下,经过流动,经过流动,经过流动,成型和成型和冷却硬化(或交联固化)而将塑料制成各种形状的产品方法14什么是二次成型:二次成型则是将一次成型所得的片,管,板等塑料成品,加热使其处于类橡胶状态(在材料的Tg Tg——Tf 或Tm 间)通过外力作用使其形变而成型为各种较简单性状,再经冷却定型而得产品15共混聚合物选择原则:化学结构原则(相近)溶解度参数原则(接近)流变学原则(等粘度原则)(接近)胶体化学原则(表面张力)(接近)分子扩散动力学原则 16什么是填充和增强改性:在聚合物中填加其它无机和有机物以改变其力学,在聚合物中填加其它无机和有机物以改变其力学,工艺,工艺,使用性能活降低成本的改性方法17注射机主要参数:1公称注射量,做一次最大行程射出的聚苯乙烯的量2注射压力,注射过程中最大压力3注射速度4塑化能力,单位时间塑化物料的多少5锁模力18什么是增强改性:在聚合物中加入增强材料以及改变聚合物的性能尤其是力学性能的改性方法,在聚合物中加入增强材料以及改变聚合物的性能尤其是力学性能的改性方法,增强材增强材料:玻纤,碳纤,晶须,硼纤维19什么是填料,什么是增强材料:为了改善塑料的成型加工性能,提高制品的某些技术指标,赋予塑料制品某些新的性能,或为了降低成本和聚合物单耗而加入的一类物质称填料。

牛骨粉加工成型的原理是

牛骨粉加工成型的原理是

牛骨粉加工成型的原理是
牛骨粉是从牛骨中经过粉碎、提取和干燥处理获得的微粉末状产品。

要加工成型,主要采用压缩成型技术,原理如下:
1. 筛选骨粉原料,控制粒度分布,确保细度均匀。

加入适量润滑剂、粘结剂。

2. 将加工配方混合均匀,需要用混合机充分搅拌,使各组分充分接触。

3. 将混合料加载到压缩成型机的模具中,在高压作用下进行压实。

4. 颗粒在压力作用下破碎变形,粘结剂软化粘结颗粒,充填模具间隙。

5. 压紧过程会使材料间产生机械锁合,形成紧密的结构体。

6. 将压制成型的片材或结构从模具中弹出,即获得成型产品。

7. 也可以通过适当的后处理,如干燥、烘烤等进一步完善产品性能。

8. 过程中要控制压力、时间参数,确保成型效果。

模具设计也会影响成型质量。

简述数控电火花成型加工的原理说明

简述数控电火花成型加工的原理说明

简述数控电火花成型加工的原理说明数控电火花成型加工(简称EDM)是一种先进的加工方法,通过电火花的腐蚀作用,利用电脉冲的高能量释放,在工件与电极之间形成电火花放电间隙,从而实现对工件的精密加工和形状复杂表面的加工。

EDM加工的原理是利用电极与工件之间的放电现象来消耗材料,并将电极的形状精确地复制到工件上。

加工时,将带电火花电极靠近工件表面,在高频脉冲电压的作用下,电火花间隙中的电流会突然增大,形成放电,产生高温和高压的等离子体。

这些高温和高压等离子体会瞬间融化工件表面的材料,使之被腐蚀或溶化,并通过冲击力将溶化的材料从工件上排出,从而实现对工件的加工。

EDM加工具有独特的优点。

首先,它适用于对硬质、高强度、高硬度和脆性材料的加工,如钢、钛合金、硬质合金等。

其次,EDM加工可以加工出复杂形状和细小尺寸的零件,具有较高的加工精度和表面质量。

再次,由于是非接触式加工,不会产生切削力,因此不会对工件产生应力和变形,也不会产生刀具磨损,延长了工具的使用寿命。

在进行EDM加工时,需要注意一些操作要点。

首先,选择合适的电极材料和形状,根据工件材料的不同选择不同的电极材料,如铜、铜合金、石墨等。

其次,要控制好电极与工件之间的放电间隙,通常通过数控系统来控制,确保稳定的放电状态。

同时,还要根据加工要求选择合适的工艺参数,如放电脉冲频率、放电脉冲宽度和放电脉冲电流等。

最后,要定期检查电极磨损情况,及时更换磨损严重的电极,保证加工质量和效率。

总而言之,数控电火花成型加工是一种高效、精密的加工方法,广泛应用于航空航天、汽车、模具等领域。

通过深入理解EDM加工的原理和操作要点,可以更好地发挥其优势,提高加工质量和效率,推动制造业的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a质轻b拉伸强度和拉伸模量较低,韧性较优良。

C传热系数小,可做优良的绝热材料。

D电气绝缘性优良。

E成型加工性优良。

F减震、消音性能良好。

G某些塑料具有优良的减磨耐磨和自润滑性能。

H耐腐蚀。

I透光性良好。

J着色性良好。

K可赋予各种特殊功能。

L使用过程中易产生蠕变、疲劳、冷流、结晶等现象,长期使用性能较差。

M热膨胀系数大。

N耐热性(熔点、玻璃化转变温度)较低,使用温度不高。

O易燃烧。

燃烧时会产生大量黑烟和有毒气体。

高分子成型加工:将聚合物(有时还加入各种添加剂、助剂或改性剂等)转变成使用材料或制品的一种工程技术。

主要内容:(1)高分子材料加工工艺:a材料制备:配方设计、混合、配制。

b 成型:工艺特点、工艺过程、工艺条件、控制因素。

(2)相关理论:影响加工工艺及制品性能的因素、各种工艺的原理、物理变化和化学变化。

一、以聚合物为主体,主要视材料的性质如何。

二、属多相复合体系:两组分以上,宏观均相,亚微观分。

三、具有可加工性。

四、良好的使用性能和适当的寿命。

五、具有工业化生产规模。

高分子材料的主要原材料来自石油、煤、天然气、矿物和农副产品等。

高分子材料的生产由高分子化合物的制造和成型加工高分子化合物的制造:获取高分子化合物的方法大致可分为三种。

(高分子反应、复合化、聚合反应)多门课程集一体、多学科知识基础1可挤压性:聚合物处于粘流态时通过挤压作用产生不可逆变形而获得一定形状和保持形状的能力。

2、可模塑性:聚合物在温度和压力的作业下流动和形变,并在模具中模制成型的能力。

3、可纺性:指聚合物材料通过加工形成连续的固态纤维的能力。

4可延展性:表示无定形或者半结晶固体聚合物在一个方向或者二个方向上受到压延或者拉伸时变形的能力。

聚合物加工过程中通常从固体变为液体(熔融和流动),再从液体变为固体(冷却和硬化)。

所以加工过程中,聚合物在不同条件下会分别表现出固体和液体的性质,即表现出弹性和粘性。

由于聚合物的结构特征,其形变和流动不可能是纯弹性或纯粘性的,而是它们综合的粘弹性。

(1)由于松弛过程的存在,材料的形变必然落后于应力的变化,聚合物对外力的响应的这种滞后现象称为“滞后效应”或“弹性滞后”。

(2)滞后效应在聚合物加工成型中普遍存在。

如塑料注射成型制品的变形和收缩。

制品收缩的原因主要是熔体成型时骤冷使大分子堆积得较松散。

因此,滞后效应影响制品的稳定性。

严重的变形或收缩还会在制品中产生内应力,甚至引起制品开裂。

(3)在加工中,适当升高温度和减缓降温速度有利于减弱滞后效应。

在Tg~Tf 温度范围内对成型制品进行热处理,可以缩短大分子形变的松弛时间,加速结晶聚合物的结晶速度,使制品的形状较快稳定下来。

(有时还辅以其他作用)如纤维拉伸定型的热处理。

流变学:是物理学的一个分支,它主要研究材料在外界作用(应力、应变、温度、电场、磁场、辐射等)下的变形和流动的科学。

聚合物流变学:聚合物在外界作用下发生的形变和流动及其产生的原因的各种因素之间的关系。

“爬杆”现象(韦森堡效应、“包轴”现象)、剪切变稀、弹性回弹作用、次级流动、挤出胀大、熔体破裂及基础不稳定现象1流动性以粘度的倒数表示流动性。

按作用方式的不同,流动可分为剪切流动和拉伸流动,相应地有剪切粘度和拉伸粘度。

2弹性由于聚合物流体流动时,伴随有高弹形变的产生和贮存,故外力除去后会发生回缩等现象。

3断裂特性是影响聚合物(尤其是橡胶)加工的又一流变特性。

它主要是指生胶的扯断伸长率、以及弹性与塑性之比。

应力:单位面积上的附加内力称为应力应变:在外力作用于材料时,材料本身的几何形状和尺寸所发生的变化。

(剪切、拉伸和压缩等简单形变)应变速率:应变速率:,单位时间内的应变,S-1弹性模量:对于理想的弹性固体,材料发生单位应变时所受到的应力。

它是表征材料抵抗变形能力的大小。

(模量愈大,材料刚性愈大,愈不容易变形)粘度:液体固有属性,它的大小表征液体抵抗外力引起流动变形的能力或者说表征流动过程中分子间内摩擦力的大小。

(与液体分子结构和液体所处的温度有关)。

粘度=应力/形变速率绝大多数高聚物流体属于假塑性流体,其主要特征为剪切粘度随剪切速率的增大而减小。

也就是剪切变稀。

典型高聚物流体剪切变稀的流动曲线分为三个区域,见下图:当γ→0时,应力——应变速率呈线性关系。

粘度趋于常数,流动与牛顿流体相仿,此时粘度称为零切粘度η0,这一区域称线性流动区,或第一Newton区。

6. 拖曳流动和压力流动?拖曳流动:是指对流体不施加压力梯度,而是靠边界运动产生流动场,由于粘性作用使运动的边界拖着流体跟它一起运动。

这种流动又称为库埃特(Couette)流动。

压力流动:是指由外压力作用于流体上而产生速度场,但体系的边界是固定不动的刚性体,这种流动又称为泊肃叶(Poiseuille)流动。

7. 试画出n值不同流聚合物体在圆管中流动时的速度分布情况?8. 聚合物加工的弹性行为主要表现为哪些,并简单论述?聚合物加工的弹性效应主要表现为:端末效应、不稳定流动和熔体破裂现象端末效应是指聚合物流体(包括熔体和液体)在管子进口端和出口端的由于弹性效应而出现的压力降低和液流的膨胀现象,也可以分别称为入口效应和模口膨化效应(离模膨胀),也称为巴拉斯效应。

在低剪切应力或低剪切速率的流动条件下,各种因素引起的小的扰动容易受到控制,而在高剪切应力或剪切速率时,液体中的扰动难以控制并易发展成不稳定流动,引起液流破坏,这种现象称为“熔体破裂”。

测试模式:稳态动态瞬态信息:储存模量损耗模量粘度tan0结晶:大分子链聚集一起的一种排列方式取向:聚合物分子或纤维状填料在很大程度上顺着流动的方向作平行排列,这种排列常成为定向作用。

又叫取向。

降解: 聚合物由于受到热、应力、氧、水份,酸、碱杂质的作用而导致分子量降低,大分子结构改变。

交联:高分子链之间通过支链联结成一个三维空间网状大分子加工过程中存在的物理和化学变化,不仅能引起聚合物的力学性能、光学、热性能以及其它性质的变化,而且对加工过程本身也有影响。

有利:利用拉伸方法使聚合物薄膜中分子形成取向结构,能获得各向异性材料;利用加工中的化学交联作用能生产硫化橡胶和热固性材料,提高聚合物的力学强度和热性能;利用塑炼加工使生胶降解,改善橡胶的加工性能。

不利:结晶影响透明度和韧性;加工中温度较高产生的降解影响制品的使用性能加工中的过度交联影响聚合物的加工性能。

特点:大分子链聚集一起的一种排列方式,结晶速度慢、结晶具有不完全性且结晶聚合物没有清晰的熔点。

结晶条件:内因:1、有规整的重复空间结构的2、适当的分子间力3、分子链节小,柔顺性适中4、加聚物结构一般比缩聚物容易结晶外因:如结晶温度,冷却速度等。

热力学条件:大分子进行重新排列需要一定的热运动,要形成结晶结构又需要分子间有足够的内聚能。

热运动和内聚能有适当的比值是聚合物大分子进行结晶所必需的热力学条件。

聚合物的结晶过程包括两个阶段:晶核生成和晶体生长。

1.模具温度温度是聚合物结晶过程的最敏感因素。

模具温度决定了制品的结晶度、结晶速度、晶粒尺寸及数量等。

2.塑化温度及时间如果塑化时熔融温度较高,分子热运动加剧,分子就难以维持原来的晶核,熔体中残存的晶核就少。

熔融时间对熔体中的残存晶核也有相似的影响。

3.应力作用一是聚合物受应力作用时,加速结晶过程。

大分子沿受力方向伸直,且生成有序区,诱发成核。

例如PP、PE纺丝拉伸时,结晶速度比不拉伸时快1000倍。

二是压力影响球晶的大小。

压力低能生成大而完整的晶体;高压下形成小而形状不规则的球晶。

三是压应力会使聚合物的结晶温度降低。

4.低分子物和固体杂质的影响固体杂质的影响:阻碍或促进结晶作用。

起促进作用的类似于晶核,能形成结晶中心,称为成核剂。

成核剂的促进作用:在聚合物熔体结晶过程中起晶种作用的试剂,也为成核剂,根据外力作用的方式不同取向可分为拉伸取向和流动取向拉伸取向是聚合物的取向单元(包括链段、分子链、晶片、纤维状填料等)在拉伸力的作用下产生的,并且特指热塑性聚合物在其玻璃化转变温度Tg与熔点Tm (或粘流温度Tf)范围内所发生的取向。

如拉丝、打包带、定向薄膜等。

聚合物在玻璃化温度与熔点(或软化点)之间受外力拉伸时,大分子链段或微晶等沿力的方向取向。

沿拉伸方向的拉伸强度和抗蠕变性能得到提高。

流动取向是指聚合物处于可流动状态时,由于受到剪切力的作用而发生流动,取向单元沿流动方向所做的平行排列。

聚合物熔体或溶液中的大分子、链段或其中任何形状的不对称的固体粒子(基团或填料)沿流动方向的取向。

所得制品出现各向异性。

沿制品长度方向:从浇口开始顺着料流的方向,取向程度逐渐增加,在靠近浇口一侧的某一位置,取向度达到极大值。

继续沿长度方向向前深入,则取向程度逐步递减沿着制品的厚(宽)度方向:在制品的中心区取向程度较高,中心处最低,取向程度较高的区域是介于中心区和表层区之间的部分(1)拉伸温度和应力的影响温度是通过聚合物粘度和松弛时间的作用来影响取向过程的。

(2)拉伸比的影响在一定温度下材料在屈服应力作用下被拉伸的倍数为拉伸比。

亦即材料拉伸前后长度之比。

拉伸比越大则材料的取向程度也越高,即拉伸材料的取向程度随拉伸比而增大。

(3)聚合物结构和低分子物的影响聚合物的链结构简单、柔性大、相对分子质量较低,那么链段的活动能力强,粘流活化能低,容易变形和取向,但同时聚合物的松弛时间短,易发生解取向,除非这种聚合物能够结晶,否则取向结构很不稳定,降解的类型:热降解;氧化降解;力降解;水降解;光降解(1)随着交联反应的进行,体系粘度越来越大,聚合物分子链的活动能力越来越小,分子链上反应点之间以及反应点与固化剂间的接触几率越来越小,最后,接触甚至完全成为不可能;(2)反应体系(尤其是可逆的缩聚反应体系)产生出的副产物、有时会阻止交联反应的继续进行。

塑料成型加工一般包括:原料的配制和准备、成型及制品后加工等几个环节。

方法包括:一次成型:挤出成型,注射成型,模压成型,压延成型,注塑成型、模压烧结成型、传递成型和发泡成型等。

二次成型:中空吹塑成型、热成型、拉幅薄膜成型等。

后加工包括机械加工、装配和修饰等。

满足性能、成型、经济上的要求。

(1)分子量的影响。

分子量对制品的物理-机械性能有较大影响。

(2)分子量分布的影响。

分子量分布直接影响制品的性能,随分子量分布变宽,材料大多数力学性能、热性能降低;同时分子量分布也影响配料过程和材料的加工性能。

通常要求聚合物的分子量分布不宜过大,分子量分布以重均分子量与数均分子量之比值表示,比值≤5时分布窄,大于5属于分布较宽。

(3)颗粒结构的影响。

PVC较明显。

凡表面毛糙、不规则,断面结构疏松、多孔的粒子,易于吸收增塑剂。

反之,颗粒表面光滑,断面结构规则,实心、无孔的粒子吸收增塑剂不易;配料时需较高温度和较长时间,影响生产效率。

相关文档
最新文档