污水生物处理中的好氧颗粒污泥技术
好氧颗粒污泥的培养方法

好氧颗粒污泥是活性污泥微生物通过自固定最终形成的结构紧凑、外形规则的生物聚集体,是具有相对密实的微观结构、优良的沉淀性能、较高浓度的生物体截留和多样的微生物种群。
因此,现作为一种新型的废水生物处理形式,在城市污水和工业废水处理中具有非常广阔的应用前景。
那么该颗粒污泥是如何培养的呢?1、配制人工合成模拟废水以乙酸钠为碳源,KH4C1为氮源,KI2P04为磷源,并加入适当微里元素作为补充:初始COD、HM3-F浓度分别为213mg/1左右和12mg/1左右。
2、接种污泥采用普通絮状污泥为接种污泥,MLSS为3.0g/L,比重为1. 005, SVI为78ml/g。
3、采用进水<-曝气-沉淀排水<-闲置的运行方式,每天四个周期,每周期6h, 进水10min,曝气300min,沉淀25min;排水5min,闲置20min.运行一周后逐渐趋于稳定状态。
4、逐步提高进水负荷COD、MI3-E农度分别提高至400mg/1左右和30mg/l左右。
5、采用进水-曝气-静置+搅拌-=次曝气沉淀排水-闲置的运行方式,运行周期调整为每天三个,每周期8小时:进水5min,曝气150min,静置+搅拌120min, 二次曝气120min,沉淀10min, 排水5min, 其余时间闲置,部分污泥趋向于颗粒化状态,形成具有脱氮功能的颗粒化污泥的雏形,随后的培养中根据情况不断减少沉淀时间,造成选择压,排出沉降性能差的絮状污泥,最终沉淀时间降至5min:初始颗粒内的各种微生物在颗粒内寻找适合自身生长增殖的生态位,并通过竞争与次级增长而衍生出新的代谢互补关系,由此进一步充实了颗粒污泥,形成了结构紧密、外形规则的成熟颗粒污泥。
以上就是有关好氧颗粒污泥培养办法的一些具体介绍,希望对大家进一步的了解有所帮助。
好氧颗粒污泥技术研究现状与进展

好氧颗粒污泥技术研究现状与进展好氧颗粒污泥技术(Aerobic Granular Sludge Technology)是一种高效处理废水的生物技术,已经在废水处理领域得到了广泛的关注和应用。
它以废水中的有机物为底物,通过生物作用将有机物降解、废水净化,形成具有颗粒状结构的生物颗粒污泥。
本文将介绍好氧颗粒污泥技术的研究现状和进展。
好氧颗粒污泥技术的研究起源于20世纪80年代,经过几十年的研究和发展,已经成为废水处理领域中的热点研究课题。
好氧颗粒污泥技术相比传统的活性污泥技术具有许多优势,如高污染物降解效率、抗冲击负荷能力强、耐寒性好等。
这使得它成为了理想的废水处理技术之一。
好氧颗粒污泥技术的核心是颗粒污泥的形成和稳定。
颗粒污泥是由细菌、真菌和原生动物等微生物聚集形成的一种生物胶体结构。
颗粒污泥粒径通常在0.2-2毫米之间,具有良好的沉降性和高污染物降解效率。
颗粒污泥的形成与运行条件、废水性质、微生物种类和环境因素等密切相关。
目前,好氧颗粒污泥技术的研究重点主要集中在以下几个方面。
首先是颗粒污泥的形成机理研究。
颗粒污泥的形成涉及到多种微生物的相互作用和聚集过程。
研究人员通过分析颗粒污泥中的微生物群落结构和功能基因等,揭示了颗粒污泥形成的分子生态学机制。
这对于提高颗粒污泥的形成效率和稳定性具有重要意义。
其次是颗粒污泥的运行和控制策略研究。
好氧颗粒污泥技术的运行条件对颗粒污泥的形成和稳定起着至关重要的作用。
研究人员通过探索不同运行条件(如进水COD浓度、氧气供给方式、污泥负荷等)对颗粒污泥的影响,为好氧颗粒污泥技术的实际应用提供了理论支持。
此外,颗粒污泥的实用化应用也是当前研究的热点之一。
好氧颗粒污泥技术已经在许多废水处理厂得到了应用,但还存在一些实际问题需要解决,如颗粒污泥的脱水性能、污泥流变学特性等。
相关研究着重改进颗粒污泥的实用性和经济性,以提高技术的可持续发展性。
综上所述,好氧颗粒污泥技术是一种有着广阔应用前景的新兴废水处理技术。
好氧颗粒污泥在污水生物处理汇总

好氧颗粒污泥在污水生物处理汇总一、引言随着工业化和城市化的发展,污水的产生和处理成为了一个重要的环境问题。
污水中的污染物,如化学需氧量(COD)和氨氮,是水体富营养化的主要原因,对水生生物和人类健康产生严重影响。
因此,寻求有效的污水处理方法,同时去除COD和氨氮,成为当前的研究重点。
好氧颗粒污泥(AGS)作为一种新型的生物处理技术,具有较高的去除效率和稳定性,受到了广泛关注。
二、好氧颗粒污泥的研究进展好氧颗粒污泥(AGS)是一种由微生物群体在好氧条件下形成的生物膜,具有沉降性能和生物活性。
在过去的十年中,AGS在基础理论和工程应用上都取得了显著进展。
研究表明,AGS对COD 和氨氮有较高的去除效率,且在低温、低溶解氧的条件下仍能保持良好的性能。
此外,AGS还具有较好的抗冲击负荷能力和较高的污泥产率。
在AGS的形成过程中,微生物通过自身的新陈代谢和物理化学作用,将污水中的有机物和氨氮转化为新的生物质和能量。
同时,通过物理作用,微生物将污水中的悬浮物和胶体物质沉降下来,使出水水质得到改善。
这个过程不仅去除了污染物,还产生了具有沉降性能的颗粒污泥,提高了污水处理的效率和质量。
三、污水生物处理的三大工艺污水生物处理的主要工艺包括活性污泥法、生物膜法和厌氧生物处理法。
活性污泥法是最常用的生物处理技术之一,具有处理效果好、能耗低等优点。
生物膜法适用于处理水量较小的污水,具有较高的生物量浓度和较低的能耗。
厌氧生物处理法适用于处理高浓度有机物和含氮、磷的污水,具有能耗低、产甲烷等优点。
四、同步去除COD和氨氮的沉降能力和形成标志在污水生物处理过程中,同步去除COD和氨氮是提高处理效率和质量的关键。
研究表明,AGS具有良好的同步去除COD和氨氮能力。
在AGS的形成过程中,微生物通过自身的代谢活动,将污水中的有机物和氨氮转化为新的生物质和能量。
同时,微生物的物理化学作用将污水中的悬浮物和胶体物质沉降下来,使出水水质得到改善。
好氧颗粒污泥技术

r s ac e , t i p p r ito u e h h r ce it s a d f cos a e t g fr t n o e a r b c ga ua l d e a ela t e e r h s h s a e n rd c st e c a a tr i a t r f c i omai ft eo i r l rsu g , sw l s i sc n n o h n s
好氧颗粒污泥表面积聚着大量的胞外多聚物和微生物细胞胞外多聚物和细胞壁主要是由蛋白质腐殖酸糖醛酸多糖及少量的脂类和核酸组成的这些组成中含有大量的羧基羟基硫酸脂和氨基等基团基团内所含有的npos等电负性较大的原子均可以提供孤对电子与重金属离子在活性污泥表面形成络合物或鳌合物从而使溶液中重金属离子被吸附去除
密度大、沉降速度快等特点 ,可使反应器 中保持有
较 高 的污泥 浓 度和容 积 负荷 ,并可缩 小或 省去二 沉 池 。另 外 ,好 氧颗 粒 污 泥 具 有 微 生 物 种 群 的 多样
性 ,在降解有机物的同时具有脱氮除磷的功能 ,与 传统的活性污泥法相 比,可简化工艺流程 、减少污 水处理系统的容积和 占地面积、降低投资和运行成 本 ,基 于 以上优 势 ,它在水 处理 方面具 有很 大 的发 展潜力。本文对好氧颗粒污泥技术做以阐述。
7 8g . /L。
o g n c matr , COD, a r a i t s e mmo i i o e , rc l i a t t xc r a i matr , p rt i n a d e v tl . s d o ae t na nt g n r e ac t n o i og n c r t s e a ah o n h a y me as Ba e n l ts
好氧颗粒污泥特性、应用及形成机理研究进展

好氧颗粒污泥特性、应用及形成机理探究进展一、好氧颗粒污泥的特性好氧颗粒污泥是一种具有一定规模的聚结结构,由微生物、胞外聚合物和微粒等组成。
它的表面有丰富的三维空间网络结构,提供了微生物生长和代谢所需的环境。
好氧颗粒污泥的微生物群落种类多样,包括有氧和厌氧微生物,在污水处理中发挥着重要的作用。
此外,好氧颗粒污泥具有较高的沉降速度和良好的污泥液固分离性能。
二、好氧颗粒污泥的应用好氧颗粒污泥在生物除磷、生物脱氮、有机废水处理等方面具有广泛的应用。
在生物除磷过程中,好氧颗粒污泥能够通过吸附、沉积和释放磷酸盐等方式将废水中的磷去除,从而达到去除磷的目标。
在生物脱氮过程中,好氧颗粒污泥能够利用有机物为电子供体,将废水中的硝酸盐还原为氮气,实现去除氮的效果。
此外,好氧颗粒污泥还可以用于有机废水的处理,将废水中的有机物降解为无机物,从而净化废水。
三、好氧颗粒污泥的形成机理好氧颗粒污泥的形成机理与微生物的生长、代谢和聚结有关。
经过长时间的好氧反应,微生物群落逐渐适应环境,形成完善的代谢系统。
微生物通过产生胞外聚合物将污水中的有机物吸附和聚结在一起,形成颗粒污泥。
同时,厌氧和有氧微生物之间的协同作用也是颗粒污泥形成的重要机理之一。
厌氧微生物能够提供电子给有氧微生物,增进其代谢活动,从而加速颗粒污泥的形成。
四、好氧颗粒污泥探究的展望目前,对于好氧颗粒污泥的探究主要集中在其特性、应用和形成机理等方面。
将来的探究可以从以下几个方面展开:起首,可以深度探究好氧颗粒污泥的微生物群落结构和功能,以更好地了解其在污水处理中的作用机制;其次,可以优化好氧颗粒污泥的形成过程,提高其形成效率和稳定性;最后,可以探究好氧颗粒污泥与其他污泥处理技术的结合应用,实现更高效的污水处理效果。
综上所述,好氧颗粒污泥作为一种在好氧环境中形成的微生物聚结结构,在污水处理中具有重要的应用价值。
通过对其特性、应用和形成机理的探究,可以更好地理解其作用机制,并优化其应用效果。
污水如何培养好氧颗粒污泥

污水如何培养好氧颗粒污泥好氧颗粒污泥是废水生物处理中的一种新技术. 与目前普遍使用的活性污泥法中的活性污泥絮体相比,好氧颗粒污泥优势在于活性污泥絮体在一定条件下生长成为颗粒,在水中沉降速度远大于活性污泥絮体,因此,采用好氧颗粒污泥处理废水,曝气池中生物浓度可大大提高,沉淀时间则可大大缩短[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. 普通活性污泥法曝气池中活性污泥浓度约为3000 mg ·L-1,沉淀时间30 min到2 h. 而采用好氧颗粒污泥技术,曝气池中污泥浓度可达10000~14000 mg ·L-1,沉淀时间只需1~3 min[11, 12, 13, 14, 15, 16]. 与普遍应用于处理高浓度废水及难降解废水的厌氧颗粒污泥相比,好氧颗粒污泥的培养时间约为1个星期到1个月,远小于厌氧颗粒污泥启动时间6个月[17]. 因此,好氧颗粒污泥技术有望为当今污水生物处理技术带来突破性的进展.但是,有关好氧污泥颗粒化的研究时间尚短,人们对好氧颗粒污泥的形成过程、形成机制、各种环境因素对好氧颗粒污泥的影响及颗粒污泥微生物学等,还缺乏深入的研究. 另外,有关好氧颗粒污泥的研究中,大部分是在实验室规模下、采用较高有机物浓度的人工配水(如葡萄糖等)作为基质,较少利用低有机物浓度的城镇生活废水培养好氧颗粒污泥. 另一方面,城镇生活废水中含有各类污染物,COD含量较低,通常小于200 mg ·L-1. 目前这类废水的处理多采用传统活性污泥法,废水的处理效果较好,但传统活性污泥法处理系统普遍占地面积大,建设成本高,剩余污泥量大,运行费用高,而且容易发生污泥膨胀.本研究建立中试试验装置,利用实际城市污水培养好氧颗粒污泥,并采用共聚焦激光扫描显微镜、 X射线衍射等现代分析手段研究所培养颗粒污泥的特性,以期为好氧颗粒污泥技术的实际应用奠定基础.1 材料与方法1.1 试验装置中试试验采用圆柱型 SBR 反应器,上半部材质为有机玻璃,下半部材质为钢,内部刷漆防腐. 反应器内径为 1 m,有效高度为4.5 m,有效容积均为 3.5 m3. 采用空气压缩机供气,通过流量计控制曝气量,曝气量为12.5 m3 ·h-1,反应器内表面气体流速为 0.44 cm ·s-1. 反应器内表面气体流速定义如下:反应器内表面气体流速(cm ·s-1)=反应器内的气体流量(m3 ·s-1)/反应器的截面积(m2) ×100试验装置见图 1. SBR 单周期循环时间为180 min,其中进水8 min,曝气160 min,沉淀6 min,出水6 min; 整个运行程序利用微电脑时控开关控制. 人工模拟废水由计量泵从反应器上部泵入反应器内,出水从反应器中间的排水口排出,排水比为50%. 在3 h的循环周期中,反应器中的DO浓度始终保持在2 mg ·L-1以上.图 1 中试装置示意 1.原水水池; 2.进水泵; 3.微电脑时间控制器; 4.空气压缩机; 5.空气流量计; 6.曝气头; 7.出水泵; 8.排水口1.2 接种污泥与培养接种污泥为实际污水处理厂二沉池回流污泥.该污泥呈黄色松散絮状结构,性质见表 1. 取种泥曝气24 h后,沉淀30 min,排出上清液,使接种污泥量为总体积的50%,再注入培养污水至正常水位. 接种后,反应器内污泥浓度约为3000 mg ·L-1.试验用水采用污水厂实际城市污水,进水水质如表 2.表 1 接种污泥的性质表 2 进水水质1.3 分析方法(1)常规分析COD、 NH+4-N采用快速密闭分光光度法,NO-2-N、 NO-3-N、 TP、混合液悬浮固体浓度(mixed liquor suspended solid,MLSS)、混合液挥发性悬浮固体浓度(mixed liquor volatile suspended solid,MLVSS),出水悬浮物(suspended solid,SS)浓度均采用标准方法[18]测定. 采用 Olympus CX31光学显微镜和配套的Olympus 数码相机进行图像采集.(2)CLSM分析冷冻切片:将反应器中的好氧颗粒污泥取出,用PBS清洗,置于冷冻介质Tissue-Tek OCT (Miles,Elkhart,IN)中,-40℃冷冻一夜. 将冷冻的颗粒污泥在旋转冷冻切片机(CM1510-Cryostat,Leica,Germany)上切成50 μm厚度的切片[19].CLSM分析:采用核酸染料SYTO9(25 mmol ·L-1,Molecular Probe,Eugene,OR)对切片中的细菌进行染色,采用凝集素荧光染色剂ConA-TRITC(250 mg ·L-1,Sigma)对切片中的EPS进行染色. 染色20 min后,用PBS清洗切片样品. 将清洗后的染色切片样品置于共聚焦激光扫描显微镜(CLSM,LSM 5 Pascal,Zeiss,Jena,Germany)下观察[19, 20].(3)好氧颗粒污泥无机物组成分析采用X射线衍射(XRD)分析仪分析好氧颗粒污泥中无机物的组成. 具体方法为:先将样品在550℃灼烧30 min以上,冷却,干燥,然后将样品研磨成粉末,利用Bruker D8 Advance X-ray powder diffractometer采集图谱(Cu-Kα射线,LynxEye检测器,光管电压40 kV,电流40 mA,2θ测角范围10°~80°,步长0.02°,扫描速度为0.3 s ·步-1),Eva XRD Pattern Processing software (Bruker Co. Ltd.)进行数据分析.2 结果与分析2.1 好氧颗粒污泥的形成在颗粒污泥形成过程中,用光学显微镜对反应器中颗粒污泥的形态进行了观察,其变化如图 2所示. 可见,随着培养时间的进行,分散的絮状污泥逐渐转化成为细小不规则的小颗粒,然后慢慢长大为个体较大、形状饱满的较大颗粒,最终形成椭球形、边界清晰的深褐色成熟好氧颗粒污泥. 反应器中颗粒化污泥所占的比例逐渐增加,由40 d时的20%左右逐渐增加至100 d时的85%左右.图 2 好氧颗粒污泥的形态变化好氧颗粒污泥培养过程中,反应器的沉降时间从30 min逐渐降低到6 min. 减少沉降时间过程中,由于过量排泥,反应器中的污泥浓度(MLSS)从2.13 g ·L-1降低到0.94g ·L-1(图 3),接着颗粒污泥能够得到更多营养物质用于生长,反应器内的污泥浓度随着颗粒化进程逐渐增加,MLSS开始缓慢增加. 运行至 40 d时,颗粒粒径较以前增大,基本趋于成熟. 好氧颗粒污泥粒径可达1.0 mm左右. 此时反应器中MLSS浓度在1.2 g ·L-1左右.污水厂的进水为河水. 第75 d时,由于大量降雨,河水中的悬浮物急剧增加,使反应器中的MLSS浓度随之增加; 降雨停止后,反应器中的MLSS浓度回落至正常.图 3 中试SBR反应器中MLSS、 MLVSS随运行时间变化2.2 对污染物的去除中试反应器出水SS的浓度变化如图 4所示. 随着运行时间增加,中试反应器中颗粒污泥所占比例越来越高,反应器出水中的SS浓度逐渐降低. 但是,与污水处理厂出水一级A 标准相比(出水SS<10 mg ·L-1),好氧颗粒污泥中试反应器由于沉降时间短(6 min),导致出水SS仍偏高(平均为60 mg ·L-1).图 4 中试SBR反应器中出水SS随运行时间变化对COD、 TN、 TP的去除结果见图 5. 反应器稳定运行后,出水COD均维持在50 mg ·L-1以下,较好地实现了COD的去除; 出水NH+4-N小于2 mg ·L-1,实现了绝大部分NH+4-N 的转化,达到了实际污水处理厂的NH+4-N出水指标; 随着污泥颗粒化的进行,出水TN的浓度逐渐降低,3个月后出水TN小于15 mg ·L-1. 出水COD、 NH+4-N、 TN均达到一级A 排放标准. 好氧颗粒污泥反应器对TP 的去除为50%左右,在系统运行的末期阶段,出水TP 维持在0.57~1.09 mg ·L-1范围内.图 5 中试SBR反应器对COD、 N、 P的去除好氧颗粒污泥反应器运行的完整周期为:进水8 min、曝气160 min、沉淀6 min、出水6 min,没有缺氧和厌氧阶段. 在3 h的循环周期中,好氧颗粒污泥反应器稳定运行时对TN和TP的去除率均为50%左右. 图 5表明,好氧颗粒污泥反应器能够在3 h的周期中,实现同步N 的硝化和反硝化、 TP的去除. 但由于缺乏缺氧和厌氧阶段,虽然出水TN和NH+4-N 达到一级A排放标准,但仍可在未来的优化研究中,在周期中增加缺氧或厌氧阶段,进一步提高TN、 TP去除率.2.3 好氧颗粒污泥中细菌和EPS的分布图 6为一典型的好氧颗粒污泥表面的共聚焦激光扫描显微镜(CLSM)图像. 其中红色和绿色分别表示EPS和细菌的分布区域. 可见,在颗粒污泥表面处,细菌均匀地分布在EPS 构成的网络结构中.图 6 好氧颗粒污泥表面的CLSM图像图 7显示了好氧颗粒污泥的中心横断面上的CLSM图像,红色和绿色分别代表EPS和细菌的分布区域. 可以看出,从整个好氧颗粒污泥的横断面上来看,细菌主要分布在好氧颗粒污泥表面约50~80 μm的区域,此后随着颗粒内部深度的增加,菌体分布逐渐越少,而EPS 则分布在整个颗粒污泥中.图 7 好氧颗粒污泥中心横断面的CLSM图像2.4 好氧颗粒污泥的无机物组成分析图 8为好氧颗粒污泥中物质的XRD图谱,通过XRD 图谱分析可以看出,其成分比较复杂,主要成分有:SiO2、 CaSO4、 Ca(Al2Si2O8)、 Fe2O3.其中最高波峰为SiO2.3 讨论好氧颗粒污泥培养初期,为了促进好氧颗粒污泥的产生,改变运行方式,增加曝气时间,减少沉淀时间,加大选择压,这有利于排除一些沉降速率慢的污泥. 此时,反应器内污泥的沉降性能得到了明显的改善,但是由于沉淀时间缩短,反应器的出水SS变大,反应器内的MLSS 有所降低(图 3). 经过将近20 d的培养,反应器内都出现了好氧颗粒污泥,污泥浓度也开始逐渐增加,MLSS维持在1200 mg ·L-1左右. 由于实际污水浓度较低,且其中含有30%~40%左右的工业废水,污泥颗粒化后,污泥浓度并没有大幅度的提高.中试系统的接种污泥也为实际污水厂中的二沉池剩余污泥,MLVSS/MLSS比例约为50%,污泥活性较低,初期培养出的好氧颗粒污泥的MLVSS/MLSS比例也为50%左右,与实际污水厂活性比相当; 随着运行时间的增加,MLVSS/MLSS比例有所增加,达到60%以上,反映出培养的好氧颗粒污泥活性增加.好氧颗粒污泥中试反应器由于沉降时间短(6 min),导致出水SS偏高(图 4). 因此在未来实际应用时,需要增加过滤工艺.图 5显示50%的TN得到去除,表明培养的好氧颗粒污泥具有同步硝化和反硝化的能力. 这是由于好氧颗粒污泥的多菌种结构,且基质和O2的传质阻力随着粒径的增加而增大、大颗粒的孔隙率也随着颗粒的深度而减小,好氧颗粒污泥内部形成多种微环境,可同时满足脱氮所需的不同条件:O2作为电子受体时,可进行氨氧化; NO-3-N作为电子受体时,可在缺氧区脱氮[21, 22]. 传统活性污泥法中,通常在不同区域需要使用回流泵,因此具有同步硝化和反硝化功能的好氧颗粒污泥有望大大提高废水生物处理的效率,节省能耗.图 5同时显示好氧颗粒污泥反应器对TP的去除效率约为50%. 好氧颗粒污泥对磷的去除主要通过聚磷菌(PAOs)厌氧释磷和好氧吸磷将磷以胞内多聚磷酸盐的方式通过排泥去除. 中试试验过程中没有进行排泥,但由于反应器沉降时间短(6 min),导致出水SS较高(平均为65 mg ·L-1,图 4),TP主要由出水中的SS带走. 另外有研究表明,好氧颗粒污泥对磷的去除除了传统的生物除磷途径外,还有一部分是由于磷在颗粒污泥内部的化学沉淀作用而被去除[23, 24].图 6反映了好氧颗粒污泥表面EPS和细菌的分布,图 7则显示了EPS和细菌在整个好氧颗粒污泥中心横断面上的分布. 可以看出,好氧颗粒污泥中EPS均匀分布在整个颗粒污泥中,而细菌则主要分布在表面50~80 μm处,越靠近颗粒内部,由外到内逐渐减少. 文献[25, 26]发现EPS中的藻多糖具有很强的凝聚能力,好氧颗粒污泥中的藻多糖通过形成具有三维空间结构的细菌藻酸盐-金属凝胶而对颗粒污泥的形成起骨架作用. 从颗粒污泥的整体结构(图 6、 7)可以推断好氧颗粒污泥主要骨架结构为EPS,各种菌群镶嵌在EPS组成的凝胶网状结构内.颗粒污泥的VSS/SS比例为50%~60%左右,颗粒污泥中含有较多的无机物. XRD图谱显示,这些无机物以SiO2为主,以及一些金属离子铁、铝、钙等. 中试试验中的实际城市污水的成分十分复杂,含有很多泥沙,还包含30%~40%的工业废水,这些基本在XRD谱图中得以体现. 一些学者[27]曾提出颗粒污泥形成的“晶核假说”原理. 该假说认为好氧颗粒污泥的形成过程类似于结晶过程. 在晶核的基础上,好氧颗粒污泥不断发育,最终形成成熟的好氧颗粒污泥. 该原理所指的晶核一般为接种污泥中的惰性载体或无机杂质等微粒物质. 图 8中无机晶体的存在与“晶核假说”一致,在好氧颗粒污泥形成初期,这些无机微粒提供晶核,促进了好氧颗粒污泥的形成; 在颗粒污泥形成的后期,这些晶核与EPS一起共同维持好氧颗粒污泥结构的稳定性.具体参见污水宝商城资料或更多相关技术文档。
好氧颗粒污泥原理及应用
好氧颗粒污泥原理及应用好氧颗粒污泥与普通活性污泥相比,它具有不易发生污泥膨胀、抗冲击能力强、能承受高有机负荷,集不同性质的微生物(好氧、兼氧和厌氧微生物)于一体等特点,近年的研究成果表明AGS能用于处理高浓度有机废水、高含盐度废水及许多工业废水。
1991年MiShi1.IIa 等最早发现了AGS,并第一次报道了利用连续流好氧上流式污泥床反应器(AerobicUpfIowS1.udgeB1.anket,AUSB)培养出AGS o人们从这一研究成果开始了对AGS颗粒化的研究历程。
而国内学者对AGS的研究始于1995年,相对滞后于国外的研究。
好氧颗粒污泥是由相互聚集的、多物种的微生物构成的团体,被认为是一种特殊的自固定化生物。
在过去的20年中,废水生物处理领域理论研究和工程应用证明,固定化的活性污泥在水质净化方面比悬浮活性污泥更具有效率。
迄今为止,好氧颗粒污泥被认为是最有前途的废水生物处理技术之一。
由于好氧颗粒污泥具有很多优点,因此,近年来对其进行的研究也逐渐增多,但是对于其形成机理却是众说纷纭。
没有达成共识。
本文综述了近年来好氧颗粒污泥形成机理的研究进展并对不同机理之间的区别与联系作一些思考。
1好氧颗粒污泥的基本特性在好氧条件下,培养颗粒污泥的条件较为苛刻,并且在不同操作条件和培养目的下培育出的好氧颗粒污泥在颗粒大小、粒径分布、颜色、功能上也都存在着差异。
好氧颗粒污泥的特性:表面光滑、较高密度和高强度、高生物量、耐冲击负荷、抗有毒物质。
好氧颗粒污泥外观一般为橙黄色或浅黄色,周洵平等总结了不同反应器在各自条件下培养的好氧颗粒污泥的特性。
好氧颗粒污泥具有优良的沉降性能和近乎球形的规则形状。
研究指出,颗粒污泥的形状系数稳定在0.4纵横比一般在0.79左右。
好氧颗粒污泥本身的生物相极其丰富,主要是形态各异的球菌、杆菌等。
不同的培养条件对好氧颗粒污泥微生物群落有一定的影响。
好氧颗粒污泥泥水分离性能好,在反应器中能形成较高的污泥浓度。
污废水处理中好氧颗粒污泥技术研究进展
摘
要: 综述 了好氧颗粒污泥技术在 污废 水处理工程 中的研究情况. 好氧颗粒污泥在实验 室的 阶段
的研究 主要集 中于在高浓度有机废水处 理 、 有毒 有机 物降 解及脱 氮 除磷方 面 的研 究 , 研究 成果较 为突 出, 多侧重于用各种模拟废水研究好氧颗粒 污泥的形成条件. 在 实际污废 水处理工程中的应用 主要集 中 于对生活污水和工业废水 的处理研究 , 侧重 于工程 中的处理效果 , 缺 少对 形成机理和运行条件 方面 的研
究. 在 阐 述 国 内外 已有 研 究 成 果 基 础 上 , 从 多 方 面 展 望 好 氧 颗 粒 污 泥 的研 究 方 向 和 应 用 前 景 .
关键词 : 好氧颗粒污泥 ; 废 水处理 ; 形成机理 ; 影响 因素
中 图分 类号 : X 7 9 9 . 3 ; X 7 8 文献标志码 : A
V0 1 . 1 7 No . 1
J 1 0 0 8 - 5 5 6 4( 2 0 1 4) 0 1 - 0 0 2 1 05 -
污废 水 处 理 中好 氧 颗 粒 污 泥 技 术 研 究 进 展
周 润 娟 , 徐 建 平
( 安徽 工程 大学 a . 电气工程 学院; b . 生物与化 学工程 学院, 安徽 芜湖 2 4 1 0 0 0 )
第1 7卷 第 1 期
2 0 1 4年 1月
西安 文理 学 院学报 : 自然科 学版
J o u r n a l o f X i ’ a n U n i v e r s i t y o f A r t s &S c i e n c e ( N a t S c i E d )
( a . C o l l e g e o f E l e c t r i c a l E n g i n e e i r n g ; b . C o l l e g e o f B i o c h e m i c l a E n in g e e i r n g , A n h u i P o l y t e c h n i c U n i v e r s i t y , Wu h u 2 4 1 0 0 0 ,C h i n a )
好氧颗粒污泥的培养过程、作用机制及数学模拟
好氧颗粒污泥的培养过程、作用机制及数学模拟好氧颗粒污泥的培养过程、作用机制及数学模拟一、引言随着城市化进程的不断加速,城市生活污水的高浓度有机物排放量不断增加,传统的污水处理方法已经难以满足环境保护的要求。
好氧颗粒污泥技术作为一种新型的生物处理技术,具有高效、稳定、节能等优点,逐渐受到人们的关注。
二、好氧颗粒污泥的培养过程好氧颗粒污泥的培养过程是指通过合理的操作和调控,使污水中的微生物逐渐聚集形成颗粒状的生物团块。
典型的好氧颗粒污泥培养过程可以分为三个阶段:启动期、培养期和稳定期。
1. 启动期启动期是好氧颗粒污泥形成的最关键的阶段,该阶段主要是通过逐渐减少污水的有机负荷和适当调控水力停留时间来刺激污水处理系统中的微生物聚集并形成颗粒状结构。
在此阶段,通过适当调控污水中的营养物质和氧气供应,促使有机物分解和微生物的繁殖。
2. 培养期培养期是好氧颗粒污泥的的主要发展阶段,此阶段通过增加有机负荷和不断提高氧气供应,使颗粒污泥结构更加稳定。
在此阶段,颗粒污泥的直径会逐渐增大,微生物的代谢活性随之增强。
3. 稳定期稳定期是好氧颗粒污泥形成的最后一个阶段,此阶段的好氧颗粒污泥系统已经形成相对稳定的颗粒污泥结构和微生物群落组成。
此时,系统处理污水效果稳定,具有良好的处理效率和抗负荷冲击性。
三、好氧颗粒污泥的作用机制好氧颗粒污泥的主要作用机制包括生物吸附、生物降解和生物氧化。
在好氧颗粒污泥中,微生物附着在颗粒的表面,通过吸附污水中的微生物和有机物质负荷,进行分解和转化。
同时,好氧颗粒污泥中的微生物通过不同代谢途径,将有机物质负荷转化为无害物质,并在此过程中释放出能量。
四、数学模拟数学模拟是研究和分析好氧颗粒污泥的培养和作用机制的重要手段之一。
数学模拟可以帮助我们更好地理解和预测好氧颗粒污泥的形成和发展过程。
通常,数学模拟包括质量平衡模型、动力学模型和颗粒形成机理模型等。
在质量平衡模型中,通过建立物质的输入、输出和转化关系,分析好氧颗粒污泥系统中物质平衡的变化过程。
颗粒污泥技术都有哪些特点
颗粒污泥技术都有哪些特点,其形成过程大致需要几个阶段颗粒污泥技术分为好氧颗粒污泥技术和厌氧颗粒污泥技术。
好氧颗粒污泥是一种较高密度的球型聚集体, 常被看作一种特殊的生物膜。
它是由相互聚集的、多物种的微生物构成的团体, 具有生物致密、相对密度大、沉降速度快等特点, 可使反应器中保持有较高的污泥浓度和容积负荷, 并可缩小或省去二沉池。
另外, 好氧颗粒污泥具有微生物种群的多样性, 在降解有机物的同时具有脱氮除磷的功能, 与传统的活性污泥法相比, 可简化工艺流程、减少污水处理系统的容积和占地面积、降低投资和运行成本。
好氧颗粒污泥还拥有高密度、规则外形、密实结构、优良的沉淀性能及较强的吸附性能等特性,这些特性使其能维持高生物量,具有较多的微生物种类、特殊的结构等,因此好氧颗粒污泥在污水处理方面具有很大的优越性。
好氧颗粒污泥通过好氧自身固定化形成。
所谓自身固定化是生物处理系统中的微生物在适当环境条件下,相互聚合形成一种密度比较大,体积比较大,活性和传质条件都比较好的微生物同生体颗粒的现象。
微生物自身具有凝聚或固定于物体表面。
好氧颗粒污泥是通过适当的水流剪切作用和高浓度的溶解氧来实现自身固定化。
适当的速度梯度创造了一个选择压力,使细菌相互聚合,并通过物理、化学、生物的作用力结合。
适当的水流剪切和高浓度的溶解氧可形成较好的好氧颗粒污泥并防止丝状菌的膨胀,丝状菌过多地缠绕之后,结构松散,污泥沉降性能变差。
厌氧颗粒污泥是由产甲烷菌、产乙酸菌和水解发酵菌等形成的自凝聚体。
它是由相互聚集的、多物种的微生物构成的团体,具有生物致密、相对密度大、沉降速度快等特点,可使反应器中保持有较高的污泥浓度和容积负荷,与传统的活性污泥法相比,可简化工艺流程、降低成本等。
污泥颗粒化过程可分成三个阶段:即积累阶段、颗粒化阶段和成熟阶段。
他们认为颗粒污泥的增长速率呈指数增加,而粒径表示的颗粒比生长速率等于细菌比生长速率的1/3,在积累阶段以后尤为如此。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水生物处理中的好氧颗粒污泥技术好氧颗粒污泥因其具有较高的微生物量,具备脱氮除磷能力和良好的沉淀性能,在工业废水和城市污水处理中的应用潜力很大,但在其形成机理方面还存在问题并未彻底弄清。
本文分析了好氧颗粒污泥的特点及其形成过程的影响因素,如胞外聚合物、水力剪切力、温度等;归纳了关于好氧颗粒污泥的形成假说,总结了其在城市污水和工业废水处理方面的应用情况以及好氧颗粒污泥稳定性及形成机理方面存在的问题,论述了好氧颗粒污泥技术今后的发展趋势。
污水生物处理系统内,微生物聚集的形式主要有絮状污泥、生物膜和颗粒污泥3种,其中颗粒污泥由于具有微生物量多、沉降性好等优点而受到研究者的关注。
颗粒污泥中,好氧颗粒污泥(AGS)具有表面光滑、密度大、沉降性能良好、能够维持较高的生物量以及承受较高的有机负荷等优点。
M. Pronk等指出,好氧颗粒污泥系统的总体能耗为13.9 kW·h,比荷兰传统活性污泥厂的平均耗能水平低58%~63%,其出水水质可以达到传统活性污泥法工艺的出水水质甚至更好。
好氧颗粒污泥系统所需要的体积也比现有的常规活性污泥装置所需要的体积低33%左右,在能耗和土建费用方面均有所减少。
与厌氧颗粒污泥相比,好氧颗粒污泥的形成周期较短,约为30 d。
在耗能方面,好氧颗粒污泥可在常温条件下进行培养,同时在污水浓度方面局限性小,对高浓度工业废水和城市生活污水的处理均有良好效果。
污泥在好氧条件下进行培养,颗粒的分层结构形成好氧、缺氧和厌氧区域,其结构特征可以实现一定程度的脱氮除磷效果。
本研究通过对近年来相关文献的整理,拟对好氧颗粒污泥的形成机理进行总结,并对各影响因素之间的相互作用进行分析。
1 好氧颗粒污泥的形成机理好氧颗粒污泥的形成是由众多因素共同作用完成的复杂过程,其中既有微生物的作用,也包含物理、化学等方面的作用,国内外学者对于好氧颗粒污泥的形成进行了长期研究,主要形成以下几种学说。
01 微生物自凝聚原理自凝聚是一种在适当条件下自发产生的微生物凝聚现象。
有研究表明,好氧颗粒污泥的形成是由种泥逐步致密聚集的渐进过程,通过各种影响力进而形成颗粒污泥。
由水力剪切力、pH等众多因素决定颗粒最终能否形成稳定的结构。
02 丝状菌假说在好氧颗粒污泥的培养过程中,接种污泥的微生物主要以丝状菌为优势菌种。
反应器中培养出的颗粒污泥种类不同,丝状菌在颗粒形成过程中所起到的作用也不同。
有研究通过对所培养出的不同颜色颗粒污泥进行破碎处理,得到丝状菌在颗粒污泥中的形成结构。
好氧颗粒污泥在反应器不同阶段出现黄色、黑色及白色3种不同颜色的颗粒,不同颗粒污泥的菌种比例及形态结构都有所区别。
总体来说,丝状菌对好氧颗粒污泥的形成及稳定起到重要作用。
不同颜色颗粒污泥的菌种组成及结构特点见表1。
03 细胞表面疏水性假说根据热力学理论,细胞表面疏水性上升会减少细胞表面多余的吉布斯能,进而增加细胞间的相互作用形成致密的稳定结构。
有研究表明,在3周的好氧颗粒污泥形成过程中,污泥的疏水性由接种污泥的39%上升到73%,由此证明细胞表面疏水性是细胞自身聚集和附着的重要亲合力,对于好氧颗粒污泥的形成起到关键作用。
疏水性对于细胞间的相互作用具有重要意义,这可能引起微生物的初始自身稳定,并进一步将细菌紧密地结合在一起。
04 选择压驱动假说有研究表明,通过控制沉降时间进而控制选择压是序批式反应器(SBR)中好氧颗粒污泥形成的决定性因素。
缩短沉降时间有助于洗出沉降性能差的絮体污泥,造成相对较强的选择压,促进好氧颗粒污泥的形成。
在一定范围内,提高选择压会导致好氧颗粒污泥的粒径变大。
缩短沉降时间可显著提高细胞多糖的产量、细胞表面疏水性及微生物活性,进而利于好氧颗粒污泥的形成。
对选择压的控制和深入研究有助于更好地了解好氧颗粒污泥的形成机制。
X. H. Wang等通过逐步增加进水氨氮浓度来提高选择压,培养出具有良好稳定性的好氧颗粒污泥,提供了一种新的好氧颗粒污泥培养策略;今后应通过逐步改变选择压的方式开发好氧颗粒污泥生物反应器,使其具有更高的性能和效率。
通过改变选择压的方式促进颗粒污泥的形成,这一方法在连续流反应器中同样有效。
05 胞外聚合物假说胞外聚合物(EPS)是在一定的适宜条件下由微生物分泌于细胞表面的大分子有机物质。
自诱导体(autoinducer,AI)(信号分子)形成后释放,可以在群体感应(Quorum sensing,QS)中被细菌探测到。
QS是细菌在不断变化的环境中生存和适应的一种现象,通过QS,细菌可以对种群密度进行监测,同时激活细菌生长的基因表达。
根据Y. Q. Liu等提出的假设,微生物细胞与其他微粒连接,形成颗粒化污泥的前身。
EPS在好氧颗粒污泥的发育过程中起着重要作用。
有研究表明,好氧颗粒污泥与普通絮状活性污泥的EPS成分,如蛋白质和多糖的浓度和分布是不同的,从好氧颗粒污泥中提取EPS,其中检测出带负电荷的多糖和蛋白质,但未在活性污泥中检测出。
好氧颗粒污泥的EPS有机组分可以改变细菌的表面特性和颗粒污泥的物理特性,有利于细胞之间的聚集及稳定。
研究表明,在好氧颗粒污泥周围松散附着的EPS是造粒过程的重要因素,主要由其中的蛋白质所决定。
EPS的形成取决于反应器内的运行方式及环境,控制好相关参数有利于EPS的适量产生,从而形成稳定的好氧颗粒污泥。
根据结合程度的不同,EPS可分为溶解性EPS (soluble EPS,SEPS)和附着性EPS(bond EPS,BEPS),BEPS又分为松散附着性EPS (loosely bond EPS,LEPS)和紧密附着性EPS(tightly bond EPS,TEPS)。
06 阶段形成假说阶段形成假说将好氧颗粒污泥的形成分为4个阶段,每一阶段由不同的作用力或物质发挥影响,促进接种污泥逐步形成颗粒污泥。
第一阶段,由接种污泥表面细菌之间发生的物理运动来促进颗粒化,如水动力、扩散力等;第二阶段,由物理、化学及生物方面的各种吸引力来维持固体细胞表面和多个细胞之间的稳定连接,如范德华力、化学键及细胞膜融合等;第三阶段,微生物促使聚集的细菌成熟,EPS的产生、菌群的增长等过程均在此阶段;第四阶段,通过水力剪切力形成稳定的三维结构。
该形成机理是目前比较全面的一种颗粒污泥形成理论,但因各种因素间的相互影响,仍难以完整涵盖好氧颗粒污泥整个形成过程。
2 好氧颗粒污泥形成的影响因素好氧颗粒污泥能否形成及其形成周期长短、污泥质量如何、能否维持稳定,受其培养运行过程中多种因素的影响。
通过对其深入研究,可以全面了解好氧颗粒污泥的形成及稳定适应条件,并据此对可变因素进行控制,对培养好氧颗粒污泥具有重要的意义。
01 碳源碳源不同会导致培养出的好氧颗粒污泥存在差别。
在其他条件相同的前提下,J. H. Tay等以葡萄糖为碳源培养出的颗粒污泥以丝状菌为主,以乙酸为碳源培养出的颗粒污泥却以杆状细菌为主。
同时,单一碳源和混合碳源也对形成好氧颗粒污泥的结构及稳定性有所影响。
高景峰等以蔗糖为唯一碳源培养好氧颗粒污泥,发现23 d后出现丝状菌膨胀现象。
之后改用蔗糖加等量蛋白胨的组合碳源,丝状菌膨胀现象得到了有效的解决。
这说明,在培养好氧颗粒污泥的过程中采用单一碳源易引起丝状菌膨胀,混合碳源可以有效抑制该现象,对维持好氧颗粒污泥的稳定起到重要作用。
碳源种类虽然可以改变颗粒结构,但有人认为其对好氧颗粒污泥的形成不能起到决定性作用。
02 种泥Z. Song等研究发现从啤酒废水处理厂中取的污泥比城市污水处理厂中提取的污泥更适合培养好氧颗粒污泥,表明接种污泥对好氧颗粒污泥的形成有重要的影响。
不同种泥的颗粒化乃至稳定所需时间不同,所培养出的颗粒污泥菌群结构也不相同,说明微生物种群变化同接种污泥有关。
微生物的活性对好氧颗粒污泥的影响不明显,但受接种污泥疏水性的影响较大。
有研究者在培养好氧颗粒污泥的过程中加入厌氧颗粒污泥,缩短了好氧颗粒污泥的形成时间,且污泥稳定、污水处理效果好。
这为好氧颗粒污泥的培养提供了一个很好的选择。
03 水力剪切力一般来说,由上流曝气引起的水动力湍流是系统的主要剪切力,反应器可以通过改变表面上升气体流速来控制水力剪切力。
当对颗粒污泥施加剪切力时,颗粒必须通过消耗非生长能量,改变细胞表面EPS的量来调节其代谢途径,以维持与外部剪切力的平衡。
研究表明,当表面上升气体流速达到1.2cm/s时可以形成密度大且表面光滑的颗粒污泥。
水力剪切力越大,越容易形成稳定的颗粒结构、清晰的污泥轮廓及良好污染物降解性能。
为了在保证污水处理效果的情况下降低能源使用,沈忱等研究了低曝气条件下反应器的运行及好氧颗粒污泥情况,结果发现,在能够使污泥达到颗粒化的水力剪切力下,好氧颗粒污泥对污水的处理性能稳定,可以高效地进行脱氮除磷以及去除COD。
04 PN/PS一般认为,多糖(polysacides,PS)可以调节细胞的内聚力和黏附力,在污泥颗粒化过程中对维持污泥结构的完整性起着至关重要的作用。
有研究发现,随着水力剪切力的增加,污泥中多糖含量与蛋白(proteins,PN)含量的比值也有显著上升。
值得指出的是,颗粒污泥中多糖的含量至少比絮凝体中高出2倍,同时也观察到多糖的含量比絮凝体和颗粒污泥中蛋白质含量高得多。
这可能意味着胞外蛋白对微生物群落结构和稳定性的影响不如多糖大。
05 pH张志等运行6个相同的反应器,仅控制pH不同。
结果表明,当pH在8.4时,细胞产生最少量的EPS,当pH上升到9.0时,EPS少量上升。
EPS上升有助于保护颗粒污泥,减少被酸碱值过高所带来的伤害。
研究结果证明控制pH使EPS产量增加,有利于提高污泥的耐冲击能力,使颗粒污泥更加稳定。
06 温度温度可以显著影响生物过程中的微生物代谢和群落结构。
A. Gonzalez-Martinez等在低温下研究北极圈好氧颗粒污泥的性状及菌群,发现温度的改变会导致颗粒污泥菌群变化,是维持污泥结构正常或导致解体的重要因素。
此外,有研究表明,与温适应接种物相比,冷适应接种物显示出优异的颗粒状生物质形成能力。
在低温条件下培养的好氧颗粒污泥,低温启动时,3周内就可以有效去除有机物,这表明低温环境下好氧颗粒污泥更容易培养。
07 细胞表面电荷一般来说,微生物细胞表面带有负电荷。
相似电荷之间的排斥可防止细胞在没有另一种机制的帮助下彼此附着。
二价阳离子如Ca2+中和微生物表面电荷已被认为是促进初始细胞附着的可能机制。
范德华力也可能有助于这种细胞吸引力。
DLVO理论同样适用于分析细胞表面负荷对污泥产生的相互作用。
08 反应器类型及运行方式好氧颗粒污泥多在SBR中进行培养。
在反应器运行期间,由于高表面负电荷所引起的静电斥力、疏水性低所形成的水包围面以及EPS之间的相互作用,细胞表面存在的过多EPS会使得初始的黏附过程困难,EPS与细胞表面负电荷呈正相关性,与疏水性呈负相关。