2016重庆市对口高职高考数学模拟试卷(2020年整理).doc
2016重庆市对口高职高考数学模拟试卷

重庆市对口高职数学综合试卷一、选择题(共12小题,每小题7分,共84分)1.已知集合A={x|-2<x ≤5},集合B={x|-3≤x<0},则AUB 等于 ( )A.{x|-2<x<0}B.{x|-3≤x ≤5}C.{x|-2<x ≤5}D.{x|-3≤x<0}2.已知532cos =α,则αcos 等于 ( ) A.54 B. 257 C. 2512 D.257- 3.函数)1(log 2x y -=的定义域为 ( )A. )(1,∞-B. ]0,∞-(C. )1,0[D. R4.直线2x-ay+3=0与直线4x+2y-1=0垂直则a 的值为 ( )A.2B.-2C.-4D.45.已知g(x) f(x),都是定义域为R 的奇函数,且6)(2)(5)(+-=x g x f x F ,若b a F =)(,则=-)(a F ( ) A.b-6 B.b-12 C.12-b D.12+b6.不等式0)2)(3(≤--x x 的解集为 ( )A. [2,3]B.),3[]2,(+∞-∞C.(2,3)D.空集7.已知椭圆的焦点在x 轴上,焦距为2,P 点是椭圆上一点,它到左焦点的距离为2,到右焦点的距离为4,则椭圆的标准方程为 ( ) A. 12322=+y x B.18922=+y x C.19822=+y x D.15922=+y x 8.在等比数列}{n a 中,已知,8,231==a a 则5a = ( )A.8B.16C.32D.649.若a 与b 均为实数,则a=b 是a 2=b 2成立的( )A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件10.将3个不同的球任意的放入4个不同的盒子中,则不同放法有( )A.4B.24C.64D.8111.函数x x y cos 4sin 3-=的最大值为 ( )A.3B.4C.5D.712.若圆2222342k k y x y x --=+-+与直线052=++y x 相切,则k = ( )A.3或-1B.-3或1C.-2或1D.2或-1二、填空题(共6小题,每小题7分,共42分)13.已知x x x f -=2)(,则=-)(x f __________14.抛物线x y 82-=上一点P 到焦点的距离为3,则点P 的横坐标为=________15.数列的{a n }的前n 项和n n S n +=22,那么它的通项公式为_________16.在ABC ∆,a=15,b=10, 60=∠A ,则sinB=_________17.若角α的终边经过两直线3x-2y+5=0和x+y-5=0的交点P ,则α的正弦值为________18.设函数32)(2+-=mx x x f ,当)+∞-∈,2[x 是增函数,当]2,(-∞∈x 是减函数,则=-)2(f __________三、解答题(共6小题,共74分)19.计算:2122304143tan1019lg 2016-⎪⎭⎫ ⎝⎛-+-⋅+P og π20.解不等式{2|2|12231≤-<--+x x x21.已知函数)6cos()(π+=x a x f 的图像经过点⎪⎭⎫ ⎝⎛21-2,π (1)求a 的值(2)若sin θ=31,20πθ<<,求)(θf22.已知数列}{a n 的前n 项和为n S ,1a 1=,且满足12a 1n =-+n S 。
重庆市普通高等学校招生对口高职类统一考试数学试题

重庆市普通高等学校招生对口高职类统一考试数学 试题(满分200分,考试时间120分钟)一、选择题(共12小题,每小题7分,共84分)1、已知集合}3,2,1{=A ,}5,3,1{=B ,则=B AA .}1{B .}3,1{C .}5,2{D .}5,3,2,1{2、设函数1)(2+=x x f ,则=-)1(fA .1-B .0C .1D .23、3cos 6sin ππ+的值是A .21 B .23 C .1 D .3 4、过点)1,0(且与直线012=-+y x 垂直的直线方程是A .022=+-y xB .012=+-y xC .022=+-y xD .012=+-y x5、函数241)(x x f -=的定义域为A .),2()2,(+∞--∞B .)2,2(-C .]2,2[-D .),2[]2,(+∞--∞6、若53sin =α,则=+)2cos(απ A .54- B .53- C .53 D .54 7、命题“1=x ”是命题“022=-+x x ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8、点)1,1(到直线0134=++y x 的距离为A .85B .58 C .5 D .8 9、设函数)(x f 是),(+∞-∞上的偶函数,且)2()1()3(-<-<-f f f ,则下列不等式成立的是A .)3()2()1(f f f <<B .)2()1()3(f f f >>C .)3()2()1(f f f <<D .)2()1()3(f f f <<10、从数字0,1,2,3中任取3个排成没有重复数字的三位数,则排成三位数的个数为A .18个B .24个C .27个D .64个11、已知抛物 线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则=p A .2 B .22 C .4 D .2412、将函数)42cos()42sin(ππ+-+=x x y 的图像向左平移)0(πϕϕ<<个单位后得到)62sin(2π-=x y 的图像,则=ϕ A .12π B .6π C .65π D .1211π 二、填空题(共6小题,每小题7分,共42分)13.在等差数列}{n a 中,651=+a a ,则=3a .14. =+25lg 4lg .15.已知角α终边上一点)1,2(-p ,则=αcos .16. 直线012=++y x 与直线0132=++y x 的交点坐标是 .17. 在ABC ∆中,若1=BC , 30=C ,31cosA =,则=AB . 18. 已知点)3,2(M 是椭圆1162522=+y x 内一定点,F 为椭圆的左焦点,P 为椭圆上的动点,则||||PF PM +的最小值为 。
2016届重庆市全国普通高考适应性测试(第三次)数学(理)试题

2016届重庆市全国普通高考适应性测试(第三次)数学(理)试题(满分150分 考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U =R ,集合M ={x |y =3-2x },N ={y |y =3-2x }, 则图中阴影部分表示的集合是( )A .{x |32<x ≤3}B .{x |32<x <3}C .{x |32≤x <2}D .{x |32<x <2}2.已知复数z =1+2i1-i,则1+z +z 2+…+z 2 016为( )A .1+iB .1-iC .iD .1 3.若52345012345(13)x a a x a x a x a x a x -=+++++,则012345||||||||||||a a a a a a +++++的值等于( )A .1024B . 243C . 32D . 24 4.若某程序框图如图所示,则输出的n 的值是( )A . 43B . 44C .45D .465.给出下列四个结论:①“若am 2<bm 2,则a <b ”的逆命题是真命题; ②若x ,y ∈R ,则“x ≥2或y ≥2”是“x 2+y 2≥4”的充分不必要条件; ③函数y =log a (x +1)+1(a >0且a ≠0)的图象必过点(0,1);④已知ξ服从正态分布N (0,σ2),且P (-2≤ξ≤0)=0.4,则P (ξ>2)=0.2. 其中正确的结论是( )A .①②B .①③C .②③D .③④ 6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形, 俯视图是半径为1的半圆,则其侧视图的面积是( ) A.12 B.32C .1 D. 3 7.已知实数x 、y 满足:⎩⎪⎨⎪⎧x -2y +1≥0x <2x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是( )A .[53,5]B .[0,5]C . [0,5)D . [53,5)8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年 国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能 参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为( ) A .72 B .108 C .180 D .216开始 p =1,n =1n =n +1p >2016?输出n 结束第4题图是否p =p +2n -1第1题图第6题图9.若sin 2α=55,sin (β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π410.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1B .12C .52D .2211.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点O 为坐标原点,点P 在双曲线右支上,△PF 1F 2内切圆的圆心为Q ,圆Q 与x 轴相切于点A ,过F 2作直线PQ 的垂线,垂足为B ,则|OA |与|OB | 的长度依次为( )A .a ,aB .a ,a 2+b 2C .a 2,3a 2D .a 2,a12.设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”,也称f (x )在区间D 上存在“次不动点”,若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在“次不动点”,则实数a 的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12 C.⎣⎡⎭⎫12,+∞ D.⎝⎛⎦⎤-∞,12 二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量3OA AB OA ⊥=,,则OA OB ⋅ = .14.设等差数列{}n a 的前n 项和为n S ,若25301(2)2a a x dx =⋅+⎰,则95S S = ____________. 15.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720. 家庭的月储蓄y 对月收入x 的线性回归方程为y =bx +a ,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为_________千元.(附:线性回归方程y =bx +a 中,b =∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a =y -b x .)16.已知P 点为圆1O 与圆2O 的公共点,2221:()()O x a y b b -+-=,2222:()()O x c y d d -+-= ,若9,a cac b d==,则点P 与直线l :34250x y --=上任意一点M 之间的距离的最小值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知233b c =,3A C +=p . (I )求sin B 的值;(II )若33b =,求△ABC 的面积.18.(本小题满分12分)某市积极倡导学生参与绿色环保活动,其中代号为“环保卫士—12369”的绿色环保活动小组对2015年1月-2015年12月(一年)内空气质量指数API 进行监测,下表是在这一年随机抽取的100天的统计结果:指数API [0,50] (50,100] (100,150] (150,200] (200,250] (250,300] >300 空气质量 优良轻微污染 轻度污染 中度污染 中重度污染 重度污染天数413183091115 (I )若某市某企业每天由空气污染造成的经济损失P (单位:元)与空气质量指数API (记为t )的关系为:0,01004400,1003001500,300t P t t t ≤≤⎧⎪=-<≤⎨⎪>⎩,在这一年内随机抽取一天,估计该天经济损失(]200,600P ∈元的概率;(II )若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成22⨯列联表,并判断是否有95%的把握认为某市本年度空气重度污染与供暖有关?非重度污染 重度污染 合计 供暖季 非供暖季节 合计100下面临界值表供参考.2()P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(本小题满分12分)在四棱锥P ABCD -中,AD ⊥平面PDC ,PD DC ⊥,底面ABCD 是梯形,//AB DC ,1AB AD PD ===,2CD =. (I )求证:平面PBC ⊥平面PBD ;(II )设Q 为棱PC 上一点,PQ PC λ= ,试确定λ的值使得二面角Q BD P --为60 . 20.(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b +=>>的离心率12e =,直线:10()l x my m --=∈R 过椭圆C 的右焦点F ,且交椭圆C 于A ,B 两点.(I )求椭圆C 的标准方程;(II )过点A 作垂直于y 轴的直线1l ,设直线1l 与定直线24l x =:交于点P ,试探索当m 变化时,直线BP是否过定点? 21.(本小题满分12分)已知函数()xf x e =,()g x mx n =+. (I )设()()()h x f x g x =-.① 若函数()h x 在0x =处的切线过点(1,0),求m n +的值;② 当0n =时,若函数()h x 在(1,)-+∞上没有零点,求m 的取值范围; (II )设函数1()()()nxr x f x g x =+,且4(0)n m m =>,求证:当0x ≥时,()1r x ≥. 请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD ⊥AF 交AF 的延长线于D 点,作CM ⊥AB ,垂足为点M .求证:(Ⅰ)DC 是⊙O 的切线;(Ⅱ) AM · MB =DF · DA .23.(本小题满分10分)选修4-4;坐标系与参数方程在直角坐标系xoy 中,直线l 的参数方程为212212x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 的方程为2sin 4cos ρθθ=.(I )求曲线C 的直角坐标方程;(II )设曲线C 与直线l 交于点A 、B ,若点P 的坐标为(1,1),求|P A |+|PB |的值. 24. (本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -4|+|x +5|.(I )试求使等式f (x )=|2x +1|成立的x 的取值范围;(II )若关于x 的不等式f (x )<a 的解集不是空集,求实数a 的取值范围.2016年全国普通高考适应性测试(第三次)理科数学参考答案(满分150分 考试时间120分钟)一、选择题:BDACC BCCAD AD11.如图,由题意知,|PF 1|-|PF 2|=2a ,|PF 1|=|PC |+|CF 1|,|PF 2|=|PD |+|DF 2|,又|CF 1|=|F 1A |,|DF 2|=|F 2A |,∴|PF 1|-|PF 2|=|F 1A |-|F 2A |=|OF 1|+|OA |-(|OF 2|-|OA |)=2|OA |=2a ,∴|OA |=a ,延长F 2B 交F 1P 于E ,可得|PF 2|=|PE |,在△EF 1F 2中由中位线定理可求得|OB |=a .12.设g (x )=f (x )+x ,依题意,存在x ∈[1,4],使g (x )=f (x )+x =ax 2-2x -a +52=0.当x =1时,g (1)=12≠0;当x ≠1时,由ax 2-2x -a +52=0,得a =2452(1)x x --. 记h (x )=2452(1)x x -- (1<x ≤4),则由h ′(x )=222252(1)x x x -+--=0得x =2或x =12(舍去). 当x ∈(1,2)时,h ′(x )>0;当x ∈(2,4)时,h ′(x )<0,即函数h (x )在(1,2)上是增函数,在(2,4)上是减函数,因此当x =2时,h (x )取得最大值,最大值是h (2)=12,故满足题意的实数a 的取值范围是⎝⎛⎦⎤-∞,12. 故选D. 二、填空题:13.9 14.9 15.8 16.2 16.设a ck b d==则圆22221:()()O x a y ka k a -+-=,2222(2)()0a x ky a x y -+++= 圆22222:()()O x c y kc k c -+-=,2222(2)()0c x ky c x y -+++= 故,a c 是关于m 的方程2222(2)()0m x ky m x y -+++=的两根因此由韦达定理得229ac x y =+=,所以点P 在圆229x y +=上,其到直线l 距离就是点P 与直线l 上任意一点M 之间的距离的最小值,为|304025|3 2.5d ⨯-⨯-=-=17.(I )因为A B C p ++=,3A C p +=,所以2B C =. 又由正弦定理,得sin sin b c B C =,sin sin b B c C =, 232sin cos 3sin C CC=, 化简得,3cos 3C =.因为()0,C p ∈,所以216sin 1cos 133C C =-=-=.所以6322sin sin 22sin cos 2333B C C C ===⨯⨯=. ………………………6分 (II )因为2B C =,所以211cos cos 22cos 12133B C C ==-=⨯-=-.因为A B C p ++=,所以22sin sin()sin cos cos sin 33166()3339A B C B C B C +-=+⨯+⨯===. 因为233b c =, 33b =,所以92c =. 所以△ABC 的面积119692sin 3322294S bc A ==⨯⨯⨯=. ………………………12分 18.(I )设“在本年内随机抽取一天,该天经济损失P ∈(200,600]元”为事件A由200<4t ﹣400≤600,得150<t≤250,频数为39,∴39()100P A =.………5分 (II )根据以上数据得到如表:非重度污染 重度污染 合计供暖季 22 8 30 非供暖季 637 70 合计8515100K 2的观测值22100(638227)85153070K ⨯-⨯=⨯⨯⨯≈4.575>3.841.所以有95%的把握认为某市本年度空气重度污染与供暖有关.………12分19.(I )∵AD ⊥平面PDC ,PD ⊂平面PDC ,DC ⊂平面PDC ,∴AD PD ⊥,AD DC ⊥, 在梯形ABCD 中,过点作B 作BH CD ⊥于H ,在BCH ∆中,145BH CH BCH ︒==⇒∠=, 又在DAB ∆中,145AD AB ADB ︒==⇒∠=, ∴4590BDC DBC BC BD ︒︒∠=⇒∠=⇒⊥,①∵PD AD ⊥,PD DC ⊥,AD DC D = ,AD ⊂平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PD BC ⊥,②由①②,∵BD PD D = ,BD ⊂平面PBD ,PD ⊂平面PBD ,∴BC ⊥平面PBD ,∵BC ⊂平面PBC ,∴平面PBC ⊥平面PBD ;………6分(II )以D 为原点,DA ,DC ,DP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图)则(0,0,1)P ,(0,2,0)C ,(1,0,0)A ,(1,1,0)B ,令000(,,)Q x y z ,则000(,,1)PQ x y z =- ,(0,2,1)PC =-,∵PQ PC λ=,∴000(,1)(0,2,1)x y z λ-=-,,∴(0,2,1)Q λλ=-,∵BC ⊥平面PBD ,∴(1,1,0)n =-是平面PBD 的一个法向量,设平面QBD 的法向量为()m x y z = ,,,则00m DB m DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,即 02(1)0x y y z λλ+=⎧⎨+-=⎩ 即 21x y z y λλ=-⎧⎪⎨=⎪-⎩,不妨令1y =,得2(1,1,)1m λλ=-- ,∵二面角Q BD P --为60︒,∴221cos(,)2222()1m n m n m nλλ⋅===⋅+- ,解得36λ=±, ∵Q 在棱PC 上,∴0λ<<1,故6λ=3-为所求.………12分 20.(I )由题设,得11,2c c a =⎧⎪⎨=⎪⎩,解得12,c a =⎧⎨=⎩,从而2223b a c =-=,所以椭圆C 的标准方程为22143x y +=. ………………………4分 (II )令0m =,则3(1)2A ,,3(1)2B -,或者3(1)2A -,,3(1)2B ,.当3(1)2A ,,3(1)2B -,时,3(4)2P ,;直线5:2BP y x =-当3(1)2A -,,3(1)2B ,时,3(4)2P -,,直线5:2BP y x =-+所以,满足题意的定点只能是5(,0)2. 设为D 点 .下面证明P,B,D 三点共线.设11()A x y ,,22()B x y ,,由于PA 垂直于y 轴,所以点P 的纵坐标为1y ,从而只要证明1(4)P y ,在直线BD 上.由2210143x my x y --=⎧⎪⎨+=⎪⎩,,得22(43)690m y my ++-=,2144(1)0m D =+> ,122643m y y m -∴+=+,122943y y m -=+.① ∵212212122233()002255533341()222222DB DPy y my y y y y k k x my my -----=-=-=--+--121222+332y y my y my -=-,①式代入上式,得0DB DP k k -=, 所以 =DB DP k k .∴点1(4)P y ,恒在直线BD 上,从而P,B,D 三点共线.即直线BP 恒过定点5(,0)2. ………………12分21.(I )①由题意,得()(()())()x x h x f x g x e mx n e m '''=-=--=-, 所以函数()h x 在0x =处的切线斜率1k m =-,又(0)1h n =-,所以函数()h x 在0x =处的切线方程(1)(1)y n m x --=-,将点(1,0)代入,得2m n +=. ……………3分 ②当0n =,可得()()x x h x e mx e m ''=-=-,因为1x >-,所以1xe e>, 1)当1m e≤时,()0x h x e m '=->,函数()h x 在(1,)-+∞上单调递增,而(0)1h =, 所以只需1(1)0h m e -=+≥,解得1m e ≥-,从而11m e e -≤≤.2)当1m e>时,由()0x h x e m '=-=,解得ln (1,)x m =∈-+∞,当(1,ln )x m ∈-时,()0h x '<,()h x 单调递减;当(ln ,)x m ∈+∞时,()0h x '>,()h x 单调递增. 所以函数()h x 在(1,)-+∞上有最小值为(ln )ln h m m m m =-, 令ln 0m m m ->,解得m e <,所以1m e e<<. 综上所述,1[,)m e e∈-. ……………6分(II )由题意,1114()()()4x x n xnx x m r x n f x g x e e x x m=+=+=+++,而14()14x xr x e x =+≥+等价于(34)40x e x x -++≥, 令()(34)4x F x e x x =-++,则(0)0F =,且()(31)1x F x e x '=-+,(0)0F '=, 令()()G x F x '=,则()(32)x G x e x '=+, 因0x ≥, 所以()0G x '>,所以导数()F x '在[0,)+∞上单调递增,于是()(0)0F x F ''≥=,从而函数()F x 在[0,)+∞上单调递增,即()(0)0F x F ≥=. ……………12分22.(Ⅰ)连结OC ,则∠OAC =∠OCA . 又∠OAC =∠F AC ,所以∠F AC =∠OCA ,所以OC ∥AD ,因为CD ⊥AD ,所以CD ⊥OC ,即CD 是⊙O 的切线.(Ⅱ)连结BC . 在Rt △ACB 中,CM 2=AM · MB .因为CD 是⊙O 的切线,所以CD 2=DF ·DA .又Rt △AMC ≌Rt △ADC ,所以C M =CD , 所以AM · MB =DF · DA . 23.(Ⅰ)曲线C 的直角坐标方程为24y x =..⋯⋯⋯4分(Ⅱ)将212212x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩带入24y x =得26260t t +-=, 所以12121212||||||||||()446PA PB t t t t t t t t +=+=-=+-=.⋯⋯⋯10分24.(I )f (x )=|x -4|+|x +5|=⎩⎪⎨⎪⎧-2x -1,x ≤-5,9,-5<x <4,2x +1,x ≥4.又|2x +1|=⎩⎨⎧-2x -1,x ≤-12,2x +1,x >12,所以若f (x )=|2x +1|,则x 的取值范围是(-∞,-5]∪[4,+∞)..⋯⋯⋯5分 (II )因为f (x )=|x -4|+|x +5|≥|(x -4)-(x +5)|=9,∴f (x )min =9. 所以若关于x 的不等式f (x )<a 的解集非空,则a >f (x )min =9, 即a 的取值范围是(9,+∞)..⋯⋯⋯10分。
2016年全国普通高考重庆适应性测试(第三次)数学(理)试题 含答案

2016年全国普通高考适应性测试(第三次)理科数学试题(满分150分 考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U =R ,集合M ={x |y =3-2x },N ={y |y =3-2x },则图中阴影部分表示的集合是( )A .{x |错误!<x ≤3}B .{x |错误!〈x <3}C .{x |错误!≤x 〈2}D .{x |错误!<x 〈2} 2.已知复数z =1+错误!,则1+z +z 2+…+z 2 016为( )A .1+iB .1-iC .iD .13.若52345012345(13)x a a x a x a x a x a x-=+++++,则012345||||||||||||aa a a a a +++++的值等于()A .1024B . 243C . 32D . 244.若某程序框图如图所示,则输出的n 的值是( )A . 43B . 44C .45D .465.给出下列四个结论:①“若am 2〈bm 2,则a 〈b "的逆命题是真命题;②若x ,y ∈R ,则“x ≥2或y ≥2”是“x 2+y 2≥4”的充分不必要条件;开始 p =1,n =1 n =n +1 p >2016?输出n结束 第4题图是否p =p +2n -1第1题图③函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0。
4,则P (ξ>2)=0。
2。
其中正确的结论是()A.①②B.①③C.②③D.③④6.某几何体的三视图如图所示,其中正视图是腰第6题图长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A。
错误! B.错误!C.1 D。
错误!7.已知实数x、y满足:错误!,z=|2x-2y-1|,则z的取值范围是( )A.[错误!,5]B.[0,5]C.[0,5)D.[错误!,5)8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社"、“科技社"、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108 C.180 D.2169.若sin 2α=错误!,sin (β-α)=错误!,且α∈错误!,β∈错误!,则α+β的值是( )A.7π4 B.错误! C.错误!或错误! D 。
2020年对口高职高考数学预测模拟试卷

2020年对口高职高考数学模拟试卷一、 选择题1. 设集合M={ x |X 2>16},N={ x |log 3x >1},则M ∩N=( ).A. {x |x >3}B. {x |x >4}C. {x |x <−4}D. {x |x >4或x <4}2.下列函数既是奇函数又是增函数的是()A.y =x −1B. y =x 3C. y =log 2xD.y=2x 3.直线(√3−√2)x+y=3和x+(√2−√3)y=2的位置关系是( )A.相交不垂直B. 垂直C. 平行D.重合4.等差数列{a n }中, a 1+a 4+a 7=39, a 3+a 6+a 9=27,则数列{a n }的前9项和S n =( )A.66B. 99C. 144D.2975.若抛物线y 2=2px(p>0)过点M(4,4),则点M 到准线的距离d=( ).A.5B. 4C. 3D.26.设全集U={ x |4≤X ≤10,X ≥∈N },A={4,6,8,10},则C U A=( ).A.{5}B.{5,7}C. {5,7,9}D.{7,9} 7. “a>0且b>0”是“ab>0”的( )条件。
A. 充分不必要B.充分且必要C.必要不充分D. 以上答案都不对8.如果f(X)=a x 2+bx+c(a ≠0)是偶函数,那么g(X)=a x 3+b x 2−cx 是( ). A.偶函数 B.奇函数C.非奇非偶函数D. 既是奇函数又是偶函数9.设函数f(X)= log a x(a>0且a ≠1),f(4)=2,则f(8)=( ). A.2 B.3 C.3 D.13 10.sin 800-√3cos 800−2 sin 200的值为( )。
A.0 B.1 C.−sin200 D.4sin200 11.等比数列的前4项和是203,公比q=−13,则a 1=( ). A.-9 B.3 C.9 D.13 12.已知(23) y =(32) x2+1,则y 的最大值是( )。
2016年职高高考数学试卷

页脚内容12016 职高高考数学试题姓名____________一、选择题1、设全集U={0,1,2,3,-1},集合A={x ︱1≤x ≤3},则C U A 等于( )A 、{2,1}B 、{2,3}C 、{0,-1}D 、{3,-1}2、下列选项中错误的是( )A 、x>0⇒ x 2>0B 、x<1⇐ x<-1C 、x=0⇒ xy=0D 、x=3⇔ x 2+2x-15=03、若a 2>a -2,则a 的取值范围是( )A 、(0,1)B 、(-∞,-1)U (1,+∞)C 、(-∞,0)D 、[0,1]4、函数y=x 2+6 +log 4(x-4)3的定义域是( )A 、(0,4)B 、(4,+∞)C 、[4,+∞)D 、(-∞,-4)5、函数y=-cos5x 的最小正周期是( )A 、52πB 、2π C 、Π D 、2Π 6、不等式|-3x+4|≥7的解集是( )A 、{x ︱x ≥-5}B 、{x ︱-1≤x ≤311}页脚内容2 C 、{x ︱x ≤-1或x ≥311} D 、{x ︱x ≤1}7、在等差数列{a n }中,a 4=4,a 2=1,则a 8的值是( )A 、21B 、2C 、4D 、108、已知函数f(x)=22x +3-lgx 4,则f(-1)的值是( )A 、413B 、10C 、13D 、149、下列各角中与-340o 角终边相同的角为( )A 、-20oB 、20oC 、-40oD 、40o10、直线y=25x-2与5x-2y-6=0直线的位置关系是( )A 、重合B 、平行C 、垂直D 、相交但不垂直11、下列函数中属于偶函数的是( )A 、f(x)=-2x 2B 、f(x)=-3x+x 2C 、f(x)=-42xD 、f(x)=-2x+112、若角α终边上有一点P (2,-3),则cos α的值是()A 、13132B 、-13133C 、-13132D 、13133页脚内容313、圆(x+4)2+(y-2)2=25的圆心坐标和半径分别是( )A 、(4,-2),5B 、(2,-4),5C 、(-4,2),5D 、(-2,-4),514、若cos(∏-α)= 23-且α是锐角,则tan α的值是( ) A 、 3 B 、 2 C 、1 D 、33 15、若sin α=43-且α是第三象限的角,则cos α的值是( ) A 、-47 B 、47 C 、53 D 、32 16、下列函数中,在区间(1,+∞)上为减函数的是( )A 、y=log 3xB 、y=x 2-3xC 、y= (52)x D 、y=3x+1 17、已知a=(4,-2),b=(-6,4),则21(2a+3b )的坐标是( ) A 、(-5,-4) B 、(5,-4) C 、(4,-5) D 、(-5,4)18、第一年产量为a,每年比上一年减少p%,求产量与年数的关系式A 、a(1- p ℅)B 、na(1- p ℅)C 、a(1-p ℅)nD 、a(1-p ℅)n-119、一次投两个色子,点数和为6的概率为A 、136B 、512C 、536D 、16页脚内容420、直线a ∥平面α,直线b ⊥平面α,则下列说法正确的是( )A 、a ∥bB 、 a ⊥bC 、a 与b 垂直且异面D 、a 与b 垂直且相交二、填空21、设集合A={x ︱-x 2-3>0},集合B={x ︱︱2x+3︱≥1},则A ∩B=______22、过点(-1,2)且与直线-3x+y-2=0垂直的直线方程是(用直线的斜截式方程表示)__________________23、函数y=log 2(3x-4)+ x 2-2x 的定义域是(用区间表示)_______24、函数f(x)=-sin(2x-7)+6 的最大值是_____25、已知等差数列{a n }的前n 项和S n =-2n 2+n,则a 2的值是______26、若tan α=3,则3cos α-2sin α-4sin α+cos α =__________27、已知a=(2,-1),b=(-8,-6),则cos<a,b>等于________ 28、已知a=(-2,-3), b=(1,y) 且 (a - 3b) ⊥a, 则y=_____29、已知sin(∏-α)= 21 且α∈(0,21∏),则tan α等于_____ 30、从1,2,3,4,5中,不放回的任取两个数,则这两个数都是奇数的概率是_________三、解答题31、某类床垫按质量分为6个档次,生产最低档次床垫(将最低档次记为第一档)的每件利润是200元,如果床垫每提高一个档次则利润增加40元,用同样的工时,每天可生产30张最低档次的床垫,提高一个档次减少2张,求生产何种档次的床垫所获利润最大32、求以C(2,-4)为圆心,且与直线4x+3y-11=0相切的圆的方程33,已知三个数成等差数列,它们的和为24,平方和为200,公差为d,(d为负数)(1)求这三个数;(2)求以公差d的值为首项,公比为3的等比数列{a n}的通项公式a n页脚内容5页脚内容634,某射手射中10环的概率为0.24,射中9环的概率为0.36,射中8环的概率为0.29 求,(1)这个射手射中10环或9环的概率(2)这个射手射一次射中不低于8环的概率35,如图,已知直角三角形ABCABC ,PA=1 求二面角P —BC —A 的大小。
2016年高职高考数学答案

2016年高职高考数学答案篇一:2016年高职数学模拟试卷高职高考班《数学》模拟试题班别学号姓名一、选择题:(本大题共15小题,每小题5分,共75分。
请把每题唯一的正确答案填入表格内)1、设集合M?{xx?1?1},集合N?{1,2,3,4},则集合M?N?()A. {1,2} B. {2,3} C. {3,4} D. {2,3,4}2、x?2是x?4的()A. 充分条件B. 必要非充分条件C. 充要条件D. 既非充分条件又非必要条件3、函数y?x?1在区间(?1,??)上是()A. 奇函数B. 偶函数C. 增函数D. 减函数4、不等式1?x0的解集为()1?xA. (??,?1)?[1,??)B. [?1,1]C. (??,?1]?[1,??)D. [?1,1) 5、已知tan?cos??0,且tan?sin??0,则角?是()A.第一象限角B. 第二象限角C. 第三象限角D. 第四象限角6、函数f(x)?2x?8?x?2x?152的定义域是()A. (?3,5)B. (??,?3)?(5,??)C. [?3,5]D. (?3,4)?(4,5)2x1,x17、设函数f(x)??2,则f[f(?3)]?()?x?2,x?1A. ?5 B. 15 C. ?11 D. 7 8、已知向量?(1,2)与向量?(4,y)垂直,则y?()A. ?8 B. 8C. 2 D. ?2 9、已知两条直线y?ax?2和y?(a?2)x?1互相垂直,则a?()A. 1 B.2 C. 0D. ?110、函数f(x)??x2?4x?7在区间[?3,4]上的最大值是()A. ?25B. 19C. 11D. 10111、等比数列{an}中,a1?,a4?3,则该数列的前5项之积为()9A. ?1B. 3C. 1D. ?312、已知数列{an}中,a1?3,an?an?1?3则a10?()A. 30B. 27C. 33D. 36x?13、函数f(x)?3sin(?)(x?R)的最小正周期是()46A. 2?B. 4?C. 8?D. ? 14、中心在原点,焦点在y轴上,离心率为,的椭圆标准方程为()2x2y2x2x2y2y222y1 C. ?1 ??1 B. ??1 D. x?A.44622615、在10件产品中有4件次品,现从中任取3件产品,至少有一件次品的概率是() A.2531 B.C.D.5656二、填空题:(每小题5分,共5×5=25分。
2020年重庆市高等职业教育分类考试高考数学模拟试卷(理科)(4月份)(含答案解析)

2020年重庆市高等职业教育分类考试高考数学模拟试卷(理科)(4月份)一、选择题(本大题共10小题,共50.0分)1.已知复数,则复数的模为A. 3B.C.D. 52.已知某班级部分同学某次数学联合诊断测成绩的茎叶图如图所示,则其中位数为A. 94B. 92C. 91D. 863.已知等差数列的首项,公差,则等于A. 2B. 0C.D.4.一元二次不等式的解集为A. B. 或C. D. 或5.已知平行四边形ABCD中,向量,,则向量的坐标为A. 15B.C.D.6.一个球的表面积是,那么这个球的体积为A. B. C. D.7.二项式展开式中x的系数为A. 5B. 16C. 80D.8.“”是“”的A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件9.若,且,则下列不等式中成立的是A. B.C. D.10.在中,,,,则中最小的角为A. B. C. D.二、填空题(本大题共5小题,共25.0分)11.设集合3,,4,,则集合______.12.已知等比数列的公比,,则首项______.13.若,则______.14.已知过原点的直线l与圆C:相交于不同的两点A,B,且线段AB的中点坐标为,则弦长______.15.已知定义在R上的函数满足,当时,,则______.三、解答题(本大题共5小题,共75.0分)16.从7名男学生和5名女学生中随机选出2名去参加社区志愿活动,一共有多少种选法?求选出的学生恰好男、女各1名的概率.17.已知函数,.求函数的最小正周期;求函数在的最值.18.已知函数.求函数在处的切线方程;求函数的极值.19.如图,四棱锥的底面是矩形,平面ABCD,E,F分别是AB,PD的中点,且.求证:平面PEC;求证:平面平面PCD.20.已知椭圆C:,的离心率,长轴长是短轴长的2倍.求椭圆C的方程;设经过点的直线l与椭圆C相交于不同的两点M,若点B的坐标为,且,求直线l的方程.-------- 答案与解析 --------1.答案:D解析:解:复数,则复数的模为.故选:D.利用复数的模的计算公式即可得出.本题考查了复数的模的计算公式,考查了推理能力与计算能力,属于基础题.2.答案:B解析:解:由茎叶图可知,17个数据从小到大排列依次为:76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114.则中位数为92,故选:B.由茎叶图把数从小到大排列,易找中位数.本题考查茎叶图,中位数的概念,属于基础题.3.答案:D解析:解:,公差,则.故选:D.利用通项公式即可得出.本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.4.答案:B解析:解:不等式对应方程的解为和,所以不等式的解集为故选:B.根据不等式对应方程的解,写出不等式的解集.本题考查了一元二次不等式的解法问题,是基础题.5.答案:D解析:解:根据向量加法的平行四边形法则,.故选:D.根据向量加法的平行四边形法则即可得出,然后带入坐标即可.本题考查了向量加法的平行四边形法则,向量坐标的加法运算,考查了计算能力,属于基础题.6.答案:B解析:【分析】本题是基础题,考查球的表面积、体积的计算,考查计算能力,公式的应用.通过球的表面积求出球的半径,然后求出球的体积.【解答】解:一个球的表面积是,所以球的半径为:2,那么这个球的体积为:.故选B.7.答案:C解析:解:二项式展开式中x的项为,因此系数为80.故选:C.二项式展开式中x的项为,即可得出.本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.8.答案:C解析:解:由,解得,3,“”是“”的充分不必要条件.故选:C.由,解得,3,即可判断出关系.本题考查了方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.9.答案:D解析:【分析】本题考查了比较大小,熟练掌握不等式的基本性质是解题的关键.利用不等式的基本性质即可判断出.【解答】解:,;,,;.故选D.10.答案:B解析:解:,,,中,由三角形中大边对大角可得C为最小角,由余弦定理可得,解得,.故选:B.由已知利用余弦定理即可计算得解.本题主要考查了余弦定理在解三角形中的应用,属于基础题.11.答案:解析:解:3,,4,,.故答案为:由A与B,求出两集合的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.答案:解析:解:等比数列的公比,,,解得首项.故答案为:.利用等比数列通项公式能求出首项.本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.13.答案:解析:解:因为,所以.故答案为:.把所求的式子利用二倍角的余弦函数公式化为关于的式子,将的值代入即可求出值.通常,在高考题中,三角函数多会以解答题的形式出现在第一个解答题的位置,是基础分值的题目,学生在解答三角函数问题时,往往会出现,会而不对的状况.所以,在平时练习时,既要熟练掌握相关知识点,又要在解答时考虑更为全面.这样才能熟练驾驭三角函数题.14.答案:2解析:解:根据题意,圆C:,其标准方程为,则圆C的圆心,半径;线段AB的中点坐标为,则,则;故答案为:2.根据题意,由圆的方程分析可得圆心与半径,求出的值,由勾股定理分析可得答案.本题考查直线与圆的位置关系,涉及弦长的计算,属于基础题、15.答案:解析:解:根据题意,函数满足,则有,即函数是周期为4的周期函数,则,当时,,则,故有;故答案为:根据题意,分析可得,即函数是周期为4的周期函数,据此可得,结合函数的解析式分析可得答案.本题考查函数周期性的判断以及应用,涉及函数值的计算,属于基础题.16.答案:解:从12名学生中随机选出2名同学有种方法.选出的学生恰好男、女各1名有种方法,则选出的学生恰好男、女各1名的概率.解析:直接用组合数公式作.找出选出的学生恰好男、女各1名的选法,相比即可.本题考查排列组合的应用,属于基础题.17.答案:解:函数,根据函数的解析式可知,函数的最小正周期为.由于,所以,当时,即时函数的最小值为.当时,即时,函数的最大值为.解析:直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.利用函数的定义域求出函数的值域,进一步求出函数的最值.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.18.答案:解:,所以切点为,又,,所以切线方程为:,即.函数的定义域为,得,当时,,递减;时,,递增.所以函数在处取得极小值,无极大值.解析:先对求导数,然后求出切点处的函数值、导数值,利用直线方程的点斜式,写出切线方程;对函数求导数,求出导数的零点,判断导数零点左右两侧的符号,确定极大小值点和极值.本题考查导数的几何意义及利用导数研究函数极值的方法步骤.属于中档题.19.答案:证明:取PC的中点G,连结FG、EG,为PD中点为的中位线,即,.四边形ABCD为矩形,E为AB的中点,,.,,四边形AEGF是平行四边形,.又平面PEC,平面PEC,平面PEC;,F是PD的中点,,平面ABCD,平面ABCD,,又因为矩形中,且,AP,平面APD,平面APD,平面APD,,又,且,PD,平面PDC,平面PDC,由得,平面PDC,又平面PEC,平面平面PCD.解析:本题主要考查了空间线面平行、面面垂直的判定,属于中档题.取PC的中点G,连结FG、EG,又平面PEC,平面PEC,平面PEC;由得,只需证明平面PDC,继而平面PDC,即可得到平面平面PCD.20.答案:解:由题意,,解得,.椭圆C的方程为:;当直线l的斜率不存在或斜率为0时,不合题意;设直线l:.联立,得..设,,则,.,.即..整理得:,解得:或.则直线l的方程为:或.解析:由题意列关于a,b,c的方程组,解得,,则椭圆方程可求;当直线l的斜率不存在或斜率为0时,不合题意;设直线l:,联立直线方程与椭圆方程,利用根与系数的关系结合向量数量积为0,列式求得m值,则直线方程可求.本题考查椭圆方程的求法,考查直线与椭圆的位置关系的应用,考查计算能力,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市对口高职数学综合试卷
一、选择题(共12小题,每小题7分,共84分)
1.已知集合A={x|-2<x ≤5},集合B={x|-3≤x<0},则AUB 等于 ( )
A.{x|-2<x<0}
B.{x|-3≤x ≤5}
C.{x|-2<x ≤5}
D.{x|-3≤x<0}
2.已知5
32cos =α,则αcos 等于 ( ) A.54 B. 257 C. 2512 D.25
7- 3.函数)1(log 2x y -=的定义域为 ( )
A. )(1,∞-
B. ]0,∞-(
C. )1,0[
D. R
4.直线2x-ay+3=0与直线4x+2y-1=0垂直则a 的值为 ( )
A.2
B.-2
C.-4
D.4
5.已知g(x) f(x),都是定义域为R 的奇函数,
且6)(2)(5)(+-=x g x f x F ,若b a F =)(,则=-)(a F ( ) A.b-6 B.b-12 C.12-b D.12+b
6.不等式0)2)(3(≤--x x 的解集为 ( )
A. [2,3]
B.),3[]2,(+∞-∞
C.(2,3)
D.空集
7.已知椭圆的焦点在x 轴上,焦距为2,P 点是椭圆上一点,它到左焦点的距离为2,到右焦点的距离为4,则椭圆的标准方程为 ( ) A. 12322=+y x B.18922=+y x C.19822=+y x D.15
92
2=+y x 8.在等比数列}{n a 中,已知,8,231==a a 则5a = ( )
A.8
B.16
C.32
D.64
9.若a 与b 均为实数,则a=b 是a 2=b 2成立的( )
A.充分条件
B.必要条件
C.充要条件
D.既不充分也不必要条件
10.将3个不同的球任意的放入4个不同的盒子中,则不同放法有( )
A.4
B.24
C.64
D.81
11.函数x x y cos 4sin 3-=的最大值为 ( )
A.3
B.4
C.5
D.7
12.若圆2222342k k y x y x --=+-+与直线052=++y x 相切,则k = ( )
A.3或-1
B.-3或1
C.-2或1
D.2或-1
二、填空题(共6小题,每小题7分,共42分)
13.已知x x x f -=2)(,则=-)(x f __________
14.抛物线x y 82-=上一点P 到焦点的距离为3,则点P 的横坐标为=________
15.数列的{a n }的前n 项和n n S n +=22,那么它的通项公式为_________
16.在ABC ∆,a=15,b=10, 60=∠A ,则sinB=_________
17.若角α的终边经过两直线3x-2y+5=0和x+y-5=0的交点P ,则α的正弦值为________
18.设函数32)(2+-=mx x x f ,当)+∞-∈,2[x 是增函数,当]2,(-∞∈x 是减函数,则=-)2(f __________
三、解答题(共6小题,共74分)
19.计算:2122304143tan
1019lg 2016-⎪⎭⎫ ⎝⎛-+-⋅+P og π
20.解不等式
{2|2|12
231≤-<--+x x x
21.已知函数)6cos()(π+=x a x f 的图像经过点⎪⎭⎫ ⎝
⎛21-2,π (1)求a 的值
(2)若sin θ=31,2
0πθ<<,求)(θf
22.已知数列}{a n 的前n 项和为n S ,1a 1=,且满足12a 1n =-+n S 。
(1)求数列}{a n 的通项公式;
(2)设1n 3n a log b +=,求数列{n b }的前n 项和。
23.有一块宽为5米的长方形铁皮,将宽的两端向上折起,作成一个开口水槽,使其截面是下底角为 60的等腰梯形,设腰为x 米,横截面面积为y 平方米。
(1)求y 与x 的函数关系式,并写出定义域;
(2)当x 取何值时,面积最大,最大面积是多少?
24.设双曲线13
2
22=-x a y 的焦点分别为21,F F ,离心率为2; (1)求双曲线的标准方程及渐近线21,l l 的方程。
(2)若A,B 分别是21,l l 上的动点,且||5||221F F AB =,求线段AB 中点M 的轨迹方程。