(完整版)2018年天津市高考数学试题答卷(理科)

合集下载

2021年全国统一高考数学(理)试题(Word版,含答案解析)

2021年全国统一高考数学(理)试题(Word版,含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABC.4D二、填空题:本题共4小题,每小题5分,共20分。

2019年天津市高考数学试题(理科)(解析版)

2019年天津市高考数学试题(理科)(解析版)

2019年天津市高考数学试题(理科)一、单选题1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A C B =( ) A .{}2 B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】先求A B ⋂,再求()A C B 。

【详解】 因为{1,2}A C =, 所以(){1,2,3,4}A C B =.故选D 。

【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……则目标函数4z x y =-+的最大值为( )A .2B .3C .5D .6【答案】C【解析】画出可行域,用截距模型求最值。

【详解】已知不等式组表示的平面区域如图中的阴影部分。

目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值。

由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=。

故选C 。

【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.3.设x R ∈,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】分别求出两不等式的解集,根据两解集的包含关系确定. 【详解】化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B 。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2019年天津市高考数学试卷(理科)-解析版

2019年天津市高考数学试卷(理科)-解析版

2019年天津市高考数学试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{1A =-,1,2,3,5},{2B =,3,4},{|13}C x R x =∈< ,则()(A C B = )A .{2}B .{2,3}C .{1-,2,3}D .{1,2,3,4}【解答】解:设集合{1A =-,1,2,3,5},{|13}C x R x =∈< ,则{1A C = ,2},{2B = ,3,4},{()1A C B = ,2}{2 ,3,4}{1=,2,3,4};故选:D .2.(5分)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩ 则目标函数4z x y =-+的最大值为()A .2B .3C .5D .6【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5.故选:C .3.(5分)设x R ∈,则“250x x -<”是“|1|1x -<”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解答】解:250x x -< ,05x ∴<<,|1|1x -< ,02x ∴<<,05x << 推不出02x <<,0205x x <<⇒<<,05x ∴<<是02x <<的必要不充分条件,即250x x -<是|1|1x -<的必要不充分条件.故选:B .4.(5分)阅读如图的程序框图,运行相应的程序,输出S 的值为()A .5B .8C .24D .29【解答】解:1i =,0s =;第一次执行第一个判断语句后,1S =,2i =,不满足条件;第二次执行第一个判断语句后,1j =,5S =,3i =,不满足条件;第三次执行第一个判断语句后,8S =,4i =,满足退出循环的条件;故输出S 值为8,故选:B .5.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),则双曲线的离心率为()ABC .2D【解答】解: 抛物线24y x =的焦点为F ,准线为l .(1,0)F ∴,准线l 的方程为1x =-,l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),2||b AB a ∴=,||1OF =,∴24b a=,2b a ∴=,c ∴==,∴双曲线的离心率为c e a==故选:D .6.(5分)已知5log 2a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为()A .a c b <<B .a b c <<C .b c a <<D .c a b <<【解答】解:由题意,可知:5log 21a =<,110.5122221log 0.25log 5log 425b log log --====>=.0.20.51c =<,b ∴最大,a 、c 都小于1.521log 25a log ==,10.2510.5()2c ====.而22log 5log 42>=>∴215log <.a c ∴<,a cb ∴<<.故选:A .。

(完整版)2018年高考天津卷理科数学真题及答案,推荐文档

(完整版)2018年高考天津卷理科数学真题及答案,推荐文档

理等基础知识,考查运算求解能力.满分 13 分.
.
.
(Ⅰ)解:在△ABC 中,由正弦定理 a b ,可得 bsin A asin B ,
sin A sin B
又由 bsin A a cos(B π) ,得 a sin B a cos(B π) ,即 sin B cos(B π) ,可得
处的切线平行,证明
x1
g
(
x2
)
2
ln ln ln a
a

1
(III)证明当 a ee 时,存在直线 l,使 l 是曲线 y f (x) 的切线,
也是曲线 y g(x) 的切线.
.
.
参考答案:
一、选择题:本题考查基本知识和基本运算.每小题 5 分,满分 40
分.
(1)B
(2)C
(3)B
(4)A
所以,随机变量 X 的分布列为
.
.
X0 1 2 3
P
1 35
12 35
18 35
4 35
随机变量
X
的数学期望
E(X
)
0
1 35
1
12 35
2
18 35
3
4 35
12 7

(ii)解:设事件 B 为“抽取的 3 人中,睡眠充足的员工有 1 人,
睡眠不足的员工有 2 人”;事件 C 为“抽取的 3 人中,睡眠充足的
祝各位考生考试顺利! 第I卷
注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号 涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 2.本卷共 8 小题,每小题 5 分,共 40 分。 参考公式: 如果事件 A,B 互斥,那么 P(A B) P(A) P(B) . 如果事件 A,B 相互独立,那么 P(AB) P(A)P(B) . 棱柱的体积公式V Sh ,其中 S 表示棱柱的底面面积, h 表示棱

2019年天津市高考数学试卷(理科)-含答案

2019年天津市高考数学试卷(理科)-含答案

2019年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{1A =-,1,2,3,5},{2B =,3,4},{|13}C x R x =∈<„,则()(A C B =I U)A .{2}B .{2,3}C .{1-,2,3}D .{1,2,3,4}2.(5分)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩„………则目标函数4z x y =-+的最大值为() A .2B .3C .5D .63.(5分)设x R ∈,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(5分)阅读如图的程序框图,运行相应的程序,输出S 的值为( )A .5B .8C .24D .295.(5分)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),则双曲线的离心率为()A B C .2D6.(5分)已知5log 2a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为( ) A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.(5分)已知函数()sin()(0f x A x A ωϕ=+>,0ω>,||)ϕπ<是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x的最小正周期为2π,且()4g π,则3()(8f π= )A .2-B .CD .28.(5分)已知a R ∈.设函数222,1,(),1x ax a x f x x alnx x ⎧-+=⎨->⎩g „若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为( ) A .[0,1]B .[0,2]C .[0,]eD .[1,]e二、填空题:本大题共6小题,每小题5分,共30分. 9.(5分)i 是虚数单位,则5||1ii-+的值为 . 10.(5分)831(2)8x x -的展开式中的常数项为 .11.(5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .12.(5分)设a R ∈,直线20ax y -+=和圆22cos ,(12sin x y θθθ=+⎧⎨=+⎩为参数)相切,则a 的值为 .13.(5分)设0x >,0y >,25x y +=的最小值为 .14.(5分)在四边形ABCD 中,//AD BC ,AB =5AD =,30A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,则BD AE =u u u r u u u rg .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值.16.(13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.17.(13分)如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(Ⅰ)求证://BF 平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.18.(13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为45. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||(ON OF O =为原点),且OP MN ⊥,求直线PB 的斜率.19.(14分)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式; ()ii 求2*1()ni i i a c n N =∈∑.20.(14分)设函数()cos x f x e x =,()g x 为()f x 的导函数. (Ⅰ)求()f x 的单调区间; (Ⅱ)当[4x π∈,]2π时,证明()()()02f xg x x π+-…; (Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明20022sin cos n n e n x x x πππ-+-<-.2019年天津市高考数学试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{1A =-,1,2,3,5},{2B =,3,4},{|13}C x R x =∈<„,则()(A C B =I U)A .{2}B .{2,3}C .{1-,2,3}D .{1,2,3,4}【分析】根据集合的基本运算即可求A C I ,再求()A C B I U ;【解答】解:设集合{1A =-,1,2,3,5},{|13}C x R x =∈<„,则{1A C =I ,2}, {2B =Q ,3,4},(){1A C B ∴=I U ,2}{2⋃,3,4}{1=,2,3,4};故选:D .【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩„………则目标函数4z x y =-+的最大值为() A .2B .3C .5D .6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件20,20,1,1,x y x y x y +-⎧⎪-+⎪⎨-⎪⎪-⎩„………作出可行域如图:联立120x x y =-⎧⎨-+=⎩,解得(1,1)A -,化目标函数4z x y =-+为4y x z =+,由图可知,当直线4y x z =+过A 时,z 有最大值为5. 故选:C .【点评】本题考查简单的线性规划知识,考查数形结合的解题思想方法,是中档题. 3.(5分)设x R ∈,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件【分析】充分、必要条件的定义结合不等式的解法可推结果 【解答】解:250x x -<Q ,05x ∴<<, |1|1x -<Q ,02x ∴<<, 05x <<Q 推不出02x <<, 0205x x <<⇒<<,05x ∴<<是02x <<的必要不充分条件,即250x x -<是|1|1x -<的必要不充分条件.故选:B .【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题. 4.(5分)阅读如图的程序框图,运行相应的程序,输出S 的值为( )A .5B .8C .24D .29【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】解:1i =,0s =;第一次执行第一个判断语句后,1S =,2i =,不满足条件; 第二次执行第一个判断语句后,1j =,5S =,3i =,不满足条件; 第三次执行第一个判断语句后,8S =,4i =,满足退出循环的条件; 故输出S 值为8, 故选:B .【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题5.(5分)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),则双曲线的离心率为()A B C .2D【分析】推导出(1,0)F ,准线l 的方程为1x =-,2||bAB a=,||1OF =,从而2b a =,进而c =,由此能求出双曲线的离心率. 【解答】解:Q 抛物线24y x =的焦点为F ,准线为l . (1,0)F ∴,准线l 的方程为1x =-,l Q 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点), 2||b AB a ∴=,||1OF =,∴24b a=,2b a ∴=,c ∴==,∴双曲线的离心率为ce a=故选:D .【点评】本题考查双曲线的离心率的求法,考查抛物线、双曲线的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.6.(5分)已知5log 2a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为( ) A .a c b <<B .a b c <<C .b c a <<D .c a b <<【分析】本题先将a 、b 、c 的大小与1作个比较,发现1b >,a 、c 都小于1.再对a 、c 的表达式进行变形,判断a 、c 之间的大小. 【解答】解:由题意,可知: 5log 21a =<,110.5122221log 0.25log 5log 425b log log --====>=. 0.20.51c =<,b ∴最大,a 、c 都小于1.521log 25a log ==Q,10.2510.5()2c ===而22log 5log 42>=>∴215log <. a c ∴<,a cb ∴<<.故选:A .【点评】本题主要考查对数、指数的大小比较,这里尽量借助于整数1作为中间量来比较.本题属基础题.7.(5分)已知函数()sin()(0f x A x A ωϕ=+>,0ω>,||)ϕπ<是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且()4g π,则3()(8f π= )A .2-B.CD .2【分析】根据条件求出ϕ和ω的值,结合函数变换关系求出()g x 的解析式,结合条件求出A 的值,利用代入法进行求解即可. 【解答】解:()f x Q 是奇函数,0ϕ∴=, 则()sin()f x A x ω=将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x . 即1()sin()2g x A x ω=()g x Q 的最小正周期为2π,∴2212ππω=,得2ω=, 则()sin g x A x =,()sin 2f x A x =,若()4g π=,则()sin 44g A A ππ===2A =,则()2sin 2f x x =,则333()2sin(22sin 2884f πππ=⨯== 故选:C .【点评】本题主要考查三角函数的解析式的求解,结合条件求出A ,ω和ϕ的值是解决本题的关键.8.(5分)已知a R ∈.设函数222,1,(),1x ax a x f x x alnx x ⎧-+=⎨->⎩g „若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为( ) A .[0,1]B .[0,2]C .[0,]eD .[1,]e【分析】分2段代解析式后,分离参数a ,再构造函数求最值可得. 【解答】解:当1x =时,f (1)12210a a =-+=>恒成立;当1x <时,22()22021x f x x ax a ax =-+⇔-厖恒成立,令2222(11)(1)2(1)11()(12)2)011111x x x x x g x x x x x x x -----+==-=-=-=--+--=-----„,2()0max a g x ∴=…,0a ∴>.当1x >时,()0xf x x alnx alnx=-⇔厔恒成立, 令()x h x lnx=,则2211()()()lnx x lnx x h x lnx lnx --'==g, 当x e >时,()0h x '>,()h x 递增, 当1x e <<时,()0h x ''<,()h x 递减,x e ∴=时,()h x 取得最小值h (e )e =, ()min a h x e ∴=…,综上a 的取值范围是[0,]e . 故选:C .【点评】本题考查了函数恒成立,属中档题. 二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)i 是虚数单位,则5||1ii-+【分析】本题可根据复数定义及模的概念及基本运算进行计算. 【解答】解:由题意,可知:225(5)(1)56231(1)(1)1i i i i i i i i i i -+---+===-++--,5|||23|1ii i-∴=-+【点评】本题主要考查复数定义及模的概念及基本运算.本题属基础题. 10.(5分)831(2)8x x-的展开式中的常数项为 28 . 【分析】本题可根据二项式的展开式的通项进行计算,然后令x 的指数为0即可得到r 的值,代入r 的值即可算出常数项. 【解答】解:由题意,可知: 此二项式的展开式的通项为: 888188833111(2)()2()()(1)288r r r r rr r r r r r T C x C x C x x---+=-=-=-g g g g g 8484rr x --g .∴当840r -=,即2r =时,1r T +为常数项.此时22218(1)2T C +=-g 84228-⨯=.故答案为:28.【点评】本题主要考查二项式的展开式的通项,通过通项中未知数的指数为0可算出常数项.本题属基础题.11.(5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为4π.【分析】求出正四棱锥的底面对角线长度和正四棱锥的高度,根据题意得圆柱上底面的直径就在相对中点连线,有线段成比例求圆柱的直径和高,求出答案即可.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分, 由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于12; 由相似比可得圆柱的高为正四棱锥高的一半1, 则该圆柱的体积为:21()124v sh ππ==⨯=;故答案为:4π 【点评】本题考查正四棱锥与圆柱内接的情况,考查立体几何的体积公式,属基础题. 12.(5分)设a R ∈,直线20ax y -+=和圆22cos ,(12sin x y θθθ=+⎧⎨=+⎩为参数)相切,则a 的值为 34. 【分析】推导出圆心(2,1)到直线20ax y -+=的距离:2d r ===,由此能求出a 的值.【解答】解:a R ∈Q ,直线20ax y -+=和圆22cos ,(12sin x y θθθ=+⎧⎨=+⎩为参数)相切, ∴圆心(2,1)到直线20ax y -+=的距离:2d r ==,解得34a =. 故答案为:34. 【点评】本题考查实数值的求法,考查直线与圆相切的性质、圆的参数方程等基础知识,考查运算求解能力,是基础题.13.(5分)设0x >,0y >,25x y +=的最小值为【分析】利用基本不等式求最值. 【解答】解:0x >,0y >,25x y +=,===;由基本不等式有:=时,即:3xy=,25x y+=时,即:31xy=⎧⎨=⎩或232xy=⎧⎪⎨=⎪⎩时;等号成立,的最小值为故答案为:【点评】本题考查了基本不等式在求最值中的应用,属于中档题.14.(5分)在四边形ABCD中,//AD BC,AB=5AD=,30A∠=︒,点E在线段CB 的延长线上,且AE BE=,则BD AE=u u u r u u u rg1-.【分析】利用ADu u u r和ABu u u r作为基底表示向量BDu u u r和AEu u u r,然后计算数量积即可.【解答】解:AE BE=Q,//AD BC,30A∠=︒,∴在等腰三角形ABE中,120BEA∠=︒,又AB=2AE∴=,∴25BE AD=-u u u r u u u r,Q AE AB BE=+u u u r u u u r u u u r,∴25AE AB AD=-u u u r u u u r u u u r又BD BA AD AB AD=+=-+u u u r u u u r u u u r u u u r u u u r,∴2()()5BD AE AB AD AB AD=-+-u u u r u u u r u u u r u u u r u u u r u u u rg g227255AB AB AD AD=-+-u u u r u u u r u u u r u u u rg2272||||cos55AB AB AD A AD=-+-u u u r u u u u u r u u u u u r u u u rg721252555=-+⨯⨯-⨯1=-故答案为:1-.【点评】本题考查了平面向量基本定理和平面向量的数量积,关键是选好基底,属中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)在ABC∆中,内角A,B,C所对的边分别为a,b,c.已知2b c a+=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值.【分析】(Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得. 【解答】解(Ⅰ)在三角形ABC 中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得43a b =,23a c =,由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-g g .(Ⅱ)由(Ⅰ)得sin B,从而sin 22sin cos B B B ==, 227cos2cos sin 8B B B =-=-,故71sin(2)sin 2cos cos2sin 66682B B B πππ+=+=-⨯=. 【点评】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.属中档题. 16.(13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【分析】()I 甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~()3X B ,可求分布列及期望;()II 设乙同学上学期间的三天中7:30到校的天数为Y ,则2~(3,)3Y B ,且{3M X ==,1}{2Y X ==⋃,0}Y =,由题意知{3X =,1}Y =与{2X =,0}Y =互斥,且{3}X =与{1}Y =,{2}X =与{0}Y =相互独立,利用相互对立事件的个概率公式可求【解答】解:()I 甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()()()33k k k P x k C -==,0k =,1,2,3.2()323E X =⨯=; ()II 设乙同学上学期间的三天中7:30到校的天数为Y ,则2~(3,)3Y B ,且{3M X ==,1}{2Y X ==⋃,0}Y =,由题意知{3X =,1}Y =与{2X =,0}Y =互斥,且{3}X =与{1}Y =,{2}X =与{0}Y =相互独立,由()I 知,()({3P M P X ==,1}{2Y X ==⋃,0}({3Y P X ===,1}{2Y P X =+=,0}Y = 824120(3)(1)(2)(0)279927243P X P Y P X P Y ===+===⨯+⨯=【点评】本题主要考查了离散型随机变量的分布列与期望,互斥事件与相互独立事件的概率计算公式,考查运算概率公式解决实际问题的能力.17.(13分)如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(Ⅰ)求证://BF 平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.【分析】(Ⅰ)以A 为坐标原点,分别以AB u u u r ,AD u u u r ,AE u u u r所在直线为x ,y ,z 轴建立空间直角坐标系,求得A ,B ,C ,D ,E 的坐标,设(0)CF h h =>,得(1F ,2,)h .可得(1,0,0)AB =u u u r是平面ADE 的法向量,再求出(0,2,)BF h =u u u r ,由0BF AB =u u u r u u u rg ,且直线BF ⊂/平面ADE ,得//BF 平面ADE ;(Ⅱ)求出(1,2,2)CE =--u u u r,再求出平面BDE 的法向量,利用数量积求夹角公式得直线CE与平面BDE 所成角的余弦值,进一步得到直线CE 与平面BDE 所成角的正弦值;(Ⅲ)求出平面BDF 的法向量,由两平面法向量所成角的余弦值为13列式求线段CF 的长.【解答】(Ⅰ)证明:以A为坐标原点,分别以AB u u u r ,AD u u u r ,AE u u u r所在直线为x ,y ,z 轴建立空间直角坐标系,可得(0A ,0,0),(1B ,0,0),(1C ,2,0),(0D ,1,0),(0E ,0,2). 设(0)CF h h =>,则(1F ,2,)h .则(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r ,可得0BF AB =u u u r u u u rg .又Q 直线BF ⊂/平面ADE ,//BF ∴平面ADE ;(Ⅱ)解:依题意,(1,1,0)BD =-u u u r ,(1,0,2)BE =-u u u r ,(1,2,2)CE =--u u u r.设(,,)n x y z =r为平面BDE 的法向量,则020n BD x y n BE x z ⎧=-+=⎪⎨=-+=⎪⎩u u u r r g u u u rr g ,令1z =,得(2,2,1)n =r .4cos ,9||||CE n CE n CE n ∴<>==-u u u r r u u u r g r u u u r r g . ∴直线CE 与平面BDE 所成角的正弦值为49; (Ⅲ)解:设(,,)m x y z =r为平面BDF 的法向量, 则020m BD x y m BF y hz ⎧=-+=⎪⎨=+=⎪⎩u u u r r g u u u rr g ,取1y =,可得2(1,1,)m h =-r , 由题意,22|4|||1|cos ,|||||3432m n h m n m n h -<>===⨯+r rg r rr r g ,解得87h =.经检验,符合题意. ∴线段CF 的长为87.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解线面角与二面角的大小,是中档题.18.(13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||(ON OF O =为原点),且OP MN ⊥,求直线PB 的斜率. 【分析】(Ⅰ)由题意可得2b =,运用离心率公式和a ,b ,c 的关系,可得a ,c ,进而得到所求椭圆方程;(Ⅱ)(0,2)B ,设PB 的方程为2y kx =+,联立椭圆方程,求得P 的坐标,M 的坐标,由OP MN ⊥,运用斜率之积为1-,解方程即可得到所求值.【解答】解:(Ⅰ)由题意可得24b =,即2b =,c e a ==222a b c -=,解得a ,1c =,可得椭圆方程为22154x y +=;(Ⅱ)(0,2)B ,设PB 的方程为2y kx =+, 代入椭圆方程224520x y +=, 可得22(45)200k x kx ++=, 解得22045kx k =-+或0x =,即有220(45kP k -+,22810)45k k -+,2y kx =+,令0y =,可得2(M k-,0), 又(0,1)N -,OP MN ⊥,可得281011220k k k-=---g,解得k = 可得PB的斜率为 【点评】本题考查椭圆的方程和性质,考查直线和椭圆方程联立,求交点,考查化简运算能力,属于中档题.19.(14分)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式; ()ii 求2*1()ni i i a c n N =∈∑.【分析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,利用等差数列、等比数列的通项公式列出方程组,能求出{}n a 和{}n b 的通项公式.(Ⅱ)()i 由222(1)(1)n n n n a c a b -=-,能求出数列22{(1)}n n a c -的通项公式. (Tex translation failed),由此能求出结果.【解答】解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 依题意有:26626124q d q d =+⎧⎨=+⎩,解得32d q =⎧⎨=⎩,4(1)331n a n n ∴=+-⨯=+,16232n n n b -=⨯=⨯.(Ⅱ)()i Q 数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. 222(1)(1)(321)(321)941n n n n n n n a c a b ∴-=-=⨯+⨯-=⨯-,∴数列22{(1)}n n a c -的通项公式为:22(1)941n n n a c -=⨯-.(Tex translation failed)12(21)(243)(941)2n n nni i =-=⨯+⨯+⨯-∑2114(14)(3252)914n n n n ---=⨯+⨯+⨯--2112725212n n n +-=⨯+⨯--.*()n N ∈.【点评】本题考查等差数列、等比数列通项公式及前n 项和等基础知识,考查化归与转化思想和数列求和的基本方法以及运算求解能力.20.(14分)设函数()cos x f x e x =,()g x 为()f x 的导函数. (Ⅰ)求()f x 的单调区间; (Ⅱ)当[4x π∈,]2π时,证明()()()02f xg x x π+-…; (Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明20022sin cos n n e n x x x πππ-+-<-.【分析】(Ⅰ)求出原函数的导函数,可得当(24x k ππ∈+,52)()4k k Z ππ+∈时,()0f x '<,()f x 单调递减;当3(24x k ππ∈-,2)()4k k Z ππ+∈时,()0f x '>,()f x 单调递增; (Ⅱ)记()()()()2h x f x g x x π=+-,依题意及(Ⅰ),得到()(cos sin )x g x e x x =-,由()0h x '<,得()h x 在区间[4π,]2π上单调递减,有()()()022h x h f ππ==…,从而得到当[4x π∈,]2π时,()()()02f xg x x π+-…;(Ⅲ)依题意,()()10n n u x f x =-=,即cos 1n x n e x =,记2n n y x n π=-,则(,)42n y ππ∈,且2()()n n f y e x N π-=∈.由20()1()n n f y e f y π-==„及(Ⅰ),得0n y y …,由(Ⅱ)知,当(4x π∈,)2π时,()g x 在[4π,]2π上为减函数,有0()()()04n g y g y g π<=„,又由(Ⅱ)知,()()()02n n n f y g y y π+-…,得0222200000()2()()()sin cos (sin cos )n n n n n n y n n f y e e e e y g y g y g y x x e y y πππππ-----=-=<--剟, 从而证得20022sin cos n n e n x x x πππ-+-<-.【解答】(Ⅰ)解:由已知,()(cos sin )x f x e x x '=-,因此, 当(24x k ππ∈+,52)()4k k Z ππ+∈时,有sin cos x x >,得()0f x '<,()f x 单调递减; 当3(24x k ππ∈-,2)()4k k Z ππ+∈时,有sin cos x x <,得()0f x '>,()f x 单调递增. ()f x ∴的单调增区间为3[24k ππ-,2]()4k k Z ππ+∈,单调减区间为[,52]()4k k Z ππ+∈;(Ⅱ)证明:记()()()()2h x f x g x x π=+-,依题意及(Ⅰ),有()(cos sin )x g x e x x =-,从而()()()()()(1)()()022h x f x g x x g x g x x ππ'='+'-+-='-<g g .因此,()h x 在区间[4π,]2π上单调递减,有()()()022h x h f ππ==….∴当[4x π∈,]2π时,()()()02f xg x x π+-…; (Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos 1n x n e x =.记2n n y x n π=-,则(,)42n y ππ∈,且22()cos cos(2)()n n y x n n n n n f y e y e x n e x N πππ--==-=∈.由20()1()n n f y e f y π-==„及(Ⅰ),得0n y y …,由(Ⅱ)知,当(4x π∈,)2π时,()0g x '<,()g x ∴在[4π,]2π上为减函数,因此,0()()()04n g y g y g π<=„, 又由(Ⅱ)知,()()()02n n n f y g y y π+-…,故0222200000()2()()()sin cos (sin cos )n n n n n n y n n f y e e e e y g y g y g y x x e y y πππππ-----=-=<--剟. 20022sin cos n n e n x x x πππ-∴+-<-.【点评】本题主要考查导数的运算,不等式的证明、运用导数研究函数的性质等基础知识和方法,考查函数思想和化归与转化思想,考查抽象概括能力、综合分析问题与解决问题的能力,属难题.。

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
由于 ,故应该对余下的产品作检验.
21.(12分)
解:(1) 的定义域为 , .
(i)若 ,则 ,当且仅当 , 时 ,所以 在 单调递减.
(ii)若 ,令 得, 或 .
当 时, ;
当 时, .所以 在 单调递减,在 单调递增.
(2)由(1)知, 存在两个极值点当且仅当 .
由于 的两个极值点 满足 ,所以 ,不妨设 ,则 .由于
A.p1=p2B.p1=p3
C.p2=p3D.p1=p2+p3
11.已知双曲线Biblioteka : ,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若 为直角三角形,则|MN|=
A. B.3C. D.4
12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为
19.(12分)
解:(1)由已知得 ,l的方程为x=1.
由已知可得,点A的坐标为 或 .
所以AM的方程为 或 .
(2)当l与x轴重合时, .
当l与x轴垂直时,OM为AB的垂直平分线,所以 .
当l与x轴不重合也不垂直时,设l的方程为 , ,
则 ,直线MA,MB的斜率之和为 .
由 得
.
将 代入 得
.
所以, .
23.[选修4—5:不等式选讲](10分)
解:(1)当 时, ,即
故不等式 的解集为 .
(2)当 时 成立等价于当 时 成立.
若 ,则当 时 ;
若 , 的解集为 ,所以 ,故 .
综上, 的取值范围为 .
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2019年天津市高考数学试卷(理科)(解析版)

2019年天津市高考数学试卷(理科)(解析版)
【点睛】圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半。
12.设 ,直线 和圆 ( 为参数)相切,则 的值为____.
【答案】
【解析】
【分析】
根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出 满足的方程,解之解得。
【详解】圆 化为普通方程为 ,
圆心坐标为 ,圆的半径为 ,
2019年普通高等学校招生全国统一考试(天津卷)
数学(理工类)
第Ⅰ卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题。
参考公式:
·如果事件 、 互斥,那么 .
·如果事件 、 相互独立,那么 .
·圆柱的体积公式 ,其中 表示圆柱的底面面积, 表示圆柱的高.
4.阅读右边的程序框图,运行相应的程序,输出 的值为
A.5B.8C.24D.29
【答案】B
【解析】
【分析】
根据程序框图,逐步写出运算结果。
【详解】 ,
结束循环,故输出 。
故选B。
【点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体.
5.已知抛物线 的焦点为 ,准线为 .若与双曲线 的两条渐近线分别交于点A和点B,且 ( 为原点),则双曲线的离心率为
由直线与圆相切,则有 ,解得 。
【点睛】直线与圆的位置关系可以使用判别式法,但一般是根据圆心到直线的距离与圆的半径的大小作出判断。
13.设 ,则 的最小值为______.
【答案】
【解析】
分析】
把分子展开化为 ,再利用基本不等式求最值。
【详解】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年天津市高考数学试卷(理科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5.00分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁RB)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2} 2.(5.00分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.453.(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.44.(5.00分)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5.00分)已知a=log2e,b=ln2,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b6.(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减7.(5.00分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 8.(5.00分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3二.填空题:本大题共6小题,每小题5分,共30分.9.(5.00分)i是虚数单位,复数= .10.(5.00分)在(x﹣)5的展开式中,x2的系数为.11.(5.00分)已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.12.(5.00分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.13.(5.00分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.14.(5.00分)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.16.(13.00分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.17.(13.00分)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.18.(13.00分)设{an }是等比数列,公比大于0,其前n项和为Sn(n∈N*),{bn}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{an }和{bn}的通项公式;(Ⅱ)设数列{Sn }的前n项和为Tn(n∈N*),(i)求Tn;(ii)证明=﹣2(n∈N*).19.(14.00分)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;交于点Q.若=sin∠AOQ(O为原点),求k的值.20.(14.00分)已知函数f(x)=a x,g(x)=logax,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=﹣;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.2018年天津市高考数学试卷(理科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.B)= 1.(5.00分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【分析】根据补集、交集的定义即可求出.【解答】解:∵A={x|0<x<2},B={x|x≥1},B={x|x<1},∴∁R∴A∩(∁B)={x|0<x<1}.R故选:B.【点评】本题考查了集合的化简与运算问题,是基础题目.2.(5.00分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.45【分析】先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数z=3x+5y的最大值.【解答】解:由变量x,y满足约束条件,得如图所示的可行域,由解得A(2,3).当目标函数z=3x+5y经过A时,直线的截距最大,z取得最大值.将其代入得z的值为21,故选:C.【点评】在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.也可以利用目标函数的几何意义求解最优解,求解最值.3.(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【分析】根据程序框图进行模拟计算即可.【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.【点评】本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键.4.(5.00分)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】先解不等式,再根据充分条件和必要条件的定义即可求出.【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x3<1,解得x<1,故“|x﹣|<”是“x3<1”的充分不必要条件,故选:A.【点评】本题考查了不等式的解法和充分必要条件,属于基础题.5.(5.00分)已知a=loge,b=ln2,c=log,则a,b,c的大小关系为()2A.a>b>c B.b>a>c C.c>b>a D.c>a>b 【分析】根据对数函数的单调性即可比较.【解答】解:a=log2e>1,0<b=ln2<1,c=log=log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.【点评】本题考查了对数函数的图象和性质,属于基础题,6.(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【分析】将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,由此能求出结果.【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.【点评】本题考查三角函数的单调区间的确定,考查三角函数的图象与性质、平移等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.(5.00分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】画出图形,利用已知条件,列出方程组转化求解即可.【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.【点评】本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.8.(5.00分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【分析】如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,求出A,B,C的坐标,根据向量的数量积和二次函数的性质即可求出.【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=A Bsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题.二.填空题:本大题共6小题,每小题5分,共30分.9.(5.00分)i是虚数单位,复数= 4﹣i .【分析】根据复数的运算法则计算即可.【解答】解:====4﹣i,故答案为:4﹣i【点评】本题考查了复数的运算法则,属于基础题.10.(5.00分)在(x﹣)5的展开式中,x2的系数为.【分析】写出二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:(x﹣)5的二项展开式的通项为=.由,得r=2.∴x2的系数为.故答案为:.【点评】本题考查二项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.11.(5.00分)已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.【分析】求出四棱锥中的底面的面积,求出棱锥的高,然后利用体积公式求解即可.【解答】解:正方体的棱长为1,M﹣EFGH的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为,四棱锥M﹣EFGH的体积:=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.12.(5.00分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【分析】把圆的方程化为标准方程,写出圆心与半径;直线的参数方程化为普通方程,求出圆心到直线的距离,计算弦长|AB|,利用三角形面积公式求出△ABC的面积.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.【点评】本题考查了直线与圆的位置关系应用问题,也考查了参数方程应用问题,是基础题.13.(5.00分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【分析】化简所求表达式,利用基本不等式转化求解即可.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.【点评】本题考查函数的最值的求法,基本不等式的应用,也可以利用换元法,求解函数的最值.考查计算能力.14.(5.00分)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是(4,8).【分析】分别讨论当x≤0和x>0时,利用参数分离法进行求解即可.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=﹣,设g(x)=﹣,则g′(x)=﹣=﹣,由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=设h(x)=,则h′(x)==,由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)【点评】本题主要考查函数与方程的应用,利用参数分离法结合函数的极值和导数之间的关系以及数形结合是解决本题的关键.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【分析】(Ⅰ)由正弦定理得bsinA=asinB,与bsinA=acos(B﹣).由此能求出B.(Ⅱ)由余弦定理得b=,由bsinA=acos(B﹣),得sinA=,cosA=,由此能求出sin(2A﹣B).【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.【点评】本题考查角的求法,考查两角差的余弦值的求法,考查运算求解能力,考查函数与方程思想,是中档题.16.(13.00分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【分析】(Ⅰ)利用分层抽样,通过抽样比求解应从甲、乙、丙三个部门的员工中分别抽取人数;(Ⅱ)若(i)用X表示抽取的3人中睡眠不足的员工人数,的可能值,求出概率,得到随机变量X的分布列,然后求解数学期望;(ii)利用互斥事件的概率求解即可.【解答】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2,从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,随机变量X的取值为:0,1,2,3,,k=0,1,2,3.所以随机变量的分布列为:X0123P随机变量X的数学期望E(X)==;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,设事件B为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C为抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人,则:A=B∪C,且P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以事件A发生的概率:.【点评】本题考查分层抽样,考查对立事件的概率,考查离散型随机变量的分布列与期望,确定X的可能取值,求出相应的概率是关键.17.(13.00分)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【分析】(Ⅰ)依题意,以D为坐标原点,分别以、、的方向为x轴,y 轴,z轴的正方向建立空间直角坐标系.求出对应点的坐标,求出平面CDE的法向量及,由,结合直线MN⊄平面CDE,可得MN∥平面CDE;(Ⅱ)分别求出平面BCE与平面平面BCF的一个法向量,由两法向量所成角的余弦值可得二面角E﹣BC﹣F的正弦值;(Ⅲ)设线段DP的长为h,(h∈[0,2]),则点P的坐标为(0,0,h),求出,而为平面ADGE的一个法向量,由直线BP与平面ADGE所成的角为60°,可得线段DP的长.【解答】(Ⅰ)证明:依题意,以D为坐标原点,分别以、、的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).设为平面CDE的法向量,则,不妨令z=﹣1,可得;又,可得.又∵直线MN⊄平面CDE,∴MN∥平面CDE;(Ⅱ)解:依题意,可得,,.设为平面BCE的法向量,则,不妨令z=1,可得.设为平面BCF的法向量,则,不妨令z=1,可得.因此有cos<>=,于是sin<>=.∴二面角E﹣BC﹣F的正弦值为;(Ⅲ)解:设线段DP的长为h,(h∈[0,2]),则点P的坐标为(0,0,h),可得,而为平面ADGE的一个法向量,故|cos<>|=.由题意,可得,解得h=∈[0,2].∴线段DP的长为.【点评】本题考查直线与平面平行的判定,考查空间角的求法,训练了利用空间向量求解空间角,是中档题.18.(13.00分)设{an }是等比数列,公比大于0,其前n项和为Sn(n∈N*),{bn}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{an }和{bn}的通项公式;(Ⅱ)设数列{Sn }的前n项和为Tn(n∈N*),(i)求Tn;(ii)证明=﹣2(n∈N*).【分析】(Ⅰ)设等比数列{an }的公比为q,由已知列式求得q,则数列{an}的通项公式可求;等差数列{bn}的公差为d,再由已知列关于首项与公差的方程组,求得首项与公差,可得等差数列的通项公式;(Ⅱ)(i)由等比数列的前n项和公式求得Sn,再由分组求和及等比数列的前n项和求得数列{Sn }的前n项和为Tn;(ii)化简整理,再由裂项相消法证明结论.【解答】(Ⅰ)解:设等比数列{an }的公比为q,由a1=1,a3=a2+2,可得q2﹣q﹣2=0.∵q>0,可得q=2.故.设等差数列{bn }的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故bn=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.【点评】本题主要考查等差数列、等比数列的通项公式及前n项和等基础知识,考查数列求和的基本方法及运算能力,是中档题.19.(14.00分)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB 交于点Q.若=sin∠AOQ(O为原点),求k的值.【分析】(Ⅰ)设椭圆的焦距为2c,根据椭圆的几何性质与已知条件,求出a、b的值,再写出椭圆的方程;(Ⅱ)设出点P、Q的坐标,由题意利用方程思想,求得直线AB的方程以及k的值.【解答】解:(Ⅰ)设椭圆+=1(a>b>0)的焦距为2c,由椭圆的离心率为e=,∴=;又a2=b2+c2,∴2a=3b,由|FB|=a,|AB|=b,且|FB|•|AB|=6;可得ab=6,从而解得a=3,b=2,∴椭圆的方程为+=1;(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2),由已知y1>y2>0;∴|PQ|sin∠AOQ=y1﹣y2;又|AQ|=,且∠OAB=,∴|AQ|=y2,由=sin∠AOQ,可得5y1=9y2;由方程组,消去x,可得y1=,∴直线AB的方程为x+y﹣2=0;由方程组,消去x,可得y2=;由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2﹣50k+11=0,解得k=或k=;∴k的值为或.【点评】本题主要考查了椭圆的标准方程与几何性质、直线方程等知识的应用问题,也考查了利用代数方法求研究圆锥曲线的性质应用问题,考查了运算求解能力与运用方程思想解决问题的能力.20.(14.00分)已知函数f(x)=a x,g(x)=logax,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=﹣;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【分析】(Ⅰ)把f(x)的解析式代入函数h(x)=f(x)﹣xlna,求其导函数,由导函数的零点对定义域分段,由导函数在各区间段内的符号可得原函数的单调区间;(Ⅱ)分别求出函数y=f(x)在点(x1,f(x1))处与y=g(x)在点(x2,g(x2))处的切线的斜率,由斜率相等,两边取对数可得结论;(Ⅲ)分别求出曲线y=f(x)在点()处的切线与曲线y=g(x)在点(x2,logax2)处的切线方程,把问题转化为证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,进一步转化为证明当a≥时,方程存在实数解.然后利用导数证明即可.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:x(﹣∞,0)0(0,+∞)h′(x)﹣0+h(x)↓极小值↑∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得loga x2+x1+2logalna=0,∴x1+g(x2)=﹣;(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,logax2)处的切线l2:.要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a≥时,方程组由①得,代入②得:,③因此,只需证明当a≥时,关于x1的方程③存在实数解.设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′=<0,故存在唯一的x0,且x>0,使得u′(x)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x,+∞)上单调递减,u(x)在x=x0处取得极大值u(x).∵,故lnlna≥﹣1.∴=.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x)≤=.∴存在实数t,使得u(t)<0.因此,当a≥时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【点评】本题考查导数的运算,导数的几何意义,运用导数研究指数函数与对数公式的性质等基础知识和方法,考查函数与方程思想,化归思想,考查抽象概括能力,综合分析问题和解决问题的能力,是难题.。

相关文档
最新文档