世界著名高分子科学家
高分子与诺贝尔奖

R.B.Merrifield(1921- ) 美国生物化学家 1984年获Nobel化学奖
高分子材料以多功能化的面貌出现
高分子冲破了绝缘 体的界线具有了金 属独有的导电性
美国的艾伦.黑格尔,艾伦.马克迪 尔米德和日本的白川英树由于在导 电聚合物领域的开创性贡献荣获 2000年Nobel化学奖。
白川英树从事聚乙炔 聚合机理研究 韩国研修生出现几个 幸运的失误,使白川 得到膜状聚乙炔 偶然的机遇, MacDiarmid首先注意 到白川的聚乙炔膜, 三人在美国合作研究 为了说明聚乙炔的导 电性,Heeger提出孤 子的概念
W.H.Carothers (1896~1937) 美国科学院院士
对高分子合成贡 献卓著但未获奖
1937年4月29日在美国费城一家饭店 的房间里饮用了掺有氰化钾的柠檬汁 而自杀身亡 (未获Nobel 奖)
W· H· Carothers 的学生------P· J· Flory整理了导师的 研究成果,并提出了聚合反应的等活性理论及聚酯 动力学和连锁聚合反应的机理。 五六十年代,美国科学家Flory出 版了《高分子化学原理》一书。 Flory在高分子溶液的热力学性质 和聚合反应动力学的统计学研究方 面做了大量工作,他的科学成果包 括导致工业化的尼龙与合成橡胶的 研究和开发,以及对于聚合物形成 过程及其本体和在溶液中的性质研 究。
奠定了高分子合成工 业的基础并合作获奖
Natta(1903-1979) 意大利高分子化学家 1963年获Nobel化学奖
尼龙之父W.H.Carothers(卡罗瑟斯)
1924年在伊利诺伊大学获有机化学 博士学位,在该校任教两年后到哈佛 大学任教
1928年起,在美国杜邦公司任职9年, 领导基础有机化学的研究工作,其间 于1935年发明尼龙66,合成出氯丁二烯 及其聚合物 1936年当选为美国科学院院士,一生中 发表过60多篇论文,取得近70项专利
高分子理论的奠基者施陶丁格

高分子理论的奠基者施陶丁格摘要:在科学的重大发现中,有一些既平凡又非凡的创新者。
他们的思想有时远远超越了他们所处的时代,而与当时所谓“正统”(或传统)的科学潮流有分歧,甚至背道而驰。
他们甘冒不被人理解的风险,以非凡的勇气和胆识及其独特的方式进行探索并坚持真理。
德国化学家施陶丁格就是其中这样一位具有非凡思想的创新者。
他毕生从事高分子化合物的性质与结构的研究,为奠定高分子理论而作出了开创性的贡献,于1953年荣获诺贝尔化学奖。
关键词:施陶丁格;高分子理论;化学史料在现代化学史上,20世纪的二十到三十年代是个关键时期,因为它正是现代化学建立的初期。
以共价键的提出为契机,现代化学家和部分物理学家开始着手奠定现代化学的理论基础。
例如,量子化学和高分子化学两个领域。
在量子化学领域,以美国化学家鲍林为代表,展开了对分子结构的准确描述和对化学键本质的探索,这方面的内容在前文中已作介绍。
在本文中,将重点陈述和探讨德国化学家施陶丁格,为建立高分子理论而走过的艰难历程,以及他为高分子合成材料的发展所作出的历史性贡献。
1 化学实践召唤创新的高分子理论施陶丁格(hermann staudinger,1881~1965),德国有机化学家和高分子化学家,出身于沃尔姆斯一个知识分子家庭,父亲是位哲学教授。
施陶丁格自幼爱好化学和化学实验,曾就读于达姆施塔特大学、慕尼黑大学,1903年获哈雷大学博士学位。
后赴斯特拉斯堡大学深造,1907年任该校讲师,1908年任卡尔斯鲁厄工业学院副教授,1912年任苏黎世工业大学有机化学教授。
1926年任弗赖堡大学化学教授,1940年任该大学高分子化学研究所所长,一直工作到1951年退休并任名誉教授终生。
施陶丁格从事高分子化合物研究,为此付出了常人难以想象的心血和代价。
其重要原因在于,他所面临的研究对象既是古老的又是新生的,无论是高分子化合物的性质,还是高分子化合物的分子结构以及高分子化合物的改性和合成,都存在着新的实践和旧的理论或新的理论与传统观点之间的冲突。
高分子科学家-中国

高分子方面中科院院士当选时间:唐敖庆(1955)、王葆仁(1980)、冯新德(1980)、何炳林(1980)、闵恩泽(1980中科院,1994工程院)、钱人元(1980)、钱保功(1980)、王佛松(1991)、沈家骢(1991)、徐僖(1991)、黄志镗(1991)、黄葆同(1991)、程鎔时(1991)、林尚安(1993)、沈之荃(1995)、毛炳权(1995工程院)、徐端夫(1995工程院)、卓仁禧(1997)、周其凤(1999)、曹镛(2001)===================================================================王葆仁(1907.1.20~1986.9.12)王葆仁,男,化学家,江苏扬州人。
1926年毕业于东南大学化学系。
1935年获英国伦敦大学帝国学院博士学位。
1936年回国创建同济大学理学院和化学系。
1951~1956年任中国科学院上海有机化学所研究员兼副所长。
1956年起,任中国科学院化学研究所研究员、副所长。
1958年在中国科技大学创建高分子化学与物理系。
王葆仁是中国最早从事高分子科学研究的化学家之一。
50年代开始研究聚甲基丙烯酸甲酯、聚已内酰胺。
对有机硅高分子、特别是硅碳-硅-氧链高分子的合成做了深入研究。
对耐高温杂环高分子的合成及性能进行了较广泛研究,并在应用方面作了许多开拓工作。
70年代提出加强高分子大品种如聚丙烯等的研究。
在烃类化学方面也做过许多研究。
著有《有机合成反应》上下册。
1980年当选为中国科学院院士。
王葆仁,字爱予。
1907年1月20日出生于江苏扬州。
父亲王锡山以教书为生,对他薰陶很深。
王葆仁自幼体弱多病,但勤奋好学,成绩优异。
当他就读扬州中学时,父亲因病去世,家庭经济十分难。
1922年,他考入东南大学化学系,除依靠半工半读维持学习外,还赡养母亲、接济姐弟;在十分艰辛的条件下,他完成了大学学业,1926年毕业时,还不满20岁,被留校任助教。
高分子之父——Staudinger

高分子之父——Staudinger1881年3月23日生于德国莱因兰—法耳次州的沃尔姆斯;1907年毕业于施特拉斯堡大学,获博士学位。
同年聘为卡尔斯鲁厄工业大学副教授。
1912年于苏黎世工业大学任化学教授。
1920年,发表“论聚合反应”的论文,提出高分子的概念;1926年后在弗赖堡任教。
1932年,出版划时代的巨著《高分子有机化合物》1953年获诺贝尔化学奖;1965年9月8日在弗赖堡逝世,终年84岁。
20年代,他将天然橡胶氢化,得到与天然橡胶性质差别不大的氢化天然橡胶等,从而证明了天然橡胶不是小分子次价键的缔合体,而是以主价键连接成的长链状高分子量化合物。
他还正式提出了高分子化合物这个名称;预言了高分子化合物在生物体中的重要作用。
他提出了关于高分子的粘度性质与分子量关系的施陶丁格定律。
至今,用粘度法测定高分子的分子量仍然是常用的方法。
他所提出高分子科学理论,是纤维、橡胶、塑料等高分子工业生产的基础。
当Staudinger 开始致力于当时称为“大分子”的化合物的研究时,他在苏黎世联邦工学院工作,许多著名的化学家和科学家对他的学说嗤之以鼻,当时盛行的学说是“胶体说”,也就是说当时认为所谓的高分子实际上是一些难于用化学方法和物理方法分离的一些结构非常相似的化合物的混合物。
在1925年的胶体会议上,Staudinger与其他科学家展开了大论战,站在他对面的有好几位诺贝尔化学奖得主,最后,他不得不引用了马丁路德金的演说名言:我站在这里,我别无选择。
经过多年的不懈努力,在1930年法兰克福的胶体化学年会上,长链分子概念获得了决定性的胜利,被绝大多数的科学家所接受,标志着高分子科学被科学家所承认,但是直到30年代末期,才被大众所接受。
由于Staudinger卓越的贡献,他获得了1953年的诺贝尔化学奖。
高分子科学名人

高分子科学名人-海外版 高分子科学名人-海外版(5)
程正迪(Stephen Z.D.Cheng) 程正迪 (1949-) -
Hale Waihona Puke 高分子科学名人(2) 高分子科学名人
• 钱人元 钱人元(1917-): -: 江苏常熟, 江苏常熟,1939 毕业于浙江大学。 毕业于浙江大学。 1980年为中科院院士 1980年为中科院院士。 年为中科院院士。 著名物理化学、 著名物理化学、高分 子物理学家。 子物理学家。
高分子科学名人(3)
高分子科学名人(1) 高分子科学名人
• 唐熬庆 (1915-), 唐熬庆: -,
中科院院士, 中科院院士,国家自然科学基金委 员会名誉主任、吉林大学名誉校长。 员会名誉主任、吉林大学名誉校长。 专长:量子化学、 专长:量子化学、高分子物理化学
•王葆仁 (1907-1986) 王葆仁: 王葆仁 -
中科院院士,有机化学家、高分子化学家、 中科院院士,有机化学家、高分子化学家、 教育家。 教育家。中国有机化学研究的先驱者和 高分子化学事业的主要奠基人之一 。
1977年华师大数学系,1981中纺 年华师大数学系, 年华师大数学系 中纺 大高分子硕士。1985美 大高分子硕士。1985美 Rensselaer高分子化学博士。 高分子化学博士。 高分子化学博士 现任Akron大学教授,美国物 大学教授, 现任 大学教授 理学会院士, 理学会院士,北美热分析学会 院士等。 院士等。主要从事高分子凝聚 态物理学研究。 态物理学研究。
• 徐僖 徐僖(1921-): -: 1921年出生于江 年出生于江 苏南京, 苏南京,1944毕业于 毕业于 浙江大学。 浙江大学。 中科院院士。 中科院院士。著名高 分子材料科学家。 分子材料科学家。 四川联合大学、 四川联合大学、上海 交通大学教授。 交通大学教授。
高分子的重要人物21页word文档

高分子重要人物(排序不分先后)创立高分子化学的施陶丁格(Hermann Staudinger 1881-1965)棉、麻、丝、木材、淀粉等都是天然高分子化合物,从某种意义上来说,甚至连人本身也是一个复杂的高分子体系。
在过去漫长的岁月中,人们虽然天天与天然高分子物质打交道,对它们的本性却一无所知。
现在我们已认识什么是高分子,并建立了颇具规模的高分子合成工业,生产出五光十色的塑料、美观耐用的合成纤维、性能优异的合成橡胶,致使高分子合成材料与金属材料、无机非金属材料并列构成材料世界的三大支柱。
面对这一辉煌成就,我们不能不缅怀高分子科学的奠基人、德国化学家赫尔曼·施陶丁格。
1881年3月23日,海尔曼·施陶丁格出生在德国的弗尔姆斯。
他父亲是新康德派的哲学家,所以他从小就受到各种新的哲学思想的熏陶,对新事物比较敏锐,在科学推理、思维中,能够不受传统观念的束缚,善于从复杂的事物中,理出头绪,发现关键之处。
提出新的观点。
在中学时,他曾对植物学发生浓厚的兴趣,所以中学毕业后,他考入哈勒大学学习植物学。
这时有一位对科学发展颇有见地的朋友向他父母进言,最好先让施陶了格打下雄厚的化学基础后,再让他进入植物学的领域。
这一中肯的建议被采纳了,借他父亲转到达姆一所大学任教的机会,施陶丁格也来到该城的工业大学改读化学。
从此施陶丁格与化学给下不解之缘。
1903年,他完成了关于不饱和化合物丙二酸酯的毕业论文,从大学毕业。
接着又来到施特拉斯堡,拜著名的有机化学家梯尔为师继续深造。
1907年,以他在实验中发现的高活性烯酮为题完成了博士论文,获得了博士学位。
同年他被聘为卡尔斯鲁厄工业大学的副教授。
5年后他被楚利希联邦工业大学聘任为化学教授。
在这里他执教了14年,这期间的教学和研究使他熟悉了化学,特别是有机化学的各个领域和一些新的理论,为他顺利开展科学研究奠定了扎实的基础。
也在这期间,他投入了上述关于高分子组成、结构的学术论战。
施陶丁格

施陶丁格Hermann Staudinger(1881~1965)1881年3月23日生于德国莱因兰—法耳次州的沃尔姆斯;1907年毕业于施特拉斯堡大学,获博士学位。
同年聘为卡尔斯鲁厄工业大学副教授。
1912年于苏黎世工业大学任化学教授。
1920年,发表“论聚合反应”的论文,提出高分子的概念;1926年后在弗赖堡任教。
1932年,出版划时代的巨著《高分子有机化合物》1953年获诺贝尔化学奖;1965年9月8日在弗赖堡逝世,终年84岁。
施陶丁格是高分子科学的奠基人。
20年代,他将天然橡胶氢化,得到与天然橡胶性质差别不大的氢化天然橡胶等,从而证明了天然橡胶不是小分子次价键的缔合体,而是以主价键连接成的长链状高分子量化合物。
他还正式提出了高分子化合物这个名称;预言了高分子化合物在生物体中的重要作用。
他提出了关于高分子的粘度性质与分子量关系的施陶丁格定律。
至今,用粘度法测定高分子的分子量仍然是常用的方法。
他所提出高分子科学理论,是纤维、橡胶、塑料等高分子工业生产的基础。
因其对高分子科学的建立和理论方面的贡献,施陶丁格荣获1953年诺贝尔化学奖。
他创办了《高分子化学》杂志。
共发表了600多篇论文和专著。
事迹:棉、麻、丝、木材、淀粉等都是天然高分子化合物,从某种意义上来说,甚至连人本身也是一个复杂的高分子体系。
在过去漫长的岁月中,人们虽然天天与天然高分子物质打交道,对它们的本性却一无所知。
现在我们已认识什么是高分子,并建立了颇具规模的高分子合成工业,生产出五光十色的塑料、美观耐用的合成纤维、性能优异的合成橡胶,致使高分子合成材料与金属材料、无机非金属材料并列构成材料世界的三大支柱。
面对这一辉煌成就,我们不能不缅怀高分子科学的奠基人、德国化学家施陶丁格。
论文发表的背景什么是高分子呢?它是由许多结构相同的单体聚合而成的,分子量往往是几万、几十万,结构的形状也很特别。
如果说普通分子象个小球,那未高分子由于单体彼此连接成长链,就象一根有50米长的麻绳。
潘祖仁高分子化学化学方程式汇总

潘祖仁高分子化学化学方程式汇总在高分子化学领域,潘祖仁是一位著名的学者,他在高分子化学领域做出了杰出的贡献。
在他的研究中,有许多重要的化学方程式被提出并得到广泛应用。
本文将对潘祖仁高分子化学化学方程式进行汇总和解读,以帮助读者更深入地理解这一领域。
1.乙烯-醋酸乙烯酯共聚反应乙烯和醋酸乙烯酯是两种重要的单体,它们可以进行共聚反应得到聚乙烯醋酸乙烯酯。
这是一种重要的高分子材料,具有良好的柔韧性和耐化学性,被广泛用于包装和涂料行业。
其化学方程式如下:\[ CH_2\ = \ CH_2 + CH_3COO(CH_2)_nOCOCH_3 \rightarrowCH_3COO(CH_2)_nOCOCH_2CH_3 \]2.苯乙烯聚合反应苯乙烯是一种重要的芳香烃单体,它可以进行聚合反应制备聚苯乙烯。
聚苯乙烯具有高强度和优异的绝缘性能,被广泛用于电子、建筑等领域。
其化学方程式如下:\[ nC_6H_5CH\ = \ CH_2 \rightarrow (C_6H_5CH_2)_n \]3.丙烯酸甲酯乳液聚合反应丙烯酸甲酯可以进行乳液聚合反应制备丙烯酸甲酯乳液聚合物。
这种高分子材料具有良好的抗拉强度和耐候性,被广泛用于涂料和粘合剂。
其化学方程式如下:\[ CH_2 = CHCOOCH_3 \rightarrow (CH_2 = CHCOOCH_3)_n \]4.氯乙烯聚合反应氯乙烯可以进行聚合反应制备聚氯乙烯。
聚氯乙烯是一种重要的塑料材料,具有良好的机械性能和耐腐蚀性能,被广泛用于管道、包装等领域。
其化学方程式如下:\[ nClCH_2CHCl \rightarrow (ClCH_2CHCl)_n \]总结回顾:通过对潘祖仁高分子化学化学方程式的汇总和解读,我们了解到了不同单体进行聚合反应所形成的高分子材料。
这些高分子材料在日常生活和工业生产中有着重要的应用,为人们的生活提供了便利。
在未来的研究中,我们可以进一步深入探讨高分子材料的性能和应用,推动这一领域的发展。