人教A版高中数学必修5:一元二次不等式及其解法 课时练习
2020高二数学人教A必修5练习:3.2 一元二次不等式及其解法 Word版含解析

课时训练16一元二次不等式及其解法一、一元二次不等式的解法1.不等式-x2-5x+6≤0的解集为()A.{x|x≥6或x≤-1}B.{x|-1≤x≤6}C.{x|-6≤x≤1}D.{x|x≤-6或x≥1}答案:D解析:由-x2-5x+6≤0得x2+5x-6≥0,即(x+6)(x-1)≥0,∴x≥1或x≤-6.2.(2015福建厦门高二期末,12)不等式-的解集是.答案:{x|x<2或x>3}解析:因为指数函数y=2x是增函数,所以-化为x2-5x+5>-1,即x2-5x+6>0,解得x<2或x>3.所以不等式的解集为{x|x<2或x>3}.3.解不等式:-2<x2-3x≤10.解:原不等式等价于不等式组---①②不等式①为x2-3x+2>0,解得x>2或x<1.不等式②为x2-3x-10≤0,解得-2≤x≤5.故原不等式的解集为[-2,1)∪(2,5].二、三个二次之间的关系4.(2015山东威海高二期中,8)不等式ax2+bx+2>0的解集是-,则a-b的值为()A.14B.-14C.10D.-10答案:D解析:不等式ax 2+bx+2>0的解集是 - ,可得- 是一元二次方程ax 2+bx+2=0的两个实数根,∴- =- ,- ,解得a=-12,b=-2. ∴a-b=-12-(-2)=-10.故选D .5.如果ax 2+bx+c>0的解集为{x|x<-2或x>4},那么对于函数f (x )=ax 2+bx+c ,f (-1),f (2),f (5)的大小关系是 .答案:f (2)<f (-1)<f (5)解析:由ax 2+bx+c>0的解集为{x|x<-2或x>4}知a>0,且-2,4是方程ax 2+bx+c=0的两实根,所以 - - - 可得 - -所以f (x )=ax 2-2ax-8a=a (x+2)(x-4).因为a>0,所以f (x )的图象开口向上.又对称轴方程为x=1,f (x )的大致图象如图所示,由图可得f (2)<f (-1)<f (5).6.(2015山东潍坊四县联考,11)不等式x 2-ax-b<0的解集是(2,3),则不等式bx 2-ax-1>0的解集是 .答案: - -解析:∵不等式x 2-ax-b<0的解集为(2,3), ∴一元二次方程x 2-ax-b=0的根为x 1=2,x 2=3.根据根与系数的关系可得: -所以a=5,b=-6.不等式bx 2-ax-1>0,即不等式-6x 2-5x-1>0,整理,得6x 2+5x+1<0,即(2x+1)(3x+1)<0,解之得- <x<-. ∴不等式bx 2-ax-1>0的解集是 - - .三、含参不等式的解法7.不等式(x+1)(x-a )<0的解集为{x|-1<x<2},则不等式- >1的解集为 .答案:{x|x<-2或x>1}解析:由已知不等式(x+1)(x-a )<0的解集为{x|-1<x<2}得x=2是(x+1)(x-a )=0的一个根, ∴a=2.∴不等式 - >1可化为 - >1,移项通分得 ->0, ∴(x+2)(x-1)>0,解得x<-2或x>1.∴所求解集为{x|x<-2或x>1}.8.解关于x 的不等式2x 2+ax+2>0.解:对于方程2x 2+ax+2=0,其判别式Δ=a 2-16=(a+4)(a-4).①当a>4或a<-4时,Δ>0,方程2x 2+ax+2=0的两根为:x 1= (-a- - ),x 2= (-a+ - ).∴原不等式的解集为- - - 或 - - . ②当a=4时,Δ=0,方程有两个相等实根,x 1=x 2=-1;当a=-4时,Δ=0,方程有两个相等实根,x 1=x 2=1.∴原不等式的解集为{x|x ≠±1}.四、不等式恒成立问题9.若一元二次不等式x 2-ax+1>0恒成立,则a 的取值范围是 .答案:-2<a<2解析:由Δ=a 2-4<0,解得-2<a<2.10.已知关于x 的不等式(m 2+4m-5)x 2-4(m-1)x+3>0对一切实数x 恒成立,求实数m 的取值范围. 解:(1)当m 2+4m-5=0,即m=1或m=-5时,显然m=1符合条件,m=-5不符合条件;(2)当m 2+4m-5≠0时,由二次函数对一切实数x 恒为正数,得 - - - -解得1<m<19.综合(1)(2)得,实数m的取值范围为[1,19).(建议用时:30分钟)1.不等式-6x2-x+2≤0的解集是()A.-B.-或C.D.-答案:B解析:原不等式等价于6x2+x-2≥0.方程6x2+x-2=0的两根为-,可得原不等式的解集为-,或x≥.2.函数y=--+log2(x+2)的定义域为()A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-2,-1]D.(-2,-1]∪[3,+∞)答案:D解析:要使函数有意义,x的取值需满足解得-2<x≤-1或x≥3.3.已知0<a<1,关于x的不等式(x-a)->0的解集为()A.或B.{x|x>a}C.或D.答案:A解析:∵0<a<1,∴>1,即a<,∴不等式的解集为或.4.在R上定义运算=ad-bc,若-成立,则x的取值范围是()A.{x|x<-4或x>1}B.{x|-4<x<1}C.{x|x<-1或x>4}D.{x|-1<x<4}答案:B解析:由已知-=x2+3x,=4,∴x2+3x<4,即x2+3x-4<0,解得-4<x<1.5.若关于x的不等式ax-b>0的解集为(1,+∞),则关于x的不等式->0的解集为()A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(1,2)D.(-∞,-2)∪(1,+∞)答案:B解析:因为关于x的不等式ax-b>0的解集为(1,+∞),所以a>0,且=1,即a=b,所以关于x的不等式->0可化为->0,其解集是(-∞,-1)∪(2,+∞).6.已知二次方程ax2+bx+c=0的两个根是-2,3,若a>0,那么ax2-bx+c>0的解集是. 答案:{x|x<-3或x>2}解析:由题意知---∴b=-a,c=-6a.∴不等式ax2-bx+c>0,化为ax2+ax-6a>0,又∵a>0,∴x2+x-6>0,而方程x2+x-6=0的根为-3和2,∴不等式的解集是{x|x<-3或x>2}.7.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是. 答案:(0,8)解析:由题意得,Δ=(-a)2-4×2a<0.即a2-8a<0,∴0<a<8.8.设0≤α≤π,不等式8x2-(8sin α)x+sin α≥0的解集为R,则α的取值范围是. 答案:πππ解析:由已知不等式的解集为R,∴Δ=64sin2α-32sin α≤0,解得0≤sin α≤.∴由y=sin x的图象知,当0≤α≤π时,解得0≤α≤π或π≤α≤π.9.已知不等式x2-2x-3<0的解集为A,不等式x2+4x-5<0的解集为B,(1)求A∪B;(2)若不等式x2+ax+b<0的解集是A∪B,求ax2+x+b<0的解集.解:(1)解不等式x2-2x-3<0,得A={x|-1<x<3}.解不等式x2+4x-5<0,得B={x|-5<x<1}.∴A∪B={x|-5<x<3}.(2)由x2+ax+b<0的解集为{x|-5<x<3},∴-解得-∴2x2+x-15<0.∴不等式解集为-.。
人教A版高中数学必修五练习一元二次不等式及其解法

3.2 一元二次不等式及其解法第1课时 一元二次不等式及其解法课后篇巩固提升基础巩固1.不等式(x+2)(x-1)>4的解集为( ) A.(-∞,-2)∪(3,+∞) B.(-∞,-3)∪(2,+∞) C.(-2,3) D.(-3,2)x 2+x-6>0,即(x+3)(x-2)>0,所以x>2或x<-3,即解集为(-∞,-3)∪(2,+∞).2.已知集合M={x|0≤x<2},N={x|x 2-2x-3<0},则M ∩N=( ) A.{x|0≤x<1} B.{x|0≤x<2} C.{x|0≤x ≤1} D.{x|0≤x ≤2}N={x|x 2-2x-3<0}={x|-1<x<3},M={x|0≤x<2},所以M ∩N={x|0≤x<2}.3.若函数f (x )=x -4mx 2+4mx+3的定义域为R ,则实数m 的取值范围是( )A.(-∞,34)B.[0,34)C.(34,+∞) D.(-34,34)mx 2+4mx+3≠0对一切x ∈R 恒成立.当m=0时,显然成立;当m ≠0时,应有Δ=16m 2-12m<0,解得0<m<34.综上,实数m 的取值范围是[0,34).4.关于x 的不等式2x 2+ax-a 2>0的解集中的一个元素为1,则实数a 的取值范围是( ) A.(-∞,-1)∪(2,+∞) B.(-1,2)C.(-∞,-1)∪(12,+∞)D.(-1,12)x 的不等式2x 2+ax-a 2>0的解集中的一个元素为1,所以f (1)=2+a-a 2>0,即a 2-a-2<0,解得-1<a<2.5.已知一元二次不等式f (x )<0的解集为{x|x<1或x>2},则f (x-2)>0的解集为( ) A.{x|1<x<2} B.{x|3<x<4} C.{x|-1<x<0}D.{x|x<3或x>4}f (x )>0的解集为{x|1<x<2},则由f (x-2)>0可得1<x-2<2.即3<x<4.故f (x-2)>0的解集为{x|3<x<4}.6.二次函数y=ax 2+bx+c (x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是 .y=ax 2+bx+c (x ∈R )的草图如图.由图象得不等式ax 2+bx+c>0的解集是{x|x<-2或x>3}.x|x<-2或x>3}7.若关于x 的不等式组{x -1>a 2,x -4<2a解集不是空集,则实数a 的取值范围是 .{x >1+a 2,x <4+2a ,要使不等式组的解集不是空集,应有a 2+1<4+2a ,即a 2-2a-3<0,解得-1<a<3.1<a<38.若关于x 的不等式m (x-1)>x 2-x 的解集为{x|1<x<2},则实数m 的值为 .1和2是关于x 的方程m (x-1)=x 2-x ,即x 2-(m+1)x+m=0的两根,所以{1+2=m +1,1×2=m ,解得m=2.9.解不等式0≤x 2-x-2≤4.{x 2-x -2≥0,x 2-x -2≤4.①②解①得x ≤-1或x ≥2; 解②得-2≤x ≤3.所以原不等式的解集为{x|x ≤-1或x ≥2}∩{x|-2≤x ≤3}={x|-2≤x ≤-1或2≤x ≤3}.10.已知函数y=√ax 2+2ax +1的定义域为R . (1)求a 的取值范围.(2)若函数的最小值为√22,解关于x 的不等式x 2-x-a 2-a<0.因为函数y=2+2ax +1的定义域为R ,所以ax 2+2ax+1≥0恒成立. 当a=0时,1≥0,不等式恒成立; 当a ≠0时,则{a >0,Δ=4a 2-4a ≤0,解得0<a ≤1. 综上,0≤a ≤1.(2)因为函数的最小值为√22,所以y=ax 2+2ax+1的最小值为12,因此4a -4a 24a=12,解得a=12.于是不等式可化为x 2-x-34<0,即4x 2-4x-3<0,解得-12<x<32.故不等式x 2-x-a 2-a<0的解集为{x |-12<x <32}.能力提升1.已知函数f (x )=(ax-1)(x+b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是 ( )A.(-∞,-32)∪(12,+∞)B.(-32,12) C.(-∞,-12)∪(32,+∞)D.(-12,32)f (x )>0,即(ax-1)(x+b )>0.因为其解集是(-1,3),所以{a <0,1a =-1,-b =3,解得{a =-1,b =-3,于是f (x )=(-x-1)(x-3),所以不等式f (-2x )<0,即为(2x-1)(-2x-3)<0,解得x>12或x<-32.2.若关于x 的不等式x 2+ax+1≥0对一切x ∈(0,12]成立,则a 的最小值为( ) A.0B.-2C.-52D.-3ax ≥-(x 2+1),x>0,得a ≥-(x +1x ).∵x ∈(0,12],∴由y=x+1x 的单调性可知,y=x+1x 的最小值为12+2=52,∴a ≥-52.3.若关于x 的不等式3kx 2+k+8<(13)-6kx的解集为空集,则实数k 的取值范围是( )A.0<k<1B.0≤k<1C.0≤k ≤1D.0<k ≤13kx2+k+8<36kx ,即kx 2-6kx+k+8<0的解集为空集.若k=0,不等式即为8<0,解集为空集,符合题意;若k ≠0,要使不等式的解集为空集,应有{k >0,(-6k )2-4k (k +8)≤0,解得0<k ≤1.故实数k 的取值范围是0≤k ≤1.4.函数y=2的定义域为 .-x 2-3x+4>0,即x 2+3x-4<0,解得-4<x<1.故函数的定义域为(-4,1).-4,1)5.已知当x ∈(1,2)时,不等式x 2+mx+4<0恒成立,则m 的取值范围是 .f (x )=x 2+mx+4,要使x ∈(1,2)时,不等式x 2+mx+4<0恒成立, 则有{f (1)≤0,f (2)≤0,即{1+m +4≤0,4+2m +4≤0.解得m ≤-5.-∞,-5]6.对于实数x ,当n ≤x<n+1(n ∈Z )时,规定[x ]=n ,则不等式4[x ]2-36[x ]+45<0的解集为 .t=[x ],则不等式化为4t 2-36t+45<0,解得32<t<152.而t=[x ],所以32<[x ]<152.由[x ]的定义可知x 的取值范围是2≤x<8,即不等式的解集为{x|2≤x<8}.x|2≤x<8}7.若关于x 的不等式ax 2+3x-1>0的解集是{x |12<x <1}. (1)求a 的值;(2)求不等式ax 2-3x+a 2+1>0的解集.由题意可知方程ax 2+3x-1=0的两个实数根为12和1,且a<0,则12+1=-3a ,12×1=-1a ,解得a=-2.(2)由(1)知不等式ax 2-3x+a 2+1>0即为-2x 2-3x+5>0,即2x 2+3x-5<0. 因为2x 2+3x-5=0有两根为x 1=1,x 2=-52, 所以不等式的解集为{x |-52<x <1}. 8.已知函数f (x )=x 2+ax+3.(1)当x ∈R 时,f (x )≥a 恒成立,求a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的取值范围.f (x )≥a ,即x 2+ax+3-a ≥0,要使x ∈R 时,x 2+ax+3-a ≥0恒成立,应有Δ=a 2-4(3-a )≤0,即a 2+4a-12≤0,解得-6≤a ≤2.故a 的取值范围为-6≤a ≤2.(2)当x ∈[-2,2]时,设g (x )=x 2+ax+3-a. 分以下三种情况讨论:①当-a2≤-2,即a ≥4时,g (x )在[-2,2]上单调递增,g (x )在[-2,2]上的最小值为g (-2)=7-3a ,因此{a ≥4,7-3a ≥0,无解; ②当-a2≥2,即a ≤-4时,g (x )在[-2,2]上单调递减,g (x )在[-2,2]上的最小值为g (2)=7+a ,因此{a ≤-4,7+a ≥0,解得-7≤a ≤-4;③当-2<-a2<2,即-4<a<4时,g (x )在[-2,2]上的最小值为g (-a 2)=-a 24-a+3, 因此{-4<a <4,-a 24-a +3≥0,解得-4<a ≤2.综上所述,实数a 的取值范围是-7≤a ≤2.。
人教版A版高中数学高二版必修5习题一元二次不等式及其解法

[A 基础达标]1.不等式6x 2+x -2≤0的解集为( )A.⎩⎨⎧⎭⎬⎫x |-23≤x ≤12B. ⎩⎨⎧⎭⎬⎫x |x ≤-23或x ≥12 C.⎩⎨⎧⎭⎬⎫x |x ≥12 D.⎩⎨⎧⎭⎬⎫x |x ≤-23 解析:选 A.因为6x 2+x -2≤0⇔(2x -1)(3x +2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-23≤x ≤12. 2.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1.其中解集为R 的是( )A .①B .②C .③D .④解析:选C.①显然不可能; ②中Δ=(-25)2-4×5>0,解集不为R ;③中Δ=62-4×10<0.满足条件;④中不等式可化2x 2-3x +3<0所对应的二次函数开口向上,显然不可能.故选C.3.关于x 的不等式ax 2+bx -2>0的解集是⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫13,+∞,则ab 等于( ) A .-24B .24C .14D .-14 解析:选 B.由已知可得-12,13是方程ax 2+bx -2=0的两根,由根与系数的关系得⎩⎨⎧-12+13=-ba ,⎝⎛⎭⎫-12×13=-2a ,解得⎩⎪⎨⎪⎧a =12,b =2,所以ab =24. 4.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析:选B.由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,所以-2<x <1.5.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2>0的解集是( )A .{x |x >5a 或x <-a }B .{x |x <5a 或x >-a }C .{x |-a <x <5a }D .{x |5a <x <-a }解析:选B.因为x 2-4ax -5a 2>0,所以(x -5a )(x +a )>0.因为a <-12,所以5a <-a .所以不等式的解为x >-a 或x <5a .故选B.6.不等式2x 2-x +1>0的解集是________.解析:由Δ=1-4×2<0,则原不等式的解集为R .答案:R7.不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为________. 解析:原不等式组可化为⎩⎪⎨⎪⎧x <-2或x >0,-1<x <1,解得0<x <1. 答案:{x |0<x <1}8.关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为________.解析:因为ax 2+bx +2>0的解集为{x |-1<x <2},所以⎩⎨⎧2a =-2,-b a =1,解得⎩⎪⎨⎪⎧a =-1,b =1, 所以bx 2-ax -2>0,即x 2+x -2>0,解得x >1或x <-2.答案:{x |x >1或x <-2}9.解下列不等式:(1)(5-x )(x +1)≥0;(2)9x 2-6x +1<0.解:(1)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x |-1≤x ≤5}.(2)因为Δ=0,方程9x 2-6x +1=0有两相等实根,x 1=x 2=13,所以不等式9x 2-6x +1<0的解集为∅.10.设f (x )=(m +1)x 2-mx +m -1.(1)当m =1时,求不等式f (x )> 0的解集;(2)若不等式f (x )+1>0的解集为⎝⎛⎭⎫32,3,求m 的值.解:(1)当m =1时,不等式f (x )>0为2x 2-x >0,因此所求解集为(-∞,0)∪⎝⎛⎭⎫12,+∞.(2)不等式f (x )+1>0,即(m +1)x 2-mx +m >0,由题意知32,3是方程(m +1)x 2-mx +m =0的两根, 因此⎩⎪⎨⎪⎧32+3=mm +132×3=m m +1⇒m =-97.[B 能力提升]1.已知f (x )=(x -a )(x -b )+2(a <b ),且α,β(α<β)是方程f (x )=0的两根,则α,β,a ,b 的大小关系是( )A .a <α<β<bB .a <α<b <βC .α<a <b <βD .α<a <β<b解析:选A.因为α,β为f (x )=0的两根,所以α,β为f (x )=(x -a )(x -b )+2与x 轴交点的横坐标.因为a ,b 为(x -a )(x -b )=0的根,令g (x )=(x -a )(x -b ),所以a ,b 为g (x )与x 轴交点的横坐标.可知f (x )图象可由g (x )图象向上平移2个单位得到,由图知选A.2.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0的解集为________.解析:由题意解得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以[x ]的取值为2,3,4,5,6,7,故2≤x <8.答案:[2,8)3.解关于x 的不等式x 2-ax -2a 2<0.解:方程x 2-ax -2a 2=0的判别式Δ=a 2+8a 2=9a 2≥0,得方程两根x 1=2a ,x 2=-a .(1)若a >0,则-a <x <2a ,此时不等式的解集为{x |-a <x <2a };(2)若a <0,则2a <x <-a ,此时不等式的解集为{x |2a <x <-a };(3)若a =0,则原不等式即为x 2<0,此时解集为∅.综上所述,原不等式的解集为:当a >0时,{x |-a <x <2a };当a <0时,{x |2a <x <-a };当a =0时,∅.4.(选做题)(2016·广东云浮月考)已知函数f (x )=x 2-(a +1)x +a .(1)当a =2时,求关于x 的不等式f (x )>0的解集;(2)求关于x的不等式f(x)<0的解集.解:(1)当a=2时,f(x)=x2-3x+2,因为f(x)>0,所以x2-3x+2>0,令x2-3x+2=0,解得x1=1,x2=2,所以原不等式的解集为(-∞,1)∪(2,+∞).(2)因为f(x)<0,所以f(x)=x2-(a+1)x+a=(x-a)(x-1)<0,令(x-a)(x-1)=0,解得x1=a,x2=1,当a>1时,原不等式的解集为(1,a);当a=1时,原不等式的解集为空集;当a<1时,原不等式的解集为(a,1).。
高中数学不等式2一元二次不等式及其解法第1课时一元二次不等式及其解法课后课时精练课件新人教A版必修5

(2)由题意,得14- +a2+ a+b= b=0, 0, 解得ba==--21, . ∴-x2+x-2<0,∴x2-x+2>0, ∴不等式 x2-x+2>0 的解集为 R.
10.已知 M 是关于 x 的不等式 2x2+(3a-7)x+3+a- 2a2<0 的解集,且 M 中的一个元素是 0,求实数 a 的取值范 围,并用 a 表示出该不等式的解集.
9.已知不等式 x2-2x-3<0 的解集为 A,不等式 x2+x -6<0 的解集为 B.
(1)求 A∩B; (2)若不等式 x2+ax+b<0 的解集为 A∩B,求不等式 ax2 +x+b<0 的解集.
解 (1)由 x2-2x-3<0,得-1<x<3, ∴A=(-1,3). 由 x2+x-6<0,得-3<x<2, ∴B=(-3,2),∴A∩B=(-1,2).
4.已知不等式 ax2-5x+b>0 的解集为{x|-3<x<2},则 不等式 bx2-5x+a>0 的解集为( )
A.x-13
1 <x<2
B.xx<-31 或x>21
C.{x|-3<x<2}
D.xx<-21 或x>31
解析 由题意可知,ax2-5x+b=0 的两个根分别为- 3,2,利用根与系数的关系可得,-3+2=5a,-3×2=ba, 解得 a=-5,b=30,则所求不等式可化为 30x2-5x-5>0, 即(2x-1)(3x+1)>0,解得 x<-13或 x>12.故选 B.
04课后课时精练
A 级:基础巩固练 一、选择题 1.函数 y= x2+x-12的定义域是( ) A.{x|x<-4 或 x>3} B.{x|-4<x<3} C.{x|x≤-4 或 x≥3} D.{x|-4≤x≤3}
高二数学人教A必修5练习及解析:3-2 一元二次不等式及其解法

∴a=2.
∴不等式
+1
2+1
+2
>1 可化为
>1,移项通分得 >0,
-1
-1
-1
∴(x+2)(x-1)>0,解得 x<-2 或 x>1.
∴所求解集为{x|x<-2 或 x>1}.
8.解关于 x 的不等式 2x2+ax+2>0.
解:对于方程 2x2+ax+2=0,其判别式 Δ=a2-16=(a+4)(a-4).
【解析】
1
由题意知,一元二次不等式 f(x)>0 的解集为x-1<x<2 .
而 f(10x)>0,
1
∴-1<10x<2,
1
解得 x<lg 2,即 x<-lg 2.
【答案】
D
二、填空题
6.(2015·广东高考)不等式-x2-3x+4>0 的解集为________.(用区间表示)
①当 a>4 或 a<-4 时,Δ>0,方程 2x2+ax+2=0 的两根为:
1
4
1
4
x1= (-a-√2 -16),x2= (-a+√2 -16).
∴原不等式的解集为
1
4
1
4
{ | < (--√2 -16)或 > (- + √2 -16)}.
②当 a=4 时,Δ=0,方程有两个相等实根,x1=x2=-1;
1
1
∴不等式 bx2-ax-1>0 的解集是(- 2 ,- 3).
最新人教a版高中数学必修5【课时作业18】一元二次不等式的解法(含答案)

最新人教版数学精品教学资料课时作业18 一元二次不等式的解法时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.设集合A ={x |x 2-1<0},B ={x |x 2-3x <0},则A ∩B 等于( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1}D .{x |-1<x <3}解析:由已知得A ={x |-1<x <1},B ={x |0<x <3},∴A ∩B ={x |0<x <1}.答案:C2.函数f (x )=-x 2+4x -3+14x -5的定义域为( )A .{x |1≤x ≤3}B .{x |1≤x ≤3,且x ≠54} C .{x |x ≥3,或x ≤1} D .{x |x ≠54} 答案:B3.二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( )A .{x |x >3,或x <-2}B .{x |x >2,或x <-3}C .{x |-2<x <3}D .{x |-3<x <2}解析:由已知得a (x +2)(x -3)>0(a <0),即(x +2)(x -3)<0,解得-2<x <3. 答案:C4.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B A ,则a 的取值范围是( )A .a ≤1B .1<a ≤2C .a >2D .a ≤2解析:集合A 中:x ∈(-∞,1)∪(2,+∞),集合B 中:x ∈(-∞,a ),由B A ,则a ≤1. 答案:A5.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:不等式f (x )≥x 2等价于⎩⎪⎨⎪⎧x ≤0,x +2≥x 2, 或⎩⎪⎨⎪⎧x >0,-x +2≥x 2.解得-1≤x ≤1. 答案:A6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:f (x )=⎩⎪⎨⎪⎧x 2+4x =(x +2)2-4,x ≥0,4x -x 2=-(x -2)2+4,x <0,由f (x )的图象可知f (x )在(-∞,+∞)上是单调递增函数,由f (2-a 2)>f (a )得2-a 2>a ,即a 2+a -2<0,解得-2<a <1.答案:C二、填空题(每小题8分,共计24分)7.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表:解析:方程ax 2+bx +c =0的两根为-2,3且a >0. 答案:{x |x <-2,或x >3}8.若1a x 2+bx +a >0的解集是{x |2<x <8},则a =________,b =________.解析:方程1a x 2+bx +a =0的两根为2,8,且a <0.∴⎩⎪⎨⎪⎧ab =-10,a 2=16,∴⎩⎨⎧a =-4,b =52.答案:-4 529.已知x =1是不等式k 2x -6kx +8≥0(k ≠0)的解,则k 的取值范围是________.解析:∵x =1是不等式k 2x -6kx +8≥0的解,∴k 2-6k +8≥0,∴(k -2)(k -4)≥0. ∴k ≤2或k ≥4.又∵k ≠0,∴k ∈(-∞,0)∪(0,2]∪[4,+∞). 答案:(-∞,0)∪(0,2]∪ [4,+∞) 三、解答题(共计40分) 10.(10分)解下列不等式: (1)-x 2+2x -23>0;(2)-1<x 2+2x -1≤2.解:(1)两边都乘以-3,得3x 2-6x +2<0,因为3>0,且方程3x 2-6x +2=0的解是x 1=1-33,x 2=1+33,所以原不等式的解集是{x |1-33<x <1+33}.(2)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0,所以-3≤x ≤1.所以原不等式的解集为{x |-3≤x <-2,或0<x ≤1}. 11.(15分)解关于x 的不等式12x 2-ax -a 2<0.解:∵Δ=a 2+4×12a 2=49a 2≥0,∴可求得方程12x 2-ax -a 2=0的两根分别为x 1=a 3,x 2=-a 4.当a >0时,-a 4<a 3,原不等式的解集为{x |-a 4<x <a3};当a =0时,原不等式变形为12x 2<0,原不等式的解集为∅;当a <0时,a 3<-a 4,原不等式的解集为{x |a 3<x <-a 4}.12.(15分)若方程x 2+2ax +3a +10=0,x 2-ax +4=0和x 2+(a -1)x +16=0中,至少有一个方程有实根,求a 的取值范围.解:三个方程均没有实根的条件是⎩⎪⎨⎪⎧Δ1=4a 2-4(3a +10)<0,Δ2=a 2-16<0,Δ3=(a -1)2-64<0⇒⎩⎪⎨⎪⎧-2<a <5,-4<a <4,-7<a <9,⇒-2<a <4,即当-2<a <4时,三个方程均无实根.故当a ≥4或a ≤-2时,至少有一个方程有实根.。
2020学年高中数学第3章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法练习新人教A版必修5

第1课时 一元二次不等式的解法1.不等式6x 2+x -2≤0的解集为A.⎩⎨⎧⎭⎬⎫x |-23≤x ≤12)B.⎩⎨⎧⎭⎬⎫x |x ≤-23或x ≥12)C.⎩⎨⎧⎭⎬⎫x |x ≥12)D.⎩⎨⎧⎭⎬⎫x |x ≤-23)解析 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-23≤x ≤12).答案 A2.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎪⎫x -1a <0的解集为A.⎩⎨⎧⎭⎬⎫x |x <a 或x >1a B.{x |x >a }C.⎩⎨⎧⎭⎬⎫x |x >a 或x <1aD.⎩⎨⎧⎭⎬⎫x |x <1a 解析 ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a>a ,∴x >1a或x <a .答案 A3.不等式2x 2-x -1>0的解集是________.解析 由2x 2-x -1>0,得(x -1)(2x +1)>0,解得x >1或x <-12,从而得原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 ⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞)4.二次函数y =ax 2+bx +c (x ∈R)的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46则不等式ax 2+bx +c >0的解集是________.解析 由表格可知,函数的图象开口向上,且零点为x =-2,x =3,因此图象关于x=12对称,从而不等式ax 2+bx +c>0的解集为(-∞,-2)∪(3,+∞). 答案 (-∞,-2)∪(3,+∞)5.已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎨⎧⎭⎬⎫x |x <-2或x >-12),则ax 2-bx +c>0的解集为________.解析 由题意,-2,-12是方程ax 2+bx +c =0的两个根且a <0,故⎩⎪⎨⎪⎧-2+⎝ ⎛⎭⎪⎫-12=-b a(-2)×⎝ ⎛⎭⎪⎫-12=c a, 解得a =c ,b =52c .所以不等式ax 2-bx +c >0即为2x 2-5x +2<0, 解得12<x <2,即不等式ax 2-bx +c >0的解集为⎩⎨⎧⎭⎬⎫x |12<x <2.答案 ⎩⎨⎧⎭⎬⎫x |12<x <2[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.(2016·全国Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B = A.⎝⎛⎭⎪⎫-3,-32B.⎝⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 解析 由题意得,A ={x |1<x <3},B =⎩⎨⎧⎭⎬⎫x |x >32),则A ∩B =⎝ ⎛⎭⎪⎫32,3.答案 D2.设-1<a <0,则关于x 的不等式(x -a )(ax -1)>0的解集为A.⎩⎨⎧⎭⎬⎫x |x <a 或x >1a B.{x |x >a }C.⎩⎨⎧⎭⎬⎫x |1a<x <aD.⎩⎨⎧⎭⎬⎫x |x <1a 解析 ∵-1<a <0,∴(x -a )(ax -1)>0可化为(x -a )·a ⎝⎛⎭⎪⎫x -1a >0,∴(x -a )⎝ ⎛⎭⎪⎫x -1a <0.又-1<a <0,∴a >1a,∴原不等式解集为1a<x <a .答案 C3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为 A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0, 所以-2<x <1. 答案 B4.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是A.(-∞,-1)∪(3,+∞)B.(-1,3)C.(1,3)D.(-∞,1)∪(3,+∞)解析 ∵关于x 的不等式ax -b >0的解集是(1,+∞),∴⎩⎪⎨⎪⎧a >0,a -b =0, 即⎩⎪⎨⎪⎧a >0,a =b . ∴不等式(ax +b )(x -3)>0⇔a (x +1)(x -3)>0⇔(x +1)(x -3)>0⇔x <-1或x >3. 答案 A5.已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >12,则f (10x)>0的解集为A.{x |x <-1或x >lg 2}B.{x |-1<x <lg 2}C.{x |x >-lg 2}D.{x |x <-lg 2}解析 由题意可知f (x )=-(x +1)(2x -1),则f (10x)=-(10x+1)(2·10x-1)>0, 即(10x+1)(2·10x-1)<0,∵10x+1>0,∴2·10x-1<0,解得x <-lg 2. 答案 D6.(能力提升)已知f (x )=(x -a )(x -b )+2(a <b ),且α,β(α<β)是方程f (x )=0的两根,则α,β,a ,b 的大小关系是A.a <α<β<bB.a <α<b <βC.α<a <b <βD.α<a <β<b解析 ∵α,β(α<β)是方程f (x )=0的两根,∴α,β为f (x )=(x -a )(x -b )+2的图象与x 轴交点的横坐标. ∵a ,b 为(x -a )(x -b )=0的根, 令g (x )=(x -a )(x -b ),∴a ,b 为g (x )的图象与x 轴交点的横坐标.由于f (x )的图象可由g (x )的图象向上平移2个单位得到,故选A. 答案 A二、填空题(每小题5分,共15分)7.若0<t <1,则不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为________.解析 ∵0<t <1,∴1t>1,所以(x -t )⎝ ⎛⎭⎪⎫x -1t <0的解集为⎩⎨⎧⎭⎬⎫x |t <x <1t ).答案 ⎩⎨⎧⎭⎬⎫x |t <x <1t )8.已知f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0,则不等式f (x )>x 的解集为________.解析 f (x )>x ⇔⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧0>x ,x =0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0⇔x >5或-5<x <0.∴不等式f (x )>x 的解集为(-5,0)∪(5,+∞). 答案 (-5,0)∪(5,+∞)9.(能力提升)关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为________.解析 ∵ax 2+bx +2>0的解集为{x |-1<x <2}, ∴⎩⎪⎨⎪⎧2a =-2,-b a =1,解得⎩⎪⎨⎪⎧a =-1,b =1,∴bx 2-ax -2>0,即x 2+x -2>0, 解得x >1或x <-2. 答案 {x |x >1或x <-2}三、解答题(本大题共3小题,共35分)10.(11分)解下列关于x 的不等式: (1)(7-x )(x +2)≥0;(2)-9x 2+3x -14≥0;(3)-12x 2+2x -5>0;(4)-2x 2+3x -2<0.解析 (1)原不等式化为(x -7)(x +2)≤0, 所以-2≤x ≤7.故所求不等式的解集为{x |-2≤x ≤7}.(2)原不等式化为9x 2-3x +14≤0,即⎝⎛⎭⎪⎫3x -122≤0,所以x =16. 故所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =16. (3)原不等式化为x 2-4x +10<0,即(x -2)2+6<0,故所求不等式的解集为∅.(4)原不等式化为2x 2-3x +2>0,即2⎝ ⎛⎭⎪⎫x -342+78>0.所以x ∈R.故所求不等式的解集为R.11.(12分)解关于x 的不等式:ax 2+(1-a )x -1>0(a ∈R). 解析 原不等式可化为(x -1)(ax +1)>0. (1)当a =0时,原不等式为x -1>0, 所以解集为{x |x >1}. (2)当a >0时,-1a<1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >1或x <-1a .(3)当a <0时,①当-1<a <0时,-1a>1.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <-1a .②当a =-1时,原不等式变为-(x -1)2>0, 所以解集为∅.③当a <-1时,-1a<1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-1a<x <1.12.(12分)已知不等式ax 2+bx +c >0的解集为{x |α<x <β},其中β>α>0,求不等式cx 2+bx +a <0的解集.解析 ∵ax 2+bx +c >0的解集为{x |α<x <β}, ∴α,β是方程ax 2+bx +c =0的两根,且a <0.∴αβ=c a ,α+β=-b a,∴c =aαβ,b =-a (α+β). ∵cx 2+bx +a <0,∴a αβx 2-a (α+β)x +a <0. 整理,得αβx 2-(α+β)x +1>0. ∵β>α>0,∴αβ>0,1α>1β,∴x 2-⎝⎛⎭⎪⎫1α+1βx +1αβ>0.∵方程x 2-⎝ ⎛⎭⎪⎫1α+1βx +1αβ=0的两根为1α,1β.∴x 2-⎝⎛⎭⎪⎫1α+1βx +1αβ>0的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1α或x <1β,即不等式cx2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1α,或x <1β.。
3.2.2_一元二次不等式及其解法习题课_课件(人教A版必修5)

第 三章 不等式
乙车的刹车距离略超过10 m,又知甲、乙两 种车型的刹车距离s(m)与车速x(km/h)之间 分别有如下关系:s甲=0.1x+0.01x2,s乙= 0.05x+0.005x2. 问:甲、乙两车有无超速现象? 解:由题意知,对于甲车,有0.1x+0.01x2 >12,即x2+10x-1200>0,解得x>30或x <-40(不合实际意义,舍去),
第 三章 不等式
3.某工厂生产商品M,若每件定价80元, 则每年可销售80万件,税务部门对市场销售 的商品要征收附加费,为了既增加国家收入, 又有利于市场活跃,必须合理确定征收的税 率.据市场调查,若政府对商品M征收的税 率为P%(即每百元征收P元)时,每年的销售 量减少10P万件,据此,问:
栏目 导引
集是全体实数(或恒成立)的条件是当 a=0 时,
b=0,c>0;
当
a≠0
时a>0 Δ<0
.
(2)不等式 ax2+bx+c<0 的解集是全体实数
(或恒成立)的条件是当 a=0 时,b=0,c<0;
当
a≠0
时,a<0 Δ<0
.
类似地有 f(x)≤a 恒成立⇔[f(x)]max≤a;f(x)≥a 恒成立⇔[f(x)]min≥a.
栏目 导引
第 三章 不等式
∵Δ=36>0,方程R2-10R+16=0的两个 实数根为R1=2,R2=8. 9分 然后画出二次函数y=R2-10R+16的图象, 由图象得不等式的解集为{R|2≤R≤8}. 10分 即当2≤R≤8时,每年在此项经营中所收附 加税金不少于112万元. 12分 名师微博 正确列出不等式是关键.
栏目 导引
第 三章 不等式
②若 a2-1≠0,即 a≠±1 时, 原不等式解集为 R 的条件是 a2-1<0, Δ=[-a-1]2+4a2-1<0, 解得-35<a<1. 综上所述,符合条件的实数 a 的取值范围是(- 35,1].
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业16 一元二次不等式及其解法
[基础巩固](25分钟,60分)
一、选择题(每小题5分,共25分)
1.已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B 等于( )
A .(-∞,-1) B.⎝
⎛⎭⎪⎫-1,-23 C.⎝ ⎛⎭
⎪⎫-23,3 D .(3,+∞) 解析:因为3x +2>0,所以x >-23
. 所以A =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪ x >-23. 又因为(x +1)(x -3)>0,所以x >3或x <-1.
所以B ={x |x <-1或x >3}.
所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪
x >-23∩{x |x <-1或x >3}={x |x >3} 答案:D 2.函数y =17-6x -x 2的定义域为( )
A .[-7,1]
B .(-7,1)
C .(-∞,-7]∪[1,+∞)
D .(-∞,-7)∪(1,+∞)
解析:由7-6x -x 2>0,得x 2
+6x -7<0,即(x +7)(x -1)<0,所以-7<x <1,故选B. 答案:B
3.设集合A ={x |(x -1)2<3x +7,x ∈R },则集合A ∩Z 中元素的个数是( )
A .4
B .5
C .6
D .7
解析:由(x -1)2<3x +7,得x 2-5x -6<0,解不等式得-1<x <6,
∴集合A ={x |-1<x <6},
∴A ∩Z 中的元素有0,1,2,3,4,5,共6个.
答案:C
4.若函数f (x )=1
kx 2+kx +1的定义域为R ,则常数k 的取值范围是( )
A .(0,4)
B .[0,4]
C .[0,4)
D .(0,4]
解析:∵函数f (x )=
1kx 2+kx +1的定义域为R ,∴kx 2+kx +1>0对x ∈R 恒成立.当k >0时,Δ=k 2-4k <0,解得0<k <4;当k =0时,kx 2+kx +1=1>0恒成立;当k <0时,不符合条件.故0≤k <4.选C.
答案:C
5.如果ax 2+bx +c >0的解集为{x |x <-2或x >4},那么对于函数f (x )=ax 2+bx +c ,应有( )
A .f (5)<f (2)<f (-1)
B .f (2)<f (5)<f (-1)
C .f (-1)<f (2)<f (5)
D .f (2)<f (-1)<f (5)
解析:由不等式的解集为{x |x <-2或x >4},得x =-2和x =4是函数f (x )=ax 2+bx +c
的图象与x 轴交点的横坐标,故f (x )的图象的对称轴为x =-2+42
=1,且其图象开口向上结合图象可得f (5)>f (-1)>f (2).
答案:D
二、填空题(每小题5分,共15分)
6.不等式1+2x +x 2≤0的解集为________.
解析:不等式1+2x +x 2≤0化为(x +1)2≤0,解得x =-1.
答案:{-1}
7.不等式x 2-(2a +1)x +a 2+a <0的解集为________.
解析:由题得[x -(a +1)](x -a )<0,
所以a <x <a +1.
答案:(a ,a +1)
8.设函数f (x )=⎩
⎪⎨⎪⎧ x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是________. 解析:f (1)=12-4×1+6=3,不等式即为f (x )>3.
①当x ≥0时,不等式即为
⎩⎪⎨⎪⎧ x 2
-4x +6>3,x ≥0, 解得⎩⎪⎨⎪⎧ x >3或x <1,x ≥0,
即x >3或0≤x <1;
②当x <0时,不等式即为⎩⎪⎨⎪⎧ x +6>3,x <0,
解得-3<x <0.
综上,原不等式的解集为(-3,1)∪(3,+∞).
答案:(-3,1)∪(3,+∞)
三、解答题(每小题10分,共20分)
9.已知不等式ax 2-3x +2>0的解集为{x |x <1或x >b }.
(1)求a ,b 的值;
(2)解不等式ax 2-(a +b )x +b <0.
解析:(1)由题意得x 1=1,x 2=b 是方程ax 2-3x +2=0的两根,且a >0,则
⎩⎪⎨⎪⎧
1+b =3a ,1·b =2a ,解得⎩⎪⎨⎪⎧ a =1,b =2. (2)由a =1,b =2得不等式为x 2
-3x +2<0, 即(x -1)(x -2)<0,∴1<x <2. ∴不等式的解集为(1,2). 10.解关于x 的不等式:x 2+(1-a )x -a <0. 解析:方程x 2
+(1-a )x -a =0的两根为x 1=-1,x 2=a . ∵函数y =x 2+(1-a )x -a 的图象是开口向上的抛物线,
∴当a <-1时,原不等式的解集为{x |a <x <-1};
当a =-1时,原不等式的解集为∅;
当a >-1时,原不等式的解集为{x |-1<x <a }. [能力提升](20分钟,40分)
11.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2
>0的解集是( )
A .{x |x <5a 或x >-a }
B .{x |x >5a 或x <-a }
C .{x |-a <x <5a }
D .{x |5a <x <-a }
解析:方程x 2-4ax -5a 2=0的两根为-a,5a .∵2a +1<0,∴a <-12,∴-a >5a .结合函数y =x 2-4ax -5a 2的图象,得原不等式的解集为{x |x <5a 或x >-a }.故选A.
答案:A
12.不等式2x -3x -4≤14
的解集为________. 解析:不等式2x -3x -4≤14可化为2x -3x
-4≤2-2, 因为函数y =2x 为增函数,
所以x -3x
-4≤-2, 移项,通分整理得x 2-2x -3x
≤0, 此不等式等价于
⎩⎪⎨⎪⎧ x 2-2x -3≥0,x <0或⎩⎪⎨⎪⎧ x 2-2x -3≤0,x >0,
解得x ≤-1或0<x ≤3.所以原不等式的解集为(-∞,-1]∪(0,3].
答案:(-∞,-1]∪(0,3]
13.设f (x )=(m +1)x 2
-mx +m -1.
(1)当m =1时,求不等式f (x )>0的解集; (2)若不等式f (x )+1>0的解集为⎝ ⎛⎭
⎪⎫32,3,求m 的值. 解析:(1)当m =1时,不等式f (x )>0为2x 2
-x >0, 因此所求解集为(-∞,0)∪⎝ ⎛⎭
⎪⎫12,+∞. (2)不等式f (x )+1>0,即(m +1)x 2-mx +m >0,
由题意知32
,3是方程(m +1)x 2-mx +m =0的两根, 因此⎩⎪⎨⎪⎧ 32+3=m m +132×3=m m +1⇒m =-97
. 14.解关于x 的不等式kx 2
-2x +k <0(k ∈R ).
解析:①当k =0时,不等式的解为x >0.
②当k >0时,若Δ=4-4k 2>0,即0<k <1时,不等式的解为1-1-k 2k <x <1+1-k 2k
; 若Δ≤0,即k ≥1时,不等式无解.
③当k <0时,若Δ=4-4k 2
>0,
即-1<k <0时,不等式的解为
x <1+1-k 2
k 或x >1-1-k
2
k ;
若Δ<0,即k <-1时,不等式的解集为R ;
若Δ=0,即k =-1时,不等式的解为x ≠-1. 综上所述,k ≥1时,不等式的解集为∅;
0<k <1时,不等式的解集为
⎩⎨⎧
⎭⎬⎫x ⎪⎪⎪ 1-1-k 2
k <x <1+1-k 2
k ;
k =0时,不等式的解集为{x |x >0};
当-1<k <0时,不等式的解集为
⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x <1+1-k 2k 或x >1-1-k
2
k ;
k =-1时,不等式的解集为{x |x ≠-1};
k <-1时,不等式的解集为R .。