2019北邮数分期中试题与答案
2019学年北京市八年级下学期期中数学试卷【含答案及解析】

(1)下列网格每个小正方形的边长都为 1,请你在网格中作出一个正方形 ABCD,使它的
边长 a=
,要求 A、 B、 C、 D四个顶点都在小正方形的格点上 .
(2)参考小强的思路,探究解决下列问题:作另一个正方形
EFGH,使它的四个顶点分别
在( 1)中所做正方形 ABCD的边上,并且边长 b 取得最小值 . 请你画出图形,并简要说明 b
四个顶点分别在已知正方形的四条边上,并且边长等于
b.
小强的思考是:如图,假设正方形 EFGH已作出 , 其边长为 b,点 E、F、 G、 H分别在 AD、
AB、 BC、 CD上,则正方形 EFGH的中心就是正方形 ABCD的中心 O(对角线的交点) .
∵正方形 EFGH的边长为 b,∴对角线 EG= HF= b, ∴OE= OF=OG=OH= b,进而点 E、 F、 G、 H可作出 . 解决问题 :
参考答案及解析
第 1 题 【答案】
第 2 题 【答案】
第 3 题 【答案】 第 4 题 【答案】 第 5 题 【答案】
第 6 题 【答案】 第 7 题 【答案】 第 8 题 【答案】
第 9 题 【答案】 第 10 题【答案】
第 11 题【答案】 第 12 题【答案】
第 13 题【答案】 第 14 题【答案】 第 15 题【答案】 第 16 题【答案】
(1)求证:四边形 DBFE是平行四边形; (2)当△ ABC满足什么条件时,四边形 DBFE是菱形 ?为什么 ?
21. 某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为
4 万元,
可变成本
逐年增长 . 已知该养殖户第 1 年的可变成本为 2.6 万元 . 设可变成本平均每年增长的百分率
北邮18-19数分下试题解答

xdy − ydx xdy − ydx
=
C 4x2 + y2 C1 4x2 + y2
(8 分)
xdy − ydx
=
C1
2
5
= 2 1 d = .
02
(10 分)
七(10 分).计算曲面积分 I = ( xy + yz + zx) dS ,其中 S 为锥面 z = x2 + y2
S
被曲面 x2 + y2 = 2ax (a 0) 所截得的部分。
北京邮电大学 2018-2019 学年第二学期 《数学分析(下)》期末考试试题 答案及参考评分标准
考试注意事项:学生必须将答题内容做在答题纸上,做在试题纸上均无效
一. 填空题(本大题共 10 小题,每小题 3 分,共 30 分)
1. 填:-2
2.
填:
f
x
(
0,
0
)
=
2
.
3. 填: dz = F1dx + F2dy aF1 + bF2
S
S
= x x2 + y2 2dxdy
Dxy
(4 分) (6 分)
=
2
2 d
2a cos
r cos r rdr =
2
2 d
2acos r3 cos dr
(8 分)
− 2
0
− 2
0
= 64 2a4. 15
(10 分)
八(10 分) 设 u = u(x, y, z)具有二阶连续偏导数,且
−
1 2
+
(
z
+
1)
=
0
2019级数分(上)期中试题答案

2019-2020学年数学分析(上)期中试题答案1. 当0b a >>时,34lim 57n nn nn a b a b →∞+=- . 答案:47- 2. 已知,,,a b p q均为大于零的常数,则n = .答案:max{,}a b3. 11lim(sin cos )x x x x→∞+= . 答案:e 4.111()111x x f x x x-+=--的可去型间断点为 . 答案:0,1x x ==5.已知()f x 在x a =可导,()0f a =,则3l i m ()=x x f a x→∞+ . 答案:3()f a '6.已知21,0(),0x x x x f x ae be x -⎧+>⎪=⎨+≤⎪⎩在(,)-∞+∞可导,则a = ,b = . 答案:12a b ==7. 已知()x y ϕ=是严格单调二阶可导函数()y f x =的反函数, (1)3f =,(1)4f '=,(1)1f ''=,则(3)ϕ''= . 答案:164- 8. 2sin 4(1)x y x e =++,则y '= . 答案:2sin 222sin (1)(cos ln(1))1x x x y x x x x'=++++ 9. 已知()f x 可导,()()x f x y f e e =,则dy = .答案:()()[()()()]x x f x x f x dy f e e f e e f x dx +''=+10.已知函数()y y x =由2220(0)xy x y e y +-=>确定,则(0)y '= . 答案:1211. )y x π=<<,则y '= . 答案:11cot ()41224x y y x '=++ 12.已知函数()y y x =由2arctan ln(1)x t y t =⎧⎪⎨=+⎪⎩确定,则224x d y dx π== .答案:413.x x x f 2sin )(=, ()()n fx = . 答案:1(1)2sin(2)2sin(2)22n n n n x x n x ππ--+++14.011lim()ln(1)x x x →-=+ . 答案:12- 15. x xe x f =)(, ()f x 的4阶带Lagrange 型余项的Maclaurin 公式为 . 答案:3425(5),012!3!5!x x x x x e xe x x x θθθ+=++++<< 16.)1ln()(2x x x f +=, (2019)(0)f = . 答案:2019!201717.已知0x →时,21cos )(2x x x f +-=与k ax 是等价无穷小,则a = , k = . 答案:1,44!a k == 18.设1ab >>,比较大小: b ae a be (填<或>).答案:<19.函数()f x =的极值点是 .答案:0,3x =±20.函数()x f x xe -=在(,)-∞+∞内的最大值是 . 答案:1e。
2019学年北京市八年级下学期期中考试数学试卷【含答案及解析】

2019学年北京市八年级下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三四五六七总分得分一、单选题1. 请判别下列哪个方程是一元二次方程()A. B. C. D.2. 在四边形中,对角线互相平分,若添加一个条件使得四边形是菱形,则这个条件可以是()A. B. C. D. ∥3. 是一次函数图象上的两个点,则的大小关系是()A. B. C. D. 不能确定二、选择题4. 如图,在□ABCD中,AE⊥CD于点E,∠B=65°,则∠DAE等于().A.15° B.25° C.35° D.65°三、单选题5. 一次函数,其中<0,且随的增大而减小,则其图象为()A. B. C. D.6. 关于x的一元二次方程的一个根是0,则a的值是()A. 1B. -1C.D. 0四、选择题7. 汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,?则汽车距天津的路程S(千米)与行驶时间t(时)的函数关系及自变量的取值范围是( ? )A.S=120-30t(0≤t≤4) B.S=30t(0≤t≤4)C.S=120-30t(t>0) D.S=30t(t=4)五、单选题8. 如图,在正方形外侧,作等边三角形,与相交于,则∠为()A. 145°B. 120°C. 115°D. 105°9. 如图,已知矩形中,、分别是、上的点,、分别是、的中点,当点在上从向移动而不动时,那么线段的长的变化是()A. 逐渐增大B. 逐渐减小C. 长度不改变D. 不能确定10. 如图,在直角梯形中,∥,∠=90°,=28cm,=24cm,=4cm,点从点出发,以1cm/s的速度向点运动,点从点同时出发,以2cm/s的速度向点运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动。
2019学年度xxx大学第二学期《高等数学》期中考试试题参考答案

第二学期《高等数学》期中考试试题参考答案⑴求满足条件du =(,).u x y解:(,)(,)P x y Q x y ==而22322()P xy Q y x y x∂-∂==∂+∂,故(,)(0,1)10(,)x y yx y u x y dy y ==+⎰⎰⎰0xy =+=⑼ 求曲线积分22()(4),4L x y dx x y dy x y-+++⎰其中曲线L 方程为22(1)4,x y +-=逆时针方向. 解: 222222222448,,.44(4)x y x y P x y xy QP Q x y x y y x y x -+∂-+-∂====++∂+∂但在坐标原点,此条件不成立.记222:4l x y r +=,顺时针方向,则在()L l ++所围区域内,格林公式成立,即22()()(4)0,4L l x y dx x y dy x y ++-++=+⎰故2222()(4)()(4),44L lx y dx x y dyx y dx x y dyx yx y-++-++=++⎰⎰ 2cos sin 22(2cos sin )2(sin )(2cos 4sin )cos 4x r y r r r r r r r d r θθπθθθθθθθ==--++=⎰201.2d πθπ==⎰四. (10分)求解初值问题:2331,1(0),(0) 3.3y y y x y y '''--=+⎧⎪⎨'==⎪⎩解 齐次方程对应的特征方程为2230.λλ--=特征根为121, 3.λλ=-=因此齐次方程的通解为312.x x y C e C e -=+由于0不是特征方程的根,故设非齐次方程的特解为,y ax b =+代入原方程,比较系数,得11,.3a b =-=即原方程的通解为3121.3x xy C e C e x -=+-+由定解条件,得12120,313,C C C C +=⎧⎨-+-=⎩ 121,1.C C =-⎧⇒⎨=⎩初值问题的解为 31.3xxy e e x -=-+-+6. 2001(),()()().2aaa xf x f x dxf y dy f x dx ⎡⎤=⎢⎥⎣⎦⎰⎰⎰已知函数连续求证;2000()()()()()()().ax aaxaaaf x dx f y dy f x dx f y dyf x dx f y dy f x dx +⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰⎰证明;显然()()()()()()aa a y a xxf x dx f y dy f y dy f x dx f x dx f y dy==⎰⎰⎰⎰⎰⎰而变换积分次序后再换积分变量字母,有于是201()()().2aaaxf x dx f y dy f x dx ⎡⎤=⎢⎥⎣⎦⎰⎰⎰证毕.证法2: 0()(),xF x f y dy =⎰记则0()().af x dx F a =⎰于是()()()[()()]aa a xf x dx f y dy f x F a F x dx =-⎰⎰⎰0()()()()a aF a f x dx F x f x dx =-⎰⎰2222200111()()()()()()().222aa a F a F x dF x F a F x F a f x dx ⎡⎤=-=-==⎢⎥⎣⎦⎰⎰2222(1)(1)9.,1,.(1)2L xdy y dx y I L x x y ++---=+=+-⎰求曲线积分其中方程为逆时针方向 解: 2222(1)(,),(,),(1)(1)y x P x y Q x y x y x y --==+-+-22222(1),[(1)]P y x Qy x y x∂--∂==∂+-∂ 由于点(0,1)位于L +所围区域(记为D )内,作圆周C +: x 2+y 2=r 2,则由格林公式,22()(1)0,(1)L C xdy y dxI x y ++--==+-⎰22222222220(1)(1)cos sin 2.(1)(1)L C xdy y dx xdy y dxr r I d x y x y r πθθθπ++----+====+-+-⎰⎰⎰。
2019届北京高三上学期期中数学(文)试卷含解析

2019届北京高三上学期期中数学试卷数学(文)第I卷(选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案)在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。
1.已知集合,若,则的取值范围为A. B. C. D.【答案】C【解析】【分析】根据2∈A即可得出2﹣a≤0,从而可解出a的取值范围.【详解】∵2∈A;∴2﹣a≤0;∴a≥2;∴a的取值范围为[2,+∞).故选:C.【点睛】考查描述法表示集合的定义,元素与集合的关系.2.下列函数中,是奇函数且在上存在最小值的是A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的奇偶性与(0,+∞)的最值情况,综合即可得答案.【详解】根据题意,依次分析选项:对于A,f(x)=x2﹣x,f(﹣x)=(﹣x)2﹣(﹣x)=x2+x≠﹣f(x),不是奇函数,不符合题意;对于B,f(x)=|lnx|,f(﹣x)=ln|﹣x|=lnx=f(x),为偶函数,不是奇函数,不符合题意;对于C,f(x)=x3,为幂函数,是奇函数,但在(0,+∞)上不存在最小值对于D,f(x)=sinx,为正弦函数,是奇函数,在(0,+∞)上存在最小值﹣1;故选:D.【点睛】本题考查函数的奇偶性以及最值的判断,关键是掌握常见函数的性质,属于基础题.3.函数满足,则的值是A. 0B.C.D. 1【答案】A【解析】【分析】由已知求得φ,进一步得到的值.【详解】由f(x)=sin(x+φ)满足,得sin(φ)=1,即φ=,k∈Z.则φ=,k∈Z.∴f(x)=sin(x+φ)=sin(x+)=sin(x+).∴=sinπ=0.故选:A.【点睛】本题考查三角函数的化简求值,考查由已知三角函数值求角,是基础题.4.已知向量,,则向量,夹角的大小为A. B. C. D.【答案】B【解析】【分析】由题意利用两个向量的夹角公式,求得向量,夹角的大小.【详解】设向量,夹角的大小为θ,θ∈[0,π],∵向量=(1,2),=(3,1),∴cosθ===,所以故选:B.【点睛】本题主要考查两个向量的夹角公式的应用,属于基础题.5.已知函数,,的图像都经过点,则的值为A. B. C. D.【答案】D【解析】【分析】函数f(x)=log a x,g(x)=b x,的图象都经过点,可得=2,=2,解得a,b 即可得出.【详解】函数f(x)=log a x,g(x)=b x,的图象都经过点,∴=2,=2,解得a=,b=16.则ab=8.故选:D.【点睛】本题考查了函数的性质、方程的解法,考查了推理能力与计算能力,属于基础题.6.在中,“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】当时,,所以,成立;当时,如取时,成立,此时,所以不成立;综上知“”是“”的”的充分不必要条件,选A.7.数列的通项公式为,若数列单调递增,则的取值范围为A. B. C. D.【答案】C【解析】【分析】数列{a n}单调递增⇔a n+1>a n,可得:n+1+>n+,化简解出即可得出.【详解】数列{a n}单调递增⇔a n+1>a n,可得:n+1+>n+,化为:a<n2+n.∴a<2.故选:C.【点睛】本题考查了等比数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.8.已知向量满足,且,则、、中最小的值是A. B. C. D. 不能确定的【答案】A【解析】【分析】可在的两边分别乘可得出,,,再根据即可得到,,这样整理即可得出.【详解】∵;∴,,;∴,,;∵;∴,;∴;∴.故选:A.【点睛】考查数量积的定义及运算,不等式的性质.二、填空题共6小题,每小题5分,共30分。
北京市2019学年高二下学期期中考试数学(理)试卷【含答案及解析】

北京市2019学年高二下学期期中考试数学(理)试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 复数 =A. + iB. + iC. 1-iD. 1+i2. 下列求导正确的是A. (3x 2 -2)'=3xB. (log 2 x)'=C. (cosx)'=sinxD. ()'=x3. 曲线y=x·e x 在x=1处切线的斜率等于A. 2eB. eC. 2D. 14. 等于A. B. C. D.5. 函数f(x)=3+xlnx的单调递增区间为A. (0,)________B. (e,+∞)________C. (,+∞)________D. (,e)6. 在复平面内,复数(i是虚数单位)的共轭复数对应的点位于A. 第四象限________B. 第三象限________C. 第二象限________D. 第一象限7. 函数f(x)= 在区间[0,3]的最大值为A. 3B. 4C. 2D. 58. 已知f(x)=1+(1+x)+(1+x) 2 +(1+x)3 +…+(1+x) n ,则f'(0)=A. nB. n-1C.D.9. 函数f(x)=x 3 +ax 2 +(a+6)x+1有极大值和极小值,则实数a的取值范围是A. (-1,2)________B. (-3,6)C. (-∞,-3)∪(6,+∞)________D. (-∞,-1)∪(2,+∞)10. 方程x 2 =xsinx+cosx的实数解个数是A. 3B. 0C. 2D. 1二、填空题11. 复数(2+i)·i的模为 ___________ .12. 由曲线y=x 2 ,y=x 3 围成的封闭图形的面积为 __________ .13. 若曲线y=x 3 +x-2上的在点P 0 处的切线平行于直线y=4x-1,则P 0 坐标为__________ .14. 如下图,由函数f(x)=x 2 -x的图象与x轴、直线x=2围成的阴影部分的面积为__________ .15. 已知S n = + +…+ ,n∈N*,利用数学归纳法证明不等式S n >的过程中,从n=k到n=k+l(k∈N*)时,不等式的左边S k+1 =S k + __________ .16. 对于函数y=f(x),x D,若对于任意x 1 D,存在唯一的x 2 D,使得,则称函数f(x)在D上的几何平均数为M. 那么函数f(x)=x 3 -x 2 +1,在x= [1,2]上的几何平均数M= ____________ .三、解答题17. 设函数f(x)=lnx-x 2 +x.(I)求f(x)的单调区间;(II)求f(x)在区间[ ,e]上的最大值.18. 已知函数f(x)= ,其中a∈R.(I)当a=1时,求曲线y=f(x)在原点处的切线方程;(II)求f(x)的极值.四、选择题19. 若f(x)=- x 2 +bln(x+2)在(-1,+∞)上是减函数,则实数b的取值范围是A. [-1,+∞)________B. (-1,+∞)________C. (-∞,-1]D. (-∞,-1)20. 观察()'=- ,(x 3 )'=3x 2 ,(sinx)'=cosx,由归纳推理可得:若函数f(x)在其定义域上满足f(-x)=-f(x),记g(x)为f(x)的导函数,则g (-x)=A. -f(x)________B. f(x)________C. g(x)________D. -g(x)21. 若i为虚数单位,设复数z满足| z |=1,则|z-1+i|的最大值为A. -1B. 2-C. +1D. 2+五、填空题22. 曲线y=x n 在x=2处的导数为12,则正整数n= __________ .23. 设函数y=-x 2 +l的切线 l 与x轴,y轴的交点分别为A,B,O为坐标原点,则△OAB的面积的最小值为 __________ .24. 对于函数①f(x)=4x+ -5,②f(x)=|log 2 x|-() x ,③f(x)=cos(x+2)-cosx,判断如下两个命题的真假:命题甲:f(x)在区间(1,2)上是增函数;命题乙:f(x)在区间(0,+∞)上恰有两个零点x 1 ,x 2 ,且x 1 x 2 <1.能使命题甲、乙均为真的函数的序号是 _____________ .六、解答题25. 已知函数f(x)=x 3 +ax 2 +bx+a 2 .(I)若f(x)在x=1处有极值10,求a,b的值;(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围26. 已知函数f(x)=x 3 -3ax+e,g(x)=1-lnx,其中e为自然对数的底数.(I)若曲线y=f(x)在点(1,f(1))处的切线与直线 l :x+2y=0垂直,求实数a 的值;(II)设函数F(x)=-x[g(x)+ x-2],若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;(III)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0). 若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第20题【答案】第21题【答案】第22题【答案】第24题【答案】第25题【答案】第26题【答案】。
2019年高三数学下期中试题(含答案)(2)

2019年高三数学下期中试题(含答案)(2)一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1763.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .14.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =5.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .66.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形7.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 48.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4B .5C .6D .4或59.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( ) A .49B .91C .98D .18210.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .14011.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6612.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .28二、填空题13.已知数列{}n a ,11a =,1(1)1n n na n a +=++,若对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立,则实数t 的取值范围为________ 14.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1yx +的最大值为_______.15.已知等比数列{}n a 满足232,1a a ==,则12231lim ()n n n a a a a a a +→+∞+++=L ________________.16.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.18.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .19.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.20.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______. 三、解答题21.已知数列中,,. (1)求证:是等比数列,并求的通项公式; (2)数列满足,求数列的前项和.22.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin 3sin sin A C B A C +-.(1)求角B ;(2)点D 在线段BC 上,满足DA DC =,且11a =,5cos()A C -=DC 的长.23.ABC V 的内角,,A B C 所对的边分别为,,a b c .已知ABC V 的面积21tan 6S b A = (1)证明: 3 b ccos A =; (2)若1,3c a ==求S .24.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .25.若数列{}n a 是递增的等差数列,它的前n 项和为n T ,其中39T =,且1a ,2a ,5a 成等比数列.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若对任意*n N ∈,24n S a a ≤-恒成立,求a 的取值范围.26.设等差数列{}n a 的前n 项和为n S ,225+=-a S ,515=-S . (1)求数列{}n a 的通项公式; (2)求12231111+++⋯+n n a a a a a a .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996,设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.3.C解析:C 【解析】 【分析】 【详解】解:∵234,,1a a a +成等比数列, ∴,∵数列{}n a 为递增的等差数列,设公差为d , ∴,即,又数列{}n a 前三项的和,∴,即,即d =2或d =−2(舍去), 则公差d =2. 故选:C .4.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+= 又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.5.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.6.D解析:D【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.7.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0, ∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+,∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2, ∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.8.B解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+, 令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .9.B【解析】∵3572a a +=,∴11272(4)a d a d ++=+,即167a d +=,∴13711313(6)13791S a a d ==+=⨯=,故选B .10.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x =.所以1n a n n =++,所以11nn n a =+-,故1121n S n n n n =+-+--++-L 11n =+-,由1110n S n =+-=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.11.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.12.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质二、填空题13.【解析】【分析】由题意可得运用累加法和裂项相消求和可得再由不等式恒成立问题可得恒成立转化为最值问题可得实数的取值范围【详解】解:由题意数列中即则有则有又对于任意的不等式恒成立即对于任意的恒成立恒成立 解析:(,1]-∞-【解析】 【分析】 由题意可得11111(1)1n n a a n n n n n n +-==-+++,运用累加法和裂项相消求和可得11n an ++,再由不等式恒成立问题可得232t a ≤-⋅恒成立,转化为最值问题可得实数t 的取值范围. 【详解】解:由题意数列{}n a 中,1(1)1n n na n a +=++, 即1(1)1n n na n a +-+=则有11111(1)1n n a a n n n n n n +-==-+++ 则有11111111n n nn n n a a a a a a n n nn n n ++--⎛⎫⎛⎫⎛=-+-+- ⎪ ⎪ ++--⎝⎭⎝⎭⎝2211122n a a a a n -⎫⎛⎫+⋯+-+ ⎪⎪-⎝⎭⎭(11111111121n n n n n n ⎛⎫⎛⎫⎛⎫=-+-+-+⋯+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭11)12221n -+=-<+ 又对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立, 即232t a ≤-⋅对于任意的[2,2]a ∈-恒成立,21t a ∴⋅≤,[2,2]a ∈-恒成立,∴2211t t ⋅≤⇒≤-, 故答案为:(,1]-∞- 【点睛】本题考查了数列递推公式,涉及数列的求和,注意运用裂项相消求和和不等式恒成立问题的解法,关键是将1(1)1n n na n a +=++变形为11111n n a a n n n n +-=-++. 14.2【解析】【分析】作出不等式组表示的平面区域根据目标函数的几何意义结合图象即可求解得到答案【详解】由题意作出不等式组表示的平面区域如图所示又由即表示平面区域内任一点与点之间连线的斜率显然直线的斜率最解析:2 【解析】 【分析】作出不等式组表示的平面区域,根据目标函数的几何意义,结合图象,即可求解,得到答【详解】由题意,作出不等式组表示的平面区域,如图所示, 又由()011y y x x -=+--,即1y x +表示平面区域内任一点(),x y 与点()1,0D -之间连线的斜率,显然直线AD 的斜率最大,又由2202x y y +-=⎧⎨=⎩,解得()0,2A ,则02210AD k -==--, 所以1y x +的最大值为2.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.15.【解析】【分析】求出数列的公比并得出等比数列的公比与首项然后利用等比数列求和公式求出即可计算出所求极限值【详解】由已知所以数列是首项为公比为的等比数列故答案为【点睛】本题考查等比数列基本量的计算同时 解析:323【解析】 【分析】求出数列{}n a 的公比,并得出等比数列{}1n n a a +的公比与首项,然后利用等比数列求和公式求出12231n n a a a a a a ++++L ,即可计算出所求极限值. 【详解】 由已知3212a q a ==,23112()()22n n n a --=⨯=,3225211111()()()2()2224n n n n n n a a ----+=⋅==⋅,所以数列{}1n n a a +是首项为128a a =,公比为1'4q =的等比数列,11223118[(1()]3214[1()]13414n n n n a a a a a a -+-+++==--L , 1223132132lim ()lim [1()]343n n n n n a a a a a a +→+∞→∞+++=-=L . 故答案为323. 【点睛】本题考查等比数列基本量的计算,同时也考查了利用定义判定等比数列、等比数列求和以及数列极限的计算,考查推理能力与计算能力,属于中等题.16.4【解析】已知等式利用正弦定理化简得:可得可解得余弦定理可得可解得故答案为解析:4【解析】已知等式2sin sin B A sinC =+,利用正弦定理化简得:2b a c =+,3cos ,5B =∴Q 可得4sin 5B ==,114sin 6225ABC S ac B ac ∆∴==⨯=,可解得15ac =,∴余弦定理可得,2222cos b a c ac B =+-()()221cos a c ac B =+-+=23421515b ⎛⎫-⨯⨯+ ⎪⎝⎭,∴可解得4b =,故答案为4.17.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题 解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果【详解】 因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题. 18.【解析】【分析】【详解】由题意解得或者而数列是递增的等比数列所以即所以因而数列的前项和故答案为考点:1等比数列的性质;2等比数列的前项和公式解析:21n -【解析】【分析】【详解】由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==, 而数列{}n a 是递增的等比数列,所以141,8a a ==, 即3418a q a ==,所以2q =, 因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---,故答案为21n -. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.19.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC 构成其中作出直线显然点A 到直线的距离最近由其几何意义知区域内的点最短距离为点A 到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区【解析】作出不等式组所表示的可行域1Ω ,如图阴影部分,由三角形ABC 构成,其中(11),(30),(12)A B C -,,, ,作出直线20x y += ,显然点A 到直线20x y +=的距离最近,由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:5d == ,所以区域1Ω 内的点与区域2Ω 内的点之,即5CD = .点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.20.【解析】当且仅当时取等号点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才能应用否则会出现解析:8【解析】 12124412(2)()4428b a b a a b a b a b a b a b a b +=∴+=++=++≥+⋅=Q ,当且仅当2b a = 时取等号.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题21.(1)答案见解析;(2).【解析】试题分析:⑴根据数列的递推关系,结合等比数列的定义即可证明是等比数列,并求的通项公式,⑵利用错位相减法即可求得答案; 解析:(1)∵∴∴,∵,, ∴是以为首项,以4为公比的等比数列 ∴, ∴, ∴, (2),∴①②①-②得∴. 22.(Ⅰ)6B π=;(Ⅱ)455AD =. 【解析】【试题分析】(1)运用正弦定理将已知中的222sin sin sin 3sin sin A C B A C +-=等式转化为边的关系,再借助运用余弦定理求解;(2)借助题设条件DA DC =,且11a =,()5cos A C -=,再运用正弦定理建立方程求解: (Ⅰ)由正弦定理和已知条件,2223a c b ac +-=所以3cos 2B =. 因为()0,B π∈,所以6B π=.(Ⅱ)由条件.由()()cos sin 55A C A C -=⇒-=.设AD x =,则CD x =,11BD x =-,在ABD ∆中,由正弦定理得sin sin BD AD BAD B=∠.故512x x =⇒=.所以5AD DC ==. 23.(1)证明解析,(2)2 【解析】【分析】(1)由正弦定理面积公式得:211sin tan 26S bc A b A ==,再将sin tan cos A A A =代入即可. (2)因为1c =,a =3b cosA =.代入余弦定理2222cos a b c bc A =+-得22cos 3A =,cos 3A=tan 2A ⇒=,b =⇒16622S =⨯⨯=. 【详解】 (1)由211sin tan 26S bc A b A ==,得3sin tan c A b A = 因为sin tan cos A A A =,所以sin 3sin cos b A c A A=, 又0A π<<,所以sin 0A ≠,因此3cos b c A =.(2)由(1)得3b ccosA =.因为1c =,a =3b cosA =.由余弦定理2222cos a b c bc A =+-得:2229cos 16cos A A =+-,解得:22cos 3A =. 因为3b cosA =,所以cos 0A >,cos A =.tan A ⇒=,b .211tan 66622S b A ==⨯⨯=. 【点睛】本题第一问主要考查正弦定理中的面积公式和边角互化,第二问考查了余弦定理的公式应用,属于中档题.24.(Ⅰ)3n n a =;(Ⅱ)()1121334n n S n +⎡⎤=-⋅+⎣⎦.【解析】【分析】(Ⅰ)由已知,当1n ≥时,()()()111211n n n n n a a a a a a a a ++-=-+-++-+L ,结合题意和等比数列前n 项和公式确定数列的通项公式即可;(Ⅱ)结合(Ⅰ)的结果可知3n n b n =⋅,利用错位相减求和的方法求解其前n 项和即可.【详解】(Ⅰ)由已知,当1n ≥时,()()()111211n n n n n a a a a a a a a ++-=-+-++-+L12323233n n L -=⨯+⨯++⨯+()1233311n n -=⋅+++++L()1123112n +⎡⎤=⋅-+⎢⎥⎣⎦13n +=∵13a =,即关系式也成立,∴数列{}n a 的通项公式3n n a =.(Ⅱ)由3n n n b na n ==⋅,得231323333n n S n =⨯+⨯+⨯++⋅L ,而()23413132333133n n n S n n +=⨯+⨯+⨯++-⋅+⋅L ,两式相减,可得()231233333n n n S n +-=++++-⋅L()111133322n n S n ++⎡⎤=---⋅⎢⎥⎣⎦ ∴()1121334n n S n +⎡⎤=-⋅+⎣⎦. 【点睛】 数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.25.(1) 21n a n =+ (2) 1a 2a ≤-≥或【解析】试题分析:(1)根据题目中所给的条件,用基本量来表示数列中的项,求出基本量,即可得到通项;(2)由第一问可得,11122121n b n n ⎛⎫=- ⎪-+⎝⎭,进而裂项求和,得到221n a a n ≤-+恒成立,求左式的最大值即可. 解析:(1)31239T a a a =++=Q ,13a d ∴+=又125,,a a a Q 成等比数列2215a a a ∴=11a ∴=`,221n d a n =∴=-(2)()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭ 1111111-++23352121n S n n ⎛⎫∴=-+⋅⋅⋅- ⎪-+⎝⎭ 111-221n =+() 21n n =+ 对任意的*n N ∈,24n S a a ≤-恒成立只需n S 的最大值小于或等于24a a -,而12n S < 22a a ∴-≥1a ∴≤-或2a ≥26.(1)n a n =-;(2)1n n +. 【解析】【分析】(1)利用方程的思想,求出首项、公差即可得出通项公式;(2)根据数列{}n a 的通项公式表示出11n n a a +,利用裂项相消法即可求解. 【详解】(1)设等差数列{}n a 的公差为d ,由221325+=+=-a S a d ,5151015=+=-S a d ,即123+=-a d ,解得11a =-,1d =-,所以()11=---=-n a n n .(2)由n a n =-,所以11111(1)1+==-++n n a a n n n n , 所以122311111111112231+⎛⎫⎛⎫⎛⎫++⋯+=-+-+⋯+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭n n a a a a a a n n 1111n n n =-=++. 【点睛】 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
答案: 2n x sin(2x n ) n2n1 sin(2x (n 1) )
2
2
14. lim(1 1 )
.
x0 x ln(1 x)
2
答案: 1 2
15. f (x) xex , f (x) 的 4 阶带 Lagrange 型余项的 Maclaurin 公
式为
.
答案: xex x x2 x3 x4 ( x 5)e x x5, 0 1
北京邮电大学 2019-2020 学年
数学分析(上)期中试题答案
1.
当
b
a
0
时,
lim
n
3an 5an
4bn 7bn
.
答案: 4 7
2. 已知 a,b, p, q 均为大于零的常数,则 lim n pan qbn
.
n
答案: max{a, b}
3. lim(sin 1 cos 1) x
.
,
x
在
0
(, ) 可导,则
a
,
b
.
答案: a b 1 2
7. 已知 x ( y) 是严格单调二阶可导函数 y f (x) 的反函数,
1
f (1) 3 , f (1) 4 , f (1) 1,则(3)
.
答案: 1 64
8. y (1 x2 )sin x e4 ,则 y
.
答案:
x
x
x
答案: e
1 1
4. f (x)
x 1
x 1 的可去型间断点为 1
.
x 1 x
答案: x 0, x 1
5. 已 知 f (x) 在 x a 可 导 , f (a) 0 , 则
lim xf (a 3)=
.
x
x
答案: 3 f (a)
6.已知
f
(x)
x2 1, x 0
ae
x
be x
y(0)
.
1
答案:
2
ห้องสมุดไป่ตู้
11. y 4 x 3 ex sin x (0 x ) ,则 y
.
答案: y y( 1 1 cot x) 4x 12 24
12.已知函数
y
y(x)
由
x arctan t
y
ln(1
t
2)
确定,则
d2y dx2
x 4
.
答案: 4
13. f (x) x sin 2x , f (n) (x)
y
(1
x2
)sin
x
(cos
x
ln(1
x2
)
2x sin x 1 x2
)
9. 已知 f (x) 可导, y f (ex )e f (x) ,则 dy
.
答案: dy [ f (ex )ex f (x) f (ex )e f (x) f (x)]dx
10.已知函数 y y(x) 由 2x2 y2 exy 0( y 0) 确定,则
2! 3!
5!
16. f (x) x2 ln(1 x) , f (2019) (0)
.
2019!
答案:
2017
17.已知 x 0 时, f (x) cos x 1 x2 与 axk 是等价无穷小,则 2
a
, k
.
答案: a 1 , k 4 4!
18.设 a b 1 ,比较大小: aeb 答案: 19.函数 f (x) 3 (x2 9)2 的极值点是
bea (填 或 ).
.
答案: x 0, 3
20.函数 f (x) xex 在 (, ) 内的最大值是
.
1
答案:
e
3