晶体的知识
化学晶体知识点总结

化学晶体知识点总结一、晶体的概念晶体是由晶格和晶格点组成的,晶格是晶体由周期性点阵构成的三维空间有序排列而成的规则结构。
晶格点是晶体中原子、分子或离子的位置。
晶体是由晶格点和晶格构成的,在空间中呈规则有序排列的固体。
二、晶体的分类根据晶体的结构和性质,晶体可以分为分子晶体、离子晶体、原子晶体、共价晶体等几种类型。
1. 分子晶体分子晶体是由分子形成的晶体,分子之间通过范德华力进行相互作用。
例如,冰、蓝晶石等。
2. 离子晶体离子晶体是由正负离子形成的晶体,通过静电力进行相互作用。
例如,氯化钠、氧化钙等。
3. 原子晶体原子晶体是由原子形成的晶体,原子之间通过金属键或者共价键进行相互作用。
例如,金属晶体、石墨等。
4. 共价晶体共价晶体是由原子通过共价键形成的晶体,共价键的方向性导致晶体的各项异性,在晶体结构中原子间存在共用电子对。
例如,硅、金刚石等。
三、晶体的结构晶体结构是指晶体中原子、离子或分子的排列方式。
晶体结构分为立方晶系、四方晶系、正交晶系、六角晶系、单斜晶系、三斜晶系六种晶格系统。
四、晶体的性质1. 光学性质晶体在光学上的行为叫做光学性能。
晶体的光学性质是由其晶格的结构和原子排列决定的,包括吸收光能、产生衍射等性质。
2. 热学性质晶体的热学性质是指晶体在高温下的行为,如热膨胀、热导率、热容等。
3. 电学性质晶体在电场中的行为称为电学性能,包括电导率、介电常数、压电效应等。
五、晶体生长晶体生长是指晶体在固相状态下生长的过程。
晶体生长过程包括平衡生长和非平衡生长两种类型。
六、晶体的制备晶体的制备方法主要包括溶液法、气相法、热法、溶胶-凝胶法等。
七、晶体的应用1. 材料领域晶体材料具有优异的物理、化学和光学性能,广泛应用于半导体、光电子器件、激光器件等领域。
2. 医药领域晶体结构可以对分子进行结构表征,用于药物合成和药物性质研究。
3. 能源领域晶体在太阳能电池、锂电池等能源设备中具有重要应用价值。
4. 其他领域晶体还广泛应用于化学分析、生物化学、环境保护等领域。
晶体晶胞知识点总结

晶体晶胞知识点总结一、晶体的概念晶体是由原子、离子或分子按照一定的规则排列而形成的具有一定外形和内部结构的固体。
晶体通常具有固定的外形和平整的表面,是由一系列平行排列的平面组成的。
晶体通常具有一定的透明性,可以在显微镜下观察到其构造和形状。
晶体是固体中最有规则结构的物质,常见的有石英、盐、冰等。
二、晶体的晶胞晶体的晶胞是晶体中的最小单位,是由原子、离子或分子按照一定的规则排列而形成的一个周期性排列的三维空间结构。
晶胞可以通过多个原胞的堆积来形成整个晶体。
晶胞的形状和大小是晶体结构的基本特征,它决定了晶体的外形和物理性质。
晶体的表面、对称性和晶内缺陷等都与晶胞的结构有关。
三、晶体的结构晶体的结构是指晶体中原子、离子或分子的排列方式和空间组织。
根据晶体结构的不同,晶体可以分为离子晶体、共价晶体和金属晶体等。
不同类型的晶体具有不同的原子结构和物理性质。
晶体的结构除了晶胞外,还包括晶体的对称性、晶体的晶面和晶内缺陷等多个方面。
四、晶胞的类型根据晶胞的形状和结构不同,晶胞可以分为立方晶胞、六角晶胞、正交晶胞、四方晶胞、单斜晶胞和三斜晶胞等。
不同类型的晶胞对应不同类型的晶体,具有不同的结构和物理性质。
五、晶胞的参数晶胞的参数是指晶胞在三维空间中的尺寸和排列方式。
晶胞的参数包括晶格常数、晶胞的体积、晶胞的边长和晶胞的夹角等。
晶胞的参数是确定晶体结构和物理性质的重要参量,通过测量和计算晶胞的参数可以了解晶体的结构和特性。
六、晶体的对称性晶体的对称性是指晶体在空间中具有的对称操作和特点。
晶体的对称性与晶体的结构紧密相关,是晶体学的重要内容之一。
晶体的对称性包括轴对称性、面对称性、中心对称性和空间对称性等。
通过对称性的分析和研究,可以揭示晶体的特殊性质和规律。
七、晶体的晶面和晶点晶面是晶体中原子、离子或分子排列的平面,是晶体最基本的结构单位。
晶点是晶体中原子、离子或分子排列的点,是晶体结构的另一重要单位。
晶面和晶点的排列方式决定了晶体的外形和对称性,对晶体的物理性质也有重要影响。
化学晶体知识点梳理总结

化学晶体知识点梳理总结一、晶体概述晶体是由一定规则排列的离散的微观结构单元组成的固体材料,它们在三维空间内展现出一种规则的周期性结构。
晶体是固体材料中最有序的形式,其结构是由原子、分子或离子组成的。
晶体结构的研究对于理解物质的性质和特性具有重要意义,因此对晶体结构的研究一直是化学和材料科学中的一个重要方向。
二、晶体的结构晶体的结构是由晶格和晶体的结构单元组成的。
晶格是晶体中微观结构单元的排列方式,它具有一定的平移对称性。
结构单元是晶体的最小重复单元,可以是原子、分子或者离子。
1. 晶格晶格是晶体结构的基本特征之一,它是一种几何形状的最小占据空间,可以用点、直线、面或体积等方式来描述。
晶格的类型包括立方晶系、四方晶系、六方晶系、正交晶系、单斜晶系和三角晶系。
晶器又分为布拉维晶格和晶胞。
布拉维晶格是由空间中任意一点(点阵)组成的无限的那种观念上的晶格,它所包含的晶胞是实际的。
2. 结构单元晶体的结构单元是晶体结构的最小重复单位,也是晶体的最小占据空间。
结构单元可以是原子、离子或分子等,它们按照一定的规则排列在晶格上。
晶体的性质和特性取决于晶体的结构单元以及它们之间的排列方式。
三、晶体的生长晶体是由无定形物质通过结晶过程形成的。
在结晶过程中,无定形物质会通过各种物理化学过程逐渐排列成有序的结构。
晶体生长的过程涉及溶液中的物质迁移、核心的形成和生长以及晶体的定向生长等过程。
晶体生长的过程对晶体的质量和性能具有重要的影响,因此晶体生长的研究对于晶体材料的制备和应用具有重要意义。
晶体生长的过程中涉及的物理化学原理包括溶解度、过饱和度、核形成、晶体的成核过程、晶体的生长方式、晶体生长的动力学过程等。
四、晶体的性质晶体的结构决定了它的性质。
晶体的性质包括晶体的形貌、晶体的物理性质、晶体的化学性质和晶体的热性质等。
1. 晶体的形貌晶体的形貌是晶体表面的形态和外形特征。
晶体的形貌对于晶体的识别和分类具有重要意义。
晶体的形貌受到晶体的结构和生长条件的影响,不同的结构和生长条件会导致不同的晶体形貌。
晶体结构与性质知识总结

晶体结构与性质知识总结晶体是由原子、离子或分子组成的固体,它们按照一定的规则排列而形成的,在空间上具有周期性的结构。
晶体的结构与性质密切相关,下面对晶体的结构和性质进行总结。
一、晶体的结构:1.晶体的基本单位:晶体的基本单位是晶胞,它是晶格的最小重复单位。
晶胞可以是点状(原子)、离子状(离子)或分子状(分子)。
2.晶格:晶格是一种理想的周期性无限延伸的结构,它由晶胞重复堆积而成。
晶格可以通过指标来描述,如立方晶系的简单立方晶格用(100)、(010)和(001)来表示。
3.晶系:晶体按照对称性的不同可以分为立方系、四方系、正交系、单斜系、菱面系、三斜系和六角系等七个晶系。
4.点阵:点阵是晶胞中原子、离子或分子的空间排列方式。
常用的点阵有简单立方点阵、体心立方点阵和面心立方点阵。
5.晶体的常见缺陷:晶体中常见的缺陷有点缺陷、线缺陷和面缺陷。
点缺陷包括空位、间隙原子和杂质原子等;线缺陷包括晶体的位错和附加平面等;面缺陷包括晶体的晶界、孪晶和堆垛疏松等。
二、晶体的性质:1.晶体的光学性质:晶体对光有吸收、透射和反射等作用,这取决于晶格结构和晶胞的对称性。
晶体在光学显微镜下观察时,有明亮的晶体颗粒。
2.晶体的热学性质:晶体的热学性质主要包括热容、热传导和热膨胀等。
晶体的热传导性能与晶胞的结构和相互作用有关,不同晶体的热传导性能差异很大。
3.晶体的电学性质:晶体的导电能力与晶体的结构和化学成分密切相关。
一些晶体可以具有金属导电性,例如铜、银和金等;而其他晶体可以具有半导体或绝缘体导电性。
4.晶体的力学性质:晶体的力学性质涉及到晶体的刚性、弹性和塑性等。
晶体在受力作用下可能发生形变,这取决于晶格的结构和原子、离子或分子之间的相互作用力。
5.晶体的化学性质:晶体的化学性质取决于晶体的成分和结构。
晶体可能与其他物质发生化学反应,形成新的物质。
晶体的化学性质对其功能和应用具有重要影响。
综上所述,晶体的结构与性质密切相关。
物理晶体知识点总结

物理晶体知识点总结晶体是物质的固态形态之一,具有有序的结构和周期性的排列。
晶体的研究涉及到物理学、化学、材料科学等多个学科领域。
本文将从晶体的结构、性质、生长和应用等方面,对晶体的物理知识点进行总结。
一、晶体结构1. 晶体的定义晶体是由原子、离子或分子按照一定的几何规律和翻译对称性排列而成的固态物质。
2. 晶体的结构特征晶体具有三维周期性排列的结构,具有一定的对称性。
晶体的结构可以通过晶体结构分析进行研究。
3. 晶体的晶胞和晶体格晶体的基本单位是晶胞,晶胞是由一组原胞通过平移向量形成的最小重复单位。
晶体格是指晶胞中原子、离子或分子的排列方式和几何形状。
4. 晶体的晶系和晶体系晶体按照晶胞几何形状和角度不同,可分为七个晶系:立方晶系、四方晶系、六方晶系、正交晶系、斜方晶系、单斜晶系和三斜晶系。
而按照晶面对称性不同,又可分为32个晶体系。
5. 晶体的点阵晶体的点阵是指晶体排列的空间格子,可以通过布拉维格子进行描述。
点阵包括平移矢量和原子坐标。
二、晶体物理性质1. 晶体的电性晶体在外加电场下会发生极化现象,即晶体产生电偶极矩。
根据极化方向,晶体又可分为铁电体、铁磁体、反铁磁体和顺磁体。
2. 晶体的光学性质晶体对光的透射、反射、衍射和偏振等现象都具有特殊的性质,这些性质受晶体结构和化学成分的影响。
3. 晶体的热学性质晶体的热学性质包括热膨胀、热导率、比热容等,这些性质受晶体结构和化学成分的影响。
4. 晶体的机械性质晶体的硬度、弹性模量、断裂韧性等机械性质取决于晶体结构和原子键强度等因素。
三、晶体生长1. 晶体生长的原理晶体在固态化学反应、凝聚相变、蒸发结晶等过程中会发生生长,晶体生长遵循热力学和动力学原理。
2. 晶体生长的方式晶体生长方式包括溶液晶体生长、气相晶体生长、熔体晶体生长等不同方式,每种方式都有其特定的生长条件和机制。
3. 晶体生长的控制晶体生长可以通过控制温度、浓度、溶剂、PH值等条件来实现,也可以通过添加配位剂、表面活性剂等控制剂实现晶体生长的选择性和形貌调控。
晶体相关知识点总结

晶体相关知识点总结一、基本概念1. 晶体的定义晶体是由原子、离子或分子按照一定的规则排列而形成的固体结构。
晶体具有高度有序性,具有一定的周期性和对称性。
晶体是凝聚态物质的一种主要形式,占据了固态物质的绝大部分。
2. 晶体的种类根据晶体结构的不同,晶体可以分为离子晶体、共价晶体、金属晶体和分子晶体等几种基本类型。
不同类型的晶体具有不同的物理性质和化学性质。
3. 晶体的分类根据晶体的外部形态,晶体可以分为单斜晶、正交晶、菱形晶、六方晶、四方晶、立方晶等几种基本类型。
不同类型的晶体具有不同的外部形态和对称性。
二、晶体结构1. 晶体的晶体结构晶体结构是指晶体中原子、离子或分子的排列方式和规律。
晶体结构可以分为周期性结构和非周期性结构两种形式。
周期性结构是指晶体中原子、离子或分子的排列具有一定的周期性,具有明显的晶格和对称性。
非周期性结构是指晶体中原子、离子或分子的排列没有明显的周期性,没有规则的晶格和对称性。
2. 晶体的晶格晶体的晶格是指晶体中原子、离子或分子所构成的三维空间排列的规则结构。
晶格可以分为周期性晶格和非周期性晶格两种类型。
周期性晶格是指晶格具有明显的周期性,有规则的排列和对称性。
非周期性晶格是指晶格没有明显的周期性,没有规则的排列和对称性。
3. 晶体的晶胞晶胞是指晶体中最小的具有完整晶体结构的基本单位。
晶胞可以分为原胞和扩展晶胞两种类型。
原胞是指晶体中最小的具有完整晶体结构的基本单位,包含了一个或多个原子、离子或分子。
扩展晶胞是指原胞在晶体结构中的重复排列,是构成晶体的基本单位。
三、晶体的生长1. 晶体生长的基本过程晶体生长是指在溶液、熔体或气相中,原子、离子或分子从溶液中萃取并在已生成的晶体上沉积,形成新晶体的过程。
晶体生长的基本过程包括成核、生长和成形几个阶段,成核是指溶液中原子、离子或分子聚集形成晶体的核心;生长是指晶体核心上原子、离子或分子的进一步沉积和排列生长;成形是指晶体的表面形态和结晶过程。
四大晶体知识总结
四大晶体知识总结一、分子晶体及其结构特点1. 概念: 分子间通过分子间作用力相结合形成的晶体。
2. 微粒间作用分子晶体中相邻的分子间以分子间作用力相互吸引。
4.(1)干冰①每个晶胞中有4个CO2分子, 12个原子。
②每个CO2分子周围等距离紧邻的CO2分子数为12个。
(2)冰①水分子之间的作用力有范德华力和氢键, 但主要是氢键。
②由于氢键的方向性, 使在四面体中心的每个水分子与四面体顶角方向的4个相邻水分子相互吸引。
分子晶体的堆积方式1. 物理特性(1)分子晶体的熔、沸点较低, 密度较小, 硬度较小, 较易熔化和挥发。
(2)一般是绝缘体, 熔融状态也不导电。
(3)溶解性符合“相似相溶”规律。
2. 分子晶体熔、沸点高低的比较规律(1)分子晶体中分子间作用力越大, 物质熔、沸点越高, 反之越低。
(2)具有氢键的分子晶体, 熔、沸点反常高。
二、原子晶体及其结构特点1.概念相邻原子间以共价键相结合形成三维的共价键网状结构的晶体叫原子晶体, 又叫共价晶体。
2. 构成微粒及微粒间作用3. 常见原子晶体及物质类别(1)某些单质: 如硼(B)、硅(Si)、锗(Ge)、金刚石等。
(2)某些非金属化合物: 如碳化硅(SiC)、二氧化硅(SiO2)、氮化硼(BN)、氮化硅(Si3N4)等。
(3)极少数金属氧化物, 如刚玉(αAl2O3)等。
4. 两种典型原子晶体的组成与结构(1)金刚石金刚石晶体中, 每个碳原子均以4个共价键对称地与相邻的4个碳原子相结合, 形成C—C —C夹角为109°28′的正四面体结构(即金刚石中的碳采取sp3杂化轨道形成共价键), 整块金刚石晶体就是以共价键相连的空间网状结构。
其中最小的环是六元环, 每个碳原子参与形成12个六元环。
(2)二氧化硅二氧化硅晶体中, 每个硅原子均以4个共价键对称地与相邻的4个氧原子相结合, 每个氧原子与2个硅原子相结合, 向空间扩展, 形成空间网状结构。
晶体学基础必学知识点
晶体学基础必学知识点1. 晶体的定义:晶体是由原子、离子或分子以有序排列形成的固态物质。
2. 结晶学:研究晶体的结构、性质以及晶体的生长过程。
3. 晶体的晶格:晶体具有规则的周期性排列结构,可以用晶格来描述。
4. 晶胞:晶体中最小的重复单元,可以通过平移来产生整个晶体结构。
5. 晶体的晶系:根据晶胞的对称性,晶体可以分为七个晶系,分别为三斜晶系、单斜晶系、正交晶系、四方晶系、六方晶系、菱方晶系和立方晶系。
6. 晶体的晶面和晶向:晶体表面上的平面称为晶面,晶体内部的线段称为晶向。
7. 晶体的点阵和晶格常数:晶胞中的基本单位称为点阵,晶体的晶格常数是指晶格中基本单位的尺寸参数。
8. 布拉格方程:描述X射线或中子衍射中晶体衍射角度与晶格参数之间的关系。
9. 动态散射理论:描述X射线或中子与晶体中原子、离子或分子相互作用的过程。
10. 逆格子:描述晶格的倒数空间,逆格子与晶格的结构存在对偶关系。
11. 晶体缺陷:晶体中的缺陷包括点缺陷、线缺陷和面缺陷,晶体缺陷对晶体的性质和行为有重要影响。
12. 晶体生长:研究晶体从溶液或气体中的形成过程,包括核化、生长和晶面的形态演化等。
13. 晶体的结构表征方法:包括X射线衍射、中子衍射、电子衍射、扫描电子显微镜和透射电子显微镜等。
14. 晶体结构的解析和精修:通过衍射数据和晶体学软件对晶体的结构进行解析和精修,得到晶体的准确原子位置和结构参数。
15. 晶体的物理和化学性质:晶体的结构对其性质有重要影响,包括光学性质、电学性质、磁学性质和力学性质等。
16. 晶体学的应用:晶体学在材料科学、化学、生物学、地质学和矿物学等领域有广泛的应用,如材料合成、催化剂设计、药物研发和矿石勘探等。
晶体比较知识点总结
晶体比较知识点总结1. 晶体的结构和特性晶体是由晶格、原胞和晶体结构构成的。
晶格是晶体中原子、离子或分子的有序排列,它是晶体结构的基础。
原胞是最小的能够反映整个晶体结构的重复单元。
晶体结构是由晶格和原胞组成的,并且具有特定的对称性。
晶体的特性包括晶体的晶型、晶系、晶体的大小和形状、晶格参数以及晶格点的类型和分布。
晶型是晶体结构的基本类型,它由原子、分子或离子构成。
晶型包括立方晶体、正交晶体、六角晶体等。
晶系是指晶体结构在空间中的对称性,包括三角晶系、四方晶系、六方晶系等。
2. 晶体的生长和形成晶体的生长是指晶体从溶液中生长出来的过程。
晶体的形成和生长受多种因素的影响,包括溶液中物质的浓度、温度、压力、溶液的流动性以及溶液中的杂质等。
在晶体生长的过程中,晶体会沉淀出来并且逐渐生长,直到达到稳定状态。
晶体的形成是由分子、原子或离子在空间中的有序排列所决定的。
晶体的形成和生长是一个动态过程,它受原子、离子或分子之间的相互作用和排列方式所影响。
晶体的形成和生长研究对于理解晶体结构和性质具有重要的意义。
3. 晶体的性质晶体具有许多独特的性质,这些性质是由晶体结构所决定的。
晶体的物理性质包括晶体的透明度、光学性质、热导率、电导率等。
晶体的化学性质包括晶体的化学稳定性、溶解度、化学反应性等。
晶体的性质对于晶体的应用具有重要的影响。
晶体在电子学、光学、材料学等领域都有着广泛的应用。
因此,研究晶体的性质对于开发新的晶体材料和应用具有重要的意义。
4. 晶体的应用晶体在科学和工业上有着广泛的应用。
晶体在电子学中被用于制造电子元件和光学器件,包括晶体管、发光二极管、激光器等。
晶体还被用于制造微电子元件,如集成电路、半导体器件等。
晶体在光学中也有着重要的应用,包括光学仪器、光学器件、激光器、光学玻璃等。
晶体还在材料学、化学、医学等领域被广泛应用,如用于制造材料、药品、化工产品等。
总之,晶体是一种具有重要应用价值和科学研究意义的材料,它在电子学、光学、材料学等领域都有着广泛的应用。
原子晶体相关知识点总结
原子晶体相关知识点总结一、晶体结构的基本概念1. 晶体的定义和特点晶体是由原子、离子或分子按一定的规律排列而成的固体结构。
晶体的特点包括:具有有序的、周期性的结构;具有长程的周期性和短程的无规则性;具有固定的晶格结构。
2. 晶体结构的基本要素晶体结构的基本要素包括:元胞、晶格、晶体结构。
3. 元胞元胞是晶体的最小重复单元,具有晶体的全部结构信息。
元胞可以是点阵、面阵或体阵。
4. 晶格晶格是由全部元胞排列而成的三维空间点阵。
晶格可以由晶体的离散转移对称元素所生成。
5. 晶体结构晶体结构是指晶体中原子、离子或分子的排列方式和排列规律。
根据晶体结构的不同,晶体可以分为简单晶体、复合晶体和混合晶体。
6. 点阵和晶体结构的关系晶体结构是由晶格和晶胞所共同决定的。
晶格提供了晶体结构的周期性和可重复性,晶胞提供了晶体结构的具体排列方式。
二、晶体的分类1. 晶体的分类方法晶体可以按照结构、成分和形态等不同特征进行分类。
2. 按照结构分类按照结构分类可以分为金属晶体、离子晶体、共价晶体、分子晶体和简单晶体等类型。
3. 按照成分分类按照成分分类可以分为单组分晶体和多组分晶体。
4. 按照形态分类按照形态分类可以分为正方晶体、六方晶体、菱形晶体、正四面体晶体、八面体晶体等类型。
三、晶体的性质1. 光学性质晶体的光学性质是指晶体对不同波长和振动方向的入射光产生的吸收、散射、透射和偏振现象。
晶体的光学性质和晶体结构之间具有密切的联系。
2. 电学性质晶体的电学性质是指晶体在不同的电场和电磁场作用下产生的电极化、介电常数和电导率等现象。
晶体的电学性质和晶体结构之间具有密切的联系。
3. 热学性质晶体的热学性质是指晶体在不同的温度和热量作用下产生的热膨胀、热导率和比热容等现象。
晶体的热学性质和晶体结构之间具有密切的联系。
4. 磁学性质晶体的磁学性质是指晶体在外部磁场作用下产生的磁化、磁导率和磁畴等现象。
晶体的磁学性质和晶体结构之间具有密切的联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体的知识
1.
离子晶体
1.
离子间通过离子键结合形成的晶体。
在离子晶体中,阴、阳离子按照一定的格式交替排列,具有一定的几何外形,例如NaCl是正立方体晶体,Na+离子与Cl-离子相间排列,每个Na+离子同时吸引6个Cl离子,每个Cl-离子同时吸引6个Na+。
不同的离子晶体,离子的排列方式可能不同,形成的晶体类型也不一定相同。
离子晶体中不存在分子,通常根据阴、阳离子的数目比,用化学式表示该物质的组成,如NaCl表示氯化钠晶体中Na+离子与Cl-离子个数比为1∶1,CaCl2表示氯化钙晶体中Ca2+离子与Cl-离子个数比为1∶2。
离子晶体是由阴、阳离子组成的,离子间的相互作用是较强烈的离子键。
离子晶体具有较高的熔、沸点,常温呈固态;硬度较大,比较脆,延展性差;在熔融状态或水溶液中易导电;大多数离子晶体易溶于水,并形成水合离子。
离子晶体中,若离子半径越小,离子带电荷越多,离子键越强,该物质的熔、沸点一般就越高,例如下列三种物质,其熔沸点由低到高排列的顺序为,KCl<NaCl<MgO。
由正、负离子或正、负离子集团按一定比例组成的晶体称作离子晶体。
离子晶体中正、负离子或离子集团在空间排列上具有交替相间的结构特征,离子间的相互作用以库仑静电作用为主导。
离子晶体整体上的电中性,决定了晶体中各类正离子带电量总和与负离子带电量总和的绝对值相当,并导致晶体中正、负离子的组成比和电价比等结构因素间有重要的制约关系。
离子晶体有二元离子晶体、多元离子晶体与有机离子晶体等类别。
几乎所有的盐类和很多金属氧化物晶体都属离子晶体,例如食盐、氟化钙、二氧化钡等。
2.原子晶体
相邻原子间以共价键结合而形成的空间网状结构的晶体。
凡靠共价键结合而成的晶体统称为原子晶体。
例如金刚石晶体,是以一个碳原子为中心,通过共价键连接4个碳原子,形成正四面体的空间结构,每个碳环有6个碳原子组成,所有的C-C键键长为1.55×10-10米,键角为109°28′,键能也都相等,金刚石是典型的原子晶体,熔点高达3550℃,是硬度最大的单质。
原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。
原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。
常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。
对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。
3.分子晶体
分子间以范德华力相互结合形成的晶体。
大多数非金属单质及其形成的化合物如干冰(CO2)、I2、大多数有机物,其固态均为分子晶体。
分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。
分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、
CO2是气体,乙醇、冰醋酸是液体。
同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。
但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。
分子组成的物质,其溶解性遵守“相似相溶”原理,极性分子易溶于极性溶剂,非极性分子易溶于非极性的有机溶剂,例如NH3、HCl极易溶于水,难溶于CCl4和苯;而Br2、I2难溶于水,易溶于CCl4、苯等有机溶剂。
根据此性质,可用CCl4、苯等溶剂将Br2和I2从它们的水溶液中萃取、分离出来。
4.金属晶体
晶格结点上排列金属原子-离子时所构成的晶体。
金属中的原子-离子按金属键结合,因此一般金属晶体有良好的导电性、导热性、延展性和不透光性。
由金属键形成的单质晶体。
金属单质及一些金属合金都属于金属晶体,例如镁、铝、铁和铜等。
金属晶体中存在金属离子(或金属原子)和自由电子,金属离子(或金属原子)总是紧密地堆积在一起,金属离子和自由电子之间存在较强烈的金属键,自由电子在整个晶体中自由运动,金属具有共同的特性,如金属有光泽、不透明,是热和电的良导体,有良好的延展性和机械强度。
大多数金属具有较高的熔点和硬度,金属晶体中,金属离子排列越紧密,金属离子的半径越小、离子电荷越高,金属键越强,金属的熔、沸点越高。
例如周期系IA族金属由上而下,随着金属离子半径的增大,熔、沸点递减。
第三周期金属按Na、Mg、Al顺序,熔沸点递增。
根据中学阶段所学的知识。
金属晶体都是金属单质,构成金属晶体的微粒是金属阳离子和自由电子(也就是金属的价电子)。