大功率直流稳压电源(整流-逆变(IGBT)-(单片机控制PWM)整流)
电源的基础知识

由于调整管静态损耗大,需要安装一个很大的散热器给它散热。而且由于变压器工作在工频(50Hz)上,所以重量 较大。
该类电源优点是稳定性高,纹波小,可靠性高,易做成多路,输出连续可调的成品。缺点是体积大、较笨重、 效率相对较低。这类稳定电源又有很多种,从输出性质可分为稳压电源和稳流电源及集稳压、稳流于一身的稳压 稳流(双稳)电源。从输出值来看可分定点输出电源、波段开关调整式和电位器连续可调式几种。从输出指示上 可分指针指示型和数字显示式型等等。
⑴、普通电源(AC/DC):输入非稳定的工频交流电,输出为较低电压的稳定直流电。 ⑵、直流变换器(DC/DC):输入非稳定的直流电,输出为稳定的更高电压,或者更低电压的直流电。 ⑶、交流逆变器(DC/AC):输入非稳定的直流电,输出稳定的 220V 工频交流电。此类电源常用在交通工具上, 用来使蓄电池对常规电器设备(电视、录象机等)供电。 ⑷、交流稳压器(AC/AC):输入非稳定的 220V 工频交流电,输出稳定 220V 工频交流电。 ⑸、组合电源:以上类型电源的组合。比如应急电源 UPS 就是 AC/DC 电源与 DC/AC 电源的组合。 4、按电源主回路的联接方式分类: 无论是什么类型的电源,都是通过某种方式对输出端的电压或者电流进行特定的操作。比如 DC/DC 是对输出电压 的幅度进行调整,其实稳压的过程实质也是调整输出电压值,通过电压反馈的方式调整输出电压,使其稳定在某一个 数值上。而“调整”最终都需要由调整器件来完成。 电源主回路的联接关系,实际上就是:输入端、调整器件、负载(输出端)三者的联接关系。 ⑴、串联式电源:主要特征是调整器件与负载为串联联接,如下图所示。其中,三极管 VT 为调整器件,RL 为负 载。 ⑵、并联式电源:主要特征是调整器件与负载为并联联接,如下图所示。其中,三极管 VT 为调整器件,RL 为负 载,R 为限流电阻。
基于单片机的数控直流稳压电源设计

基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
13种常用的功率半导体器件介绍

13种常用的功率半导体器件介绍电力电子器件(Power Electronic Device),又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。
可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。
1. MCT (MOS Control led Thyristor):MOS控制晶闸管MCT 是一种新型MOS 与双极复合型器件。
如上图所示。
MCT是将MOSFET 的高阻抗、低驱动图MCT 的功率、快开关速度的特性与晶闸管的高压、大电流特型结合在一起,形成大功率、高压、快速全控型器件。
实质上MCT 是一个MOS 门极控制的晶闸管。
它可在门极上加一窄脉冲使其导通或关断,它由无数单胞并联而成。
它与GTR,MOSFET,IGBT,GTO 等器件相比,有如下优点:(1)电压高、电流容量大,阻断电压已达3 000V,峰值电流达1 000 A,最大可关断电流密度为6000kA/m2;(2)通态压降小、损耗小,通态压降约为11V;(3)极高的dv/dt和di/dt耐量,dv/dt已达20 kV/s ,di/dt为2 kA/s;(4)开关速度快,开关损耗小,开通时间约200ns,1 000 V 器件可在2 s 内关断;2. IGCT(Intergrated Gate Commutated Thyristors)IGCT 是在晶闸管技术的基础上结合IGBT 和GTO 等技术开发的新型器件,适用于高压大容量变频系统中,是一种用于巨型电力电子成套装置中的新型电力半导体器件。
IGCT 是将GTO 芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管的稳定关断能力和晶闸管低通态损耗的优点。
基于单片机的可编程直流稳压电源设计(1)

摘要:随着电力电子技术的迅速发展,直流电源应用非常广泛,其好坏直接影响着电气设备或控制系统的工作性能。
目前,市场上各种直流电源的基本环节大致相同,都包括交流电源、交流变压器、整流电路、滤波稳压电路等。
文章介绍了将单片机控制系统应用于直流稳压电源的方法和原理,实现了稳压电源的数控调节,在宽输出电压下实现了0.1v 步进调节,并分析了稳压工作原理和电压调节方法。
该电源具有电压调整简便、电压输出稳定、便于智能化管理等特点。
关键词:稳压电源;单片机;D/A 转换;直流电源;电压调节中图分类号:TM131文献标识码:A 文章编号:1009-2374(2009)21-0036-022009年第21期(总第132期)Chinese hi-tech enterprisesNO.21.2009(CumulativetyNO.132)中国高新技术企业基于单片机的可编程直流稳压电源设计冯泽虎,朱相磊,滕春梅(淄博职业学院,山东淄博255314)随着电力电子技术的迅速发展,直流电源应用非常广泛,其好坏直接影响着电气设备或控制系统的工作性能。
直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。
传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。
而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。
其良好的性价比更能为人们所接受,因此,具有一定的设计价值。
一、系统设计(一)方框图设计该电路采用单片机(AT89C51)作为主控电路,由三端集成稳压器(LM 317)作为稳压输出部分。
另外,电路还增加参考电压电路、D/A 转换电路、电压放大电路、显示电路等部分电路。
其方框图如图1所示:图1用单片机制作的直流稳压可调电源框图整个电路的运行需要模拟电压源提供+5V ,±15V 的模拟电压,以便使电路中的集成数字芯片能够正常工作。
电路运行时,首先由单片机设置初始电压值,并送显示电路显示。
直流稳压电源5v

直流稳压电源直流稳压电源5v直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成其中:①电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变化由变压器的副边电压确定。
②整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。
③常用的整流电路有:方案一:单相半波整流电路:单相半波整流简单,使用器件少,它只对交流电的一半波形整流,只要横轴上面的半波或者只要下面的半波。
但由于只利用了交流电的一半波形,所以整流效率不高,而且整流电压的脉动较大,无滤波电路时,整流电压的直流分量较小,V o=0.45Vi,变压器的利用率低。
方案二:单相全波整流电路:使用的整流器件较半波整流时多一倍,整流电压脉动较小,比半波整流小一半。
无滤波电路时的输出电压Vo=0.9Vi,变压器的利用率比半波整流时高。
变压器二次绕组需中心抽头。
整流器件所承受的反向电压较高.方案三:单相桥式整流电路:使用的整流器件较全波整流时多一倍,整流电压脉动与全波整流相同,每个器件所承受的反向电压为电源电压峰值,变压器利用率较全波整流电路高。
综合3种方案的优缺点:决定选用方案三整流电路整流电路常采用二极管单相全波整流电路,电路如图3.4所示。
在U2的正半周内,二极管D1、D2导通,D3、D4截止;U2的负半周内,D3、D4导通,D1、D2截止。
正负半周内部都有电流流过的负载电阻RL,且方向是一致的。
电路的输出波形如图在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半。
电路中的每只二极管承受的最大反向电压约为反向击穿电压的一半或三分之二(U2是变压器副边电压有效值)。
经过变压器变压后的仍然是交流电,需要转换成直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单向导电特性,将方向变化的交流电整流为直流电半波整流见图5.21.其中B1是电源变压器,D1是整流二极管,R1是负载。
12v直流稳压电源设计

12v直流稳压电源设计D内容摘要直流稳压电源是能够保证在电网电压波动或负载发生变化时,输出稳定的电压的常用的电子设备[1]。
直流稳压电源的供电电源大都是交流电源,当交流供电电源的电压或负载电阻变化时,稳压器的直流输出电压都会保持稳定。
直流稳压电源随着电子设备向高精度、高稳定性和高可靠性的方向发展,对电子设备的供电电源提出了高的要求。
本设计采用三端集成稳压器,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现±12V电压稳定输出。
关键词:±12V,直流电源,稳压目录内容摘要 (I)引言 (3)第1章直流稳压电源 (4)2硬件电路 (5)2.1 设计要求 (5)2.2 电路设计 (5)2.1 电源变压器 (5)第3章开发环境 (11)第4章总结 (12)参考文献 (13)引言当今社会人们极大的享受着电子设备带来的便利,但是任何电子设备都有一个共同的电路--电源电路。
大到超级计算机、小到袖珍计算器,所有的电子设备都必须在电源电路的支持下才能正常工作。
当然这些电源电路的样式、复杂程度千差万别。
超级计算机的电源电路本身就是一套复杂的电源系统。
通过这套电源系统,超级计算机各部分都能够得到持续稳定、符合各种复杂规范的电源供应。
袖珍计算器则是简单多的电池电源电路。
由于电子技术的特性,电子设备对电源电路的要求就是能够提供持续稳定、满足负载要求的电能,而且通常情况下都要求提供稳定的直流电能。
提供这种稳定的直流电能的电源就是直流稳压电源。
直流稳压电源在电源技术中占有十分重要的地位。
稳压电源的分类方法繁多,按输出电源的类型分有直流稳压电源和交流稳压电源;按稳压电路与负载直流稳压电源的连接方式分有串联稳压电源和并联稳压电源;按调整管的工作状态分有线性稳压电源和开关稳压电源;按电路类型分有简单稳压电源和反馈型稳压电源等等[1]。
根据调整管的工作状态,我们常把直流稳压电源分成两类:线性稳压电源和开关稳压电源。
直流稳压电源技术参数

直流稳压电源技术参数嘿,朋友们!今天咱们来唠唠直流稳压电源的技术参数,这就像是在探索一个神秘小盒子的魔法咒语一样有趣呢。
首先就是输出电压范围,这可就像厨师做菜时放盐的量,少了没味,多了齁得慌。
直流稳压电源的输出电压得在一个合适的范围里,要是这个范围太窄,就像一个小气鬼只给你一点点糖果,很多设备都没法好好“享受”它提供的能量呢。
但如果范围太宽,又像是一个没有准头的射手,让人心里有点不踏实,担心它会不会突然给个超大电压把设备“吓晕”。
再说说稳压精度吧。
这个就像是走钢丝的杂技演员,容不得一点偏差。
哪怕是一点点小失误,就像杂技演员不小心晃了一下,可能就会让连接的设备“摔个大跟头”。
精度高的直流稳压电源,那简直就是个严谨的老学究,一丝不苟地把电压稳定在该在的数值上。
负载调整率呢,这就像是一个挑夫挑担子,负载变化就好比担子里东西的重量在变。
一个好的直流稳压电源面对负载调整就像大力水手吃了菠菜,轻松应对,不管担子多重,都能稳稳地保持输出电压,不会出现那种负载一增加就“气喘吁吁”、电压忽高忽低的情况。
纹波电压可就更有趣了,它就像平静湖面上的小涟漪。
如果纹波电压太大,那就不是小涟漪了,而是惊涛骇浪,会把连接的设备弄得晕头转向,就像小船在狂风巨浪里一样。
而优秀的直流稳压电源的纹波电压极小,就像最平静的湖面,只有几乎看不见的微小波动。
还有效率这个参数。
效率高的直流稳压电源就像一个超级节能小卫士,把输入的电能高效地转化为稳定的直流输出,就像把一元钱变成了两元钱的价值,一点也不浪费。
而效率低的电源呢,就像个贪吃的小怪兽,吃进去很多电能,却只能吐出一点点有用的东西,还把剩下的都浪费掉了。
过流保护功能就像是电源的保镖。
一旦有“不法分子”(也就是过流情况)出现,保镖就会立刻出手,保护电源和连接的设备不受到伤害。
要是没有这个保镖,电源可能就会被过大的电流弄得“遍体鳞伤”,设备也跟着遭殃。
输出电流能力也很关键,这就像水龙头的出水量。
直流稳压电源 用途

直流稳压电源用途直流稳压电源是一种用于提供稳定直流电压的电力设备。
它能将输入的交流电转换为所需的直流电,并保持输出电压恒定不变。
直流稳压电源在电子设备的研发、生产以及各种实验室和工业应用中起着重要的作用。
直流稳压电源广泛应用于电子设备的研发和生产过程中。
在电子设备的研发过程中,直流稳压电源提供了稳定的电压,保证了电子元器件和电路的正常工作。
通过调节直流稳压电源的输出电压和电流,可以满足不同电子元器件的需求,从而进行电子设备的测试、调试和性能评估。
在电子设备的生产过程中,直流稳压电源也起到了至关重要的作用。
通过直流稳压电源,可以为电子设备提供所需的电源电压,并保持其稳定。
这样可以确保电子设备在生产过程中的正常运行,提高产品的质量和稳定性。
除了在电子设备的研发和生产中的应用,直流稳压电源还广泛应用于实验室和工业领域。
在实验室中,直流稳压电源常用于各种科研实验和测试中。
通过调节输出电压和电流,可以满足不同实验的需求,提供稳定可靠的电源供给。
在工业领域,直流稳压电源常用于各种工艺控制和设备驱动中。
通过提供稳定的直流电源,可以确保设备的正常运行,提高生产效率和产品质量。
直流稳压电源的工作原理主要包括输入稳压和输出稳压两个部分。
输入稳压部分通过采用变压器和整流器等电路,将交流电转换为直流电,并进行滤波和稳压处理,以确保输入电压的稳定性。
输出稳压部分通过采用稳压电路,对输入的直流电进行稳定,保持输出电压的恒定性。
同时,直流稳压电源还具备过流保护、过压保护和短路保护等功能,以保证设备和电路的安全运行。
在使用直流稳压电源时,需要注意以下几点。
首先,应根据实际需求选择合适的直流稳压电源,包括输出电压和电流的范围。
其次,应注意直流稳压电源的工作环境,避免过高或过低的温度和湿度对设备的影响。
此外,使用过程中应注意避免过载和短路等情况的发生,以保护设备和电路的安全。
直流稳压电源在电子设备的研发、生产以及实验室和工业应用中起着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京信息职业技术学院毕业论文作者学号*****D20 系部电子信息工程系专业电子信息工程技术题目大功率直流稳压电源的设计指导教师评阅教师完成时间:2010 年05 月10 日毕业论文中文摘要毕业论文外文摘要目录1引言 (5)2概述 (5)2.1电源稳定问题的提出 (5)2.2电压不稳定的因素 (6)2.3稳压电源的分类 (6)2.4本文主要工作 (7)3电源硬件系统设计 (7)3.1单片机控制的直流稳压电源的总体设计 (7)3.1.1电源的主电路 (8)3.1.2驱动电路 (9)3.1.3输出电路 (9)3.1.4直流电源设计 (10)3.2元件选择 (13)3.2.1逆变电路的拓扑结构选择 (13)3.2.2逆变频率的确定 (13)3.2.3开关元件的选择 (14)3.2.4逆变控制方式的选择 (15)4参数计算 (15)4.1输入电路参数计算 (15)4.2逆变电路参数计算 (16)4.3输出电路计算 (18)4.4纹波的抑制 (18)5辅助电路 (20)5.1电压驱动型脉宽调制器 (20)5.2电流检测电路 (20)5.3电压检测电路 (22)6单片机控制系统的设计 (22)6.1单片机最小系统设计 (22)6.2数模转换电路 (23)结论 (26)致谢 (27)参考文献 (27)附录A 电路图 (28)1引言自70年代末以来,国外迅速发展功率场效应晶闸管(Power MOSFET),绝缘门级双级性晶闸管(IGBT)和MOS栅控晶闸管(MCT)等新型功率开关器件,由于这些新型器件具有开关频率高,器件自身的功率损耗小,因而转换效率高,电路结构简单等优点,在加热电源领域中,正在得到广泛的应用。
其中IGBT器件,其输出管压降低,一般在3V以下,器件本身的功耗小,具有晶闸管的优点,适合于大电流工作,其控制端采用了场效应管的技术,驱动非常小,适应于高速开关,且没有二次击穿的问题,工作比较安全,因此属于目前国际上有限发展的大功率开关器件。
国外器件制造厂商推出了一系列大功率IGBT模块,其最大单管电流已达到1000A以上,耐压可达到1200V(有的可达到1400V),开关时间在600ns以下。
其实际工作频率可达到50KHz,功率较小时可达到100KHz,因此是极有前途的功率开关器件。
但是,上述这些新型功率开关器件也存在一些弱点,如电压与电流的过载能力弱,当工作参数超过其安全范围是,非常容易损坏。
因此给电路结构的设计与制造提出了新的要求,并且需要快速而有效的保护措施。
由于IGBT逆变器的逆变频率高,节能效果好,在各种电源中均有重要的应用。
但到目前为止,我国在应用大功率IGBT模块制造大功率直流稳压电源还是比较少,大功率直流稳压电源主要应用与我国的军事和航天事业当中,如适用于大功率冲击负载和飞机、自行火炮、坦克、导弹等武器装备的起动电源。
应用在我国的重型工业中。
2概述2.1电源稳定问题的提出许多电子设备都需要良好稳定的直流供电电源,而外部提供的能源大多为交流电网电源,通常是通过火力发电、水利发电、核子发电及风力发电获得的。
直流电源设备担负着把交流电源转换为电子设备所需的各种类别直流电源的任务。
转换后的直流电源要具有良好的稳定性,当电网或负载变化时,它能保持稳定的输出电压,并具有较低的纹波。
我们通常称这种直流电源为直流稳压电源。
说到稳压问题可以追溯到上一个世纪爱迪生发明电灯时,就曾考虑过稳压电源。
到二十世纪初,就有了铁磁稳压电源。
电子管问世不久,就有人设计了电子管直流稳压电源。
到四十年代后期,电子器件与磁饱和元件相结合,构成了电子控制的磁饱和交流稳压电源,至今还在应用。
五十年代,随着半导体工业的飞跃发展,晶体管的诞生使晶体管串联调整稳压电源,成了稳压电源的核心,这种局面一直维持到六十年代中期。
随着电子设备的进步,电子设备开始从分立元件进入集成电路时代,体积日益减小,装机密度不断提高,规模容量逐渐增大。
这种晶体管串联型常规电源难以满足形势发展的趋势日益显露。
六十年代后期,科技工作者对稳压电源技术做了一次新的总结,使开关电源,可控硅电源得到了快速发展。
与此同时,将稳压电源的大部分元器件都集成在一块硅基片上的集成稳压电源也不断发展。
2.2电压不稳定的因素电源是电子设备的重要部分,其质量好坏直接影响着电子设备的可靠性,而且电子设备的故障60%来自电源。
因此电源越来越受到人们的重视。
电子电路及电子设备对电源最基本的要求就是电源的输出电压或输出电流要稳定。
稳压电源的输出电压不是绝对不变的,只是变化很小。
从稳压电路的原理分析,最主要的引起输出电压变化的因素有两个:一是输入电压的变化引起的输出电压的变化;另一个是输出电流的变化(由于负载变化)引起输出电压的变化。
输出电压的变化很微小,但正是这个微小的变化经放大后才能反馈去抵消原有的大部分变化。
一般来说,稳压电路的设计首先要考虑输入电压和负载这两个因素。
或者说,首先要“抵制”的是这两个因素引起的输出电压变化;也就是稳压电源稳定电压的能力首先要看输入电压的变化和负载变化引起的输出电压的变化被限制到多小的程度。
当人为地保持输入电压和负载不变时,输出电压仍有变化。
引起这种变化的因素很多,其中最主要的是温度的变化,电路要工作起来,元器件上就有电流通过,就要消耗功率,引起温升。
取样电阻和基准源温度的变化对输出电压的影响更大。
2.3稳压电源的分类现代应用的稳压电源的种类比较多,分类方式也很多。
按稳定对象分有交流稳压电源和直流稳压电源。
是交流还是直流要看稳压电源的输出电压是交流还是直流。
按稳定方式分,有参数稳压电源和反馈调整稳压电源。
参数稳压电源电路简单,利用元件的非线性实现稳压,结构也简单。
比如,用一只电阻和一只可控硅稳压管就能构成参数稳压电源。
反馈调整型稳压电源是一个负反馈闭环自动调整系统,它根据稳压电源的输出电压的变化量,经过取样、比较放大、再反馈给控制调整元件,使输出电压得到补偿而趋于原值,从而达到稳定。
此电路较复杂,但稳定度高。
按稳压电源的调整元件与负载的联接方式来分类,可以分为并联稳压电源和串联稳压电源两种。
调整元件与负载并联的叫并联稳压电源或分流稳压电源,它通过改变调整管元件流过的电流的多少来适应输入电网电压的变化及负载电流的变化,以保持输出电压的稳定。
调整元件与负载串联的稳压电源叫做串联稳压电源。
在这种稳压电源中,调整元件串联在输入端和输出端之间,输出电压就依靠调整元件改变自身的等效电阻来维持恒定。
按调整元件分,有辉光放电管稳压电源,稳压管稳压电源,电子管稳压电源,晶体管稳压电源,可控硅稳压电源等。
按调整元件的工作状态分,有线性稳压电源和开关稳压电源。
根据需要,还可以有其他分类方法,例如集成电极输出型、发射极输出型;高压、低压;通用、专用等。
2.4本文主要工作本课题主要是进行用单片机来控制直流稳压电源的研制工作。
要求电源具有高可靠性。
所以本文的主要工作有:在逆变电源的基础上建立以80C196KC单片机为控制核心的微机控制系统,设计单片机控制系统硬件,在满足控制系统要求的条件下,力求软硬件的最佳组合。
所研制的单片机控制稳压电源的技术指标如下:输入电压: 380V三相交流50HZ;输出电压: 24V输出电流: 800A;3电源硬件系统设计3.1单片机控制的直流稳压电源的总体设计图1 单片机控制的逆变电源的总体框图单片机控制的逆变电源的总体框图如图1所示,整套装置主要由电源主电路、PWM控制电路、驱动电路和单片机控制电路四部分组成。
下面简要介绍一下这几部分的电路功能:1)主电路及驱动电路的功能主电路用来实现输入功率到输出功率的能量转换,驱动电路用来将脉宽调制电路输出的控制脉冲转换成符合开关功率器件要求的电平和阻抗形式,同时实现主电路和控制电路之间的电气隔离,其对功率开关元件的开关时间、损耗等有着直接的影响。
另外,还需要在开关器件的工作点超出安全工作区时提供保护信号。
2)基本控制电路的功能基本控制电路的任务是根据单片机输出的电流给定值与实际电流反馈值的差值,通过调节输出脉冲的占空比来实现稳定的输出。
3)单片机控制电路的功能为实现直流稳压电源,单片机系统控制电路用来输出其所需的电压、电流。
01.46c Sp I U (3.1) 3.1.2驱动电路驱动电路的作用主要是对驱动信号进行功率放大,并保证一定的脉冲前沿、后沿陡度,使其有足够的能力使IGBT 饱和导通。
同时,驱动电路还起到控制电路与主电路的电气隔离作用和故障信号的采集作用。
根据IGBT 静特性和动特性,对IGBT 的驱动电路提出下列要求和条件:(1)由于是容性输入阻抗,因此IGBT 对门极电荷集聚很敏感,驱动电路必须可靠,要保证有一条低阻值的放电回路。
(2)用低内阻的驱动源对门极电容充放电,以保证门极控制电压U gs 有足够陡降的前后沿,使IGBT 的开关损耗尽量小。
另外,IGBT 开通后,门极驱动源应提供足够的功率使IGBT 不致退出饱和而损坏。
(3)门极电路的正偏电压为+12V ~+15V ,负偏电压应为-2V ~-10V 。
(4)IGBT 多用于高压场合,故驱动电路应与整个控制电路在电位上严格隔离。
(5)门极驱动电路应尽可能简单、实用,具有对IGBT 的自保护功能,并有较强的抗干扰能力。
(6)若为大电感负载,IGBT 的关断时间不宜过短,以限制尖峰电压,保护IGBT 安全。
大多数IGBT 生产厂家为了解决IGBT 的可靠性问题,都生产与其相配套的混合集成电路。
根据IGBT 管的型号,选用HL402(400A/600V 及300A/1200V )快速型IGBT 专用模块来驱动IGBT 管。
3.IGBT 的保护将IGBT 用于逆变器时,应采取保护措施以防损坏器件。
常用保护措施有:1)通过检出的过电流信号切断门极控制信号,实现过电流保护。
2)利用缓冲电路抑制并限制过量的du/dt 。
3)利用温度传感器检测IGBT 的壳温,当超过允许温度时主电路跳闸,实现过热保护。
3.1.3输出电路本设计的输出电压是直流低电压,具有一定的输出功率。
输出电路上对高频变压器次级的高频方波电压进行整流滤波。
为了获得高质量的直流输出电压,需要一些特殊的元器件,如肖特基势垒整流二极管以及存储能的电感,以产生低噪音的输出电压。
1.输出整流和滤波电路全桥式逆变电器的输出电路如图4所示,由于二极管D7、D8都给输出端提供半周期的电流,所以它们分担着相等的负荷电流,它们不需要续流二极管,因为当一个二极管截止时,另一个二极管就导通起到了续流的作用。
但是,对二极1d 通常选V U U sc d 7050)32(1--=--= (3.2)在此我们取1d U =60V 。
3)求限流电阻 1R假定1d U 变化±10%,则max 1d U =1.11d U ×60=66V (3.3)min 1d U =0.91d U =54V (3.4)minmin 1max max w scd w sc d I U U R I U U -<<- (3.5)取1R =1000Ω。