有限元实例分析大作业一
ansys有限元分析工程实例大作业

ansys有限元分析工程实例大作业————————————————————————————————作者:————————————————————————————————日期:辽宁工程技术大学有限元软件工程实例分析题目基于ANSYS钢桁架桥的静力分析专业班级建工研16-1班(结构工程)学号 471620445姓名日期 2017年4月15日基于ANSYS钢桁架桥的静力分析摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了有限元建模;对桁架桥进行了静力分析,作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面。
关键词:ANSYS;钢桁架桥;静力分析;结构分析。
引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其应用计算机和求解软件快速进行力学分析了解其受力特性具有重要的意义。
1、工程简介某一下承式简支钢桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1,材料属性见表2。
桥长32米,桥高5.5米,桥身由8段桁架组成,每个节段4米。
该桥梁可以通行卡车,若只考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2,和P3,其中P1=P3=5000N,P2=10000N,见图2,钢桥的形式见图1,其结构简图见图3。
图1钢桥的形式图2桥梁的简化平面模型(取桥梁的一半)图3刚桁架桥简图所用的桁架杆件有三种规格,见表1表1 钢桁架杆件规格杆件截面号形状规格顶梁及侧梁 1 工字形400X400X12X12桥身弦杆 2 工字形400X300X12X12底梁 3 工字形400X400X16X16所用的材料属性,见表2表2 材料属性参数钢材弹性模量EX泊松比PRXY 0.3密度DENS 78002 模型构建将下承式钢桁梁桥的各部分杆件,包括顶梁及侧梁,桥身弦杆,底梁均采用BEAM188单元,此空间梁单元可以考虑所模拟杆件的轴向变形; 定义了一套材料属性,各类杆件为钢材,其对应的参数如表2所示;根据表1中的杆件规格定义了三种梁单元截面,根据表1分别定义在相应的梁上;建模时直接建立节点和单元,在后续按照先建节点再建杆的次序一次建模。
有限元的大作业报告示例

1.题目概况
矩形板尺寸如下图1,板厚为5mm。
材料弹性模量为
松比μ= 0.27 。
施加约束和载荷并讨论:
图
1 计算简图
1.1基本数据
E = 2⨯105N/mm2,泊
序号载荷约束备注42 向下集中载荷F=800N, 作用于cd 边3/4 处(近d) c d 点简支
1.2分析任务/分析工况
讨论板上开孔、切槽等对于应力分布的影响。
(载荷约束组合不变)。
提示:各种圆孔,椭圆孔随大小、形状、数量,分布位置变化引起的应力分布变化;各种形状,大小的切槽及不同位置引起应力分布的变化等,选择二至三种情况讨论,并思考其与机械零部件的构型的相对应关系。
2.模型建立
2.1单元选择及其分析
由于平板长宽分别为300x100,故可取网格单元大小为1。
如图:
2.2模型建立及网格划分
模型按单元为1 划分后的网格大小如图所示:
2.3载荷处理
向下集中载荷F=800N, 作用于cd 边3/4 处(近d) c d 点简支
3.计算分析
3.1位移分布及其分析
(1)位移分布如图:。
有限元静力学分析实例

(2)定义集中力在主菜单中选择Load——Manager,在弹出的对话框中进行如图27所示的设置,然后点击Continue,在弹出的对话框中进行如图28所示的设置,然后点击OK。
图27图28
在Load Manager对话框中可以看到,如图29所示,名为Load-Point的载荷在分析步Step-Load-1中开始起作用,并延续(propagate)到分析步Step-Load-2中。
图30图31
图32
(4)定义受剪力的面返回Load功能模块,在主菜单中选择Tools——Surface——Create,在弹出的对话框中,在Name后面输入Surf-Load,然后点击Continue,选择如图33红色区域。
图33
(5)定义面载荷在Load Manager对话框中再次点击Create,进行如图34所示的设置,在弹出的Edit对话框中,设置向量起始坐标(0.0,0.0,0.0),回车确认,输入向量的终点坐标(0.0,-10.0,0.0),再次回车确认。设置Magnitude(大小)为36,点击OK,得到的部件如图35所示。
2.由于关心的是应力集中部位的应力状态,所以在模型中使用C3D20R单元(20节点六面体二次减缩积分实体单元)。
3.基于结构和载荷的对称性,可以只取模型的1/2进行分析(见图1)。
4.由于圆孔处螺纹的应力应变状态不是所关心的重点,可以简化杆件和圆孔之间的连接关系(如图1所示),不对杆件和螺纹精确建模,而是在杆件一端的受力点和圆孔内表面之间建立分布耦合约束。
图8
五、定义装配体
在Module列表中选择Assembly功能模块。点击左侧工具区中的 (Instance Part),接受默认参数,如图9所示,即类型为非独立实体,点击OK。
哈工大有限元大作业

作业一一.计算程序和结果展示1.程序clearsyms a b c x E lD=E*pi*(b*x+c)^4/64;B(:,:,1)=[-6/l^2+12*x/l^3 4/l-6*x/l^2];B(:,:,2)=[6/l^2-12*x/l^3 ,2/l-6*x/l^2];n=0;for i=1:2for j=1:2n=n+1;f=B(:,:,i)*D*transpose(B(:,:,j));k(:,:,n)=int(f,x,0,l);endendk11=k(:,:,1);k12=k(:,:,2);k21=k(:,:,3);k22=k(:,:,4);K=[k11 k12;k21 k22];K=simple(K);2.结果(1)bx+cK =[ (3*pi*E*(11*b^4*l^4 + 49*b^3*c*l^3 + 84*b^2*c^2*l^2 + 70*b*c^3*l +35*c^4))/(560*l^3), -(pi*E*(19*b^4*l^4 + 84*b^3*c*l^3 + 147*b^2*c^2*l^2 + 140*b*c^3*l + 105*c^4))/(1120*l^2), -(3*pi*E*(11*b^4*l^4 + 49*b^3*c*l^3 + 84*b^2*c^2*l^2 + 70*b*c^3*l + 35*c^4))/(560*l^3), -(pi*E*(47*b^4*l^4 + 210*b^3*c*l^3 + 357*b^2*c^2*l^2 + 280*b*c^3*l + 105*c^4))/(1120*l^2)][ -(pi*E*(19*b^4*l^4 + 84*b^3*c*l^3 + 147*b^2*c^2*l^2 + 140*b*c^3*l +105*c^4))/(1120*l^2), (pi*E*(3*b^4*l^4 + 14*b^3*c*l^3 + 28*b^2*c^2*l^2 +35*b*c^3*l + 35*c^4))/(560*l), (pi*E*(19*b^4*l^4 + 84*b^3*c*l^3 + 147*b^2*c^2*l^2 +140*b*c^3*l + 105*c^4))/(1120*l^2), (pi*E*(13*b^4*l^4 + 56*b^3*c*l^3 +91*b^2*c^2*l^2 + 70*b*c^3*l + 35*c^4))/(1120*l)][ -(3*pi*E*(11*b^4*l^4 + 49*b^3*c*l^3 + 84*b^2*c^2*l^2 + 70*b*c^3*l +35*c^4))/(560*l^3), (pi*E*(19*b^4*l^4 + 84*b^3*c*l^3 + 147*b^2*c^2*l^2 + 140*b*c^3*l +105*c^4))/(1120*l^2), (3*pi*E*(11*b^4*l^4 + 49*b^3*c*l^3 + 84*b^2*c^2*l^2 +70*b*c^3*l + 35*c^4))/(560*l^3), (pi*E*(47*b^4*l^4 + 210*b^3*c*l^3 + 357*b^2*c^2*l^2 + 280*b*c^3*l + 105*c^4))/(1120*l^2)][ -(pi*E*(47*b^4*l^4 + 210*b^3*c*l^3 + 357*b^2*c^2*l^2 + 280*b*c^3*l +105*c^4))/(1120*l^2), (pi*E*(13*b^4*l^4 + 56*b^3*c*l^3 + 91*b^2*c^2*l^2 +70*b*c^3*l + 35*c^4))/(1120*l), (pi*E*(47*b^4*l^4 + 210*b^3*c*l^3 + 357*b^2*c^2*l^2 +280*b*c^3*l + 105*c^4))/(1120*l^2), (pi*E*(17*b^4*l^4 + 77*b^3*c*l^3 +133*b^2*c^2*l^2 + 105*b*c^3*l + 35*c^4))/(560*l)](2)ax^2+bx+c(将程序中D的直径换成“ax^2+bx+c”)K =[ (pi*E*(518*a^4*l^8+2233*a^3*b*l^7+2420*a^3*c*l^6+3630*a^2*b^2*l^6+7920*a^2*b*c*l^5 + 4356*a^2*c^2*l^4 +2640*a*b^3*l^5+8712*a*b^2*c*l^4+9702*a*b*c^2*l^3+3696*a*c^3*l^2 + 726*b^4*l^4 + 3234*b^3*c*l^3 + 5544*b^2*c^2*l^2 + 4620*b*c^3*l +2310*c^4))/(12320*l^3), -(pi*E*(938*a^4*l^8+4004*a^3*b*l^7+4290*a^3*c*l^6+6435*a^2*b^2*l^6+13860*a^2*b*c*l^ 5+7524*a^2*c^2*l^4+4620*a*b^3*l^5+15048*a*b^2*c*l^4+16632*a*b*c^2*l^3+6468*a*c^3*l ^2 +1254*b^4*l^4+5544*b^3*c*l^3+9702*b^2*c^2*l^2+9240*b*c^3*l+6930*c^4))/(73920*l^2), -(pi*E*(518*a^4*l^8 + 2233*a^3*b*l^7 + 2420*a^3*c*l^6 + 3630*a^2*b^2*l^6 +7920*a^2*b*c*l^5 + 4356*a^2*c^2*l^4 + 2640*a*b^3*l^5 + 8712*a*b^2*c*l^4 +9702*a*b*c^2*l^3 + 3696*a*c^3*l^2 + 726*b^4*l^4 + 3234*b^3*c*l^3 + 5544*b^2*c^2*l^2 + 4620*b*c^3*l + 2310*c^4))/(12320*l^3), -(pi*E*(2170*a^4*l^8 + 9394*a^3*b*l^7 +10230*a^3*c*l^6 + 15345*a^2*b^2*l^6 + 33660*a^2*b*c*l^5 + 18612*a^2*c^2*l^4 +11220*a*b^3*l^5 + 37224*a*b^2*c*l^4 + 41580*a*b*c^2*l^3 + 15708*a*c^3*l^2 +3102*b^4*l^4 + 13860*b^3*c*l^3 + 23562*b^2*c^2*l^2 + 18480*b*c^3*l +6930*c^4))/(73920*l^2)][ -(pi*E*(938*a^4*l^8 + 4004*a^3*b*l^7 + 4290*a^3*c*l^6 + 6435*a^2*b^2*l^6 + 13860*a^2*b*c*l^5 + 7524*a^2*c^2*l^4 + 4620*a*b^3*l^5 + 15048*a*b^2*c*l^4 +16632*a*b*c^2*l^3 + 6468*a*c^3*l^2 + 1254*b^4*l^4 + 5544*b^3*c*l^3 + 9702*b^2*c^2*l^2 + 9240*b*c^3*l + 6930*c^4))/(73920*l^2), (pi*E*(434*a^4*l^8 + 1848*a^3*b*l^7 + 1980*a^3*c*l^6 + 2970*a^2*b^2*l^6 + 6435*a^2*b*c*l^5 + 3564*a^2*c^2*l^4 +2145*a*b^3*l^5 + 7128*a*b^2*c*l^4 + 8316*a*b*c^2*l^3 + 3696*a*c^3*l^2 + 594*b^4*l^4 + 2772*b^3*c*l^3 + 5544*b^2*c^2*l^2 + 6930*b*c^3*l + 6930*c^4))/(110880*l),(pi*E*(938*a^4*l^8 + 4004*a^3*b*l^7 + 4290*a^3*c*l^6 + 6435*a^2*b^2*l^6 +13860*a^2*b*c*l^5 + 7524*a^2*c^2*l^4 + 4620*a*b^3*l^5 + 15048*a*b^2*c*l^4 +16632*a*b*c^2*l^3 + 6468*a*c^3*l^2 + 1254*b^4*l^4 + 5544*b^3*c*l^3 + 9702*b^2*c^2*l^2 + 9240*b*c^3*l + 6930*c^4))/(73920*l^2), (pi*E*(1946*a^4*l^8 + 8316*a^3*b*l^7 +8910*a^3*c*l^6 + 13365*a^2*b^2*l^6 + 28710*a^2*b*c*l^5 + 15444*a^2*c^2*l^4 +9570*a*b^3*l^5 + 30888*a*b^2*c*l^4 + 33264*a*b*c^2*l^3 + 12012*a*c^3*l^2 +2574*b^4*l^4 + 11088*b^3*c*l^3 + 18018*b^2*c^2*l^2 + 13860*b*c^3*l +6930*c^4))/(221760*l)][ -(pi*E*(518*a^4*l^8 + 2233*a^3*b*l^7 + 2420*a^3*c*l^6 +3630*a^2*b^2*l^6 + 7920*a^2*b*c*l^5 + 4356*a^2*c^2*l^4 + 2640*a*b^3*l^5 +8712*a*b^2*c*l^4 + 9702*a*b*c^2*l^3 + 3696*a*c^3*l^2 + 726*b^4*l^4 + 3234*b^3*c*l^3 +5544*b^2*c^2*l^2 + 4620*b*c^3*l + 2310*c^4))/(12320*l^3), (pi*E*(938*a^4*l^8 + 4004*a^3*b*l^7 + 4290*a^3*c*l^6 + 6435*a^2*b^2*l^6 + 13860*a^2*b*c*l^5 +7524*a^2*c^2*l^4 + 4620*a*b^3*l^5 + 15048*a*b^2*c*l^4 + 16632*a*b*c^2*l^3 +6468*a*c^3*l^2 + 1254*b^4*l^4 + 5544*b^3*c*l^3 + 9702*b^2*c^2*l^2 + 9240*b*c^3*l + 6930*c^4))/(73920*l^2), (pi*E*(518*a^4*l^8 + 2233*a^3*b*l^7 +2420*a^3*c*l^6 + 3630*a^2*b^2*l^6 + 7920*a^2*b*c*l^5 + 4356*a^2*c^2*l^4 +2640*a*b^3*l^5 + 8712*a*b^2*c*l^4 + 9702*a*b*c^2*l^3 + 3696*a*c^3*l^2 + 726*b^4*l^4 + 3234*b^3*c*l^3 + 5544*b^2*c^2*l^2 + 4620*b*c^3*l + 2310*c^4))/(12320*l^3),(pi*E*(2170*a^4*l^8 + 9394*a^3*b*l^7 + 10230*a^3*c*l^6 + 15345*a^2*b^2*l^6 +33660*a^2*b*c*l^5 + 18612*a^2*c^2*l^4 + 11220*a*b^3*l^5 + 37224*a*b^2*c*l^4 +41580*a*b*c^2*l^3 + 15708*a*c^3*l^2 + 3102*b^4*l^4 + 13860*b^3*c*l^3 +23562*b^2*c^2*l^2 + 18480*b*c^3*l + 6930*c^4))/(73920*l^2)][ -(pi*E*(2170*a^4*l^8 + 9394*a^3*b*l^7 + 10230*a^3*c*l^6 + 15345*a^2*b^2*l^6 +33660*a^2*b*c*l^5 + 18612*a^2*c^2*l^4 + 11220*a*b^3*l^5 + 37224*a*b^2*c*l^4 +41580*a*b*c^2*l^3 + 15708*a*c^3*l^2 + 3102*b^4*l^4 + 13860*b^3*c*l^3 +23562*b^2*c^2*l^2 + 18480*b*c^3*l + 6930*c^4))/(73920*l^2), (pi*E*(1946*a^4*l^8 +8316*a^3*b*l^7 + 8910*a^3*c*l^6 + 13365*a^2*b^2*l^6 + 28710*a^2*b*c*l^5 +15444*a^2*c^2*l^4 + 9570*a*b^3*l^5 + 30888*a*b^2*c*l^4 + 33264*a*b*c^2*l^3 +12012*a*c^3*l^2 + 2574*b^4*l^4 + 11088*b^3*c*l^3 + 18018*b^2*c^2*l^2 + 13860*b*c^3*l + 6930*c^4))/(221760*l), (pi*E*(2170*a^4*l^8 + 9394*a^3*b*l^7 + 10230*a^3*c*l^6 +15345*a^2*b^2*l^6 + 33660*a^2*b*c*l^5 + 18612*a^2*c^2*l^4 + 11220*a*b^3*l^5 +37224*a*b^2*c*l^4 + 41580*a*b*c^2*l^3 + 15708*a*c^3*l^2 + 3102*b^4*l^4 +13860*b^3*c*l^3 + 23562*b^2*c^2*l^2 + 18480*b*c^3*l + 6930*c^4))/(73920*l^2),(pi*E*(2282*a^4*l^8 + 9933*a^3*b*l^7 + 10890*a^3*c*l^6 + 16335*a^2*b^2*l^6 +36135*a^2*b*c*l^5 + 20196*a^2*c^2*l^4 + 12045*a*b^3*l^5 + 40392*a*b^2*c*l^4 +45738*a*b*c^2*l^3 + 17556*a*c^3*l^2 + 3366*b^4*l^4 + 15246*b^3*c*l^3 +26334*b^2*c^2*l^2 + 20790*b*c^3*l + 6930*c^4))/(110880*l)](3)b=0(等截面梁)K =[ (3*pi*E*c^4)/(16*l^3),-(3*pi*E*c^4)/(32*l^2),-(3*pi*E*c^4)/(16*l^3),-(3*pi*E*c^4)/(32*l^2)] [ -(3*pi*E*c^4)/(32*l^2), (pi*E*c^4)/(16*l), (3*pi*E*c^4)/(32*l^2), (pi*E*c^4)/(32*l)][ -(3*pi*E*c^4)/(16*l^3), (3*pi*E*c^4)/(32*l^2), (3*pi*E*c^4)/(16*l^3),(3*pi*E*c^4)/(32*l^2)] [ -(3*pi*E*c^4)/(32*l^2), (pi*E*c^4)/(32*l), (3*pi*E*c^4)/(32*l^2), (pi*E*c^4)/(16*l)]总结:将结果(3)与教材等截面梁刚度矩阵比较,发现表达式一样,侧面证明了程序的正确性。
有限元实例分析

作业一:有限元分析实例实例:请对一个盘轴配合机构进行接触分析。
轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。
盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。
问题分析说明(1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。
由于为过盈配合,属于大变形,故应考虑几何非线性的影响。
(2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计算时间。
分析过程由两个载荷步组成, 第一个载荷步为过盈分析, 求解过盈安装时的情况。
第二个载荷步为将轴从盘心拔出时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的接触应力。
它们都属于大变形问题, 属于非线性问题。
在分析时需要定义一些非线性选项来帮助问题的收敛。
(3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。
模型建立的分析说明(1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。
盘轴接触问题属于面面接触, 目标面和接触面都是柔性的,将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接触面。
分别创建名为为part1、part2的部件。
(2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入0 . 3,并将定义的材料属性赋予给part1和part2。
如下图所示。
(3)进入装配模块,创建两者间的装配关系。
(4)进入分析步模块定义名为step1和step2的两个分析步。
(5)进入相互作用模块,创建相互作用属性,设置摩擦系数;然后定义接触关系。
如下图所示。
(6)进入载荷模块,创建边界条件,依次定义名为BC -2(类型为:完全固定)、BC -3(类型为:位移/转角,约束U1、UR3),分析步均为Initial 。
有限元分析大作业

超静定梁的有限元分析本文分别通过材料力学解法和有限元解法,求出了超静定梁的支反力、最大位移及最大位移出现位置,并对两者进行了比较和误差分析。
一、超静定梁的材料力学解法梁的约束反力数目超过了有效平衡方程数,单纯使用静力平衡不能确定全部未知力的梁称为超静定梁。
超静定梁比静定梁有许多优点,如可用较少材料获得较大的刚度和强度,个别约束破坏后仍可工作等。
因而超静定梁在工程中得到较多的应用。
超静定梁的解法有很多种,本文采用力法的一种——变形比较法求解未知量。
图1图2选取C 点的支座为多余约束,Rc 为多余支座反力,则相应的基本静定梁为一外伸梁,如图2所示,其上受集中载荷P 、均布载荷q 和多余支座反力Rc 的作用。
相应的变形条件为:c cP cq cRc f f f f =++=其中316cP B Pl f l EI θ=⨯= 4724cq ql f EI =-323c cRc R l f EI =则316Pl EI 4724ql EI -+323c R l EI=0 将已知数据带入可求得 6.25c R =- 负号表示c R 的方向与假设的方向相反。
再列出平衡方程:0X =∑AX R =0A M =∑ 232022B C ql Pl R l R l ---=0C M =∑ 232022AY B ql PllR R l +--=带入已知条件求得:AX R = 393.75AY R = 812.5B R =用叠加法求最大位移:最大的向下位移在A 与B 两点中间:334410.7910481632C R l Pl ql f EI EI EI -=-++=-⨯最大的向上位移在B 与C 两点中间:3344213490.22525103248512C R l Pl ql f EI EI -=--=⨯二、超静定梁的有限元解法在ANSYS 平台上,求解超静定梁。
建模、单元划分、加载后结果如图3所示。
图3求解后可以通过图形和列表两种方式查看结果。
有限元分析报告大作业

《有限元分析》大作业基本要求:1. 以小组为单位完成有限元分析计算,并将计算结果上交;2. 以小组为单位撰写计算分析报告;3. 按下列模板格式完成分析报告;4. 计算结果要求提交电子版,一个算例对应一个文件夹,报告要求提交电子版和纸质版。
《有限元分析》大作业小组成员:储成峰李凡张晓东朱臻极高彬月Job name :banshou完成日期:2016-11-22一、问题描述(要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。
图应清楚、明晰,且有必要的尺寸数据。
)如图所示,为一内六角螺栓扳手,其轴线形状和尺寸如图,横截面为一外接圆半径为0.01m的正六边形,拧紧力F为600N,计算扳手拧紧时的应力分布<图1扳手的几何结构(要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;数学模型图2数学模型如图二所示,扳手结构简单,直接按其结构进行有限元分析。
三、有限元建模3.1单元选择(要求:给出单元类型,并结合图对单元类型进行必要阐述, 包括节点、自由度、 实常数等。
)图3单元类型扳手截面为六边形,采用4节点182单元,182单元可用来对固体结构进行如进行了简化等处理,此处还应给出文字说明。
)Figure 1B2.1: PLANE1S2 Geometry二维建模。
182单元可以当作一个平面单元,或者一个轴对称单元。
它由4个结点组成,每个结点有2个自由度,分别在x,y方向。
扳手为规则三维实体,选择8节点185单元,它由8个节点组成,每个节点有3个自由度,分别在x,y,z方向。
3.2实常数(要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。
)因为该单元类型无实常数,所以无需定义实常数3.3材料模型(要求:指出选择的材料模型,包括必要的参数数据。
)对于三维结构静力学,应力主要满足广义虎克定律,因此对应ANSYS^的线性,弹性,各项同性,弹性模量EX 2e11 Pa,泊松比PRXY=0.33.4几何建模由于扳手结构比较简单,所以可以直接在ANSYS软件上直接建模,在ANSYS建立正六边形,再创立直线,面沿线挤出体,得到扳手几何模型VULUHES 1TYPE NUMEZ图4几何建模3.5网格划分方案(要求:指出网格划分方法,网格控制参数,最终生成的单元总数和节点总数,此外还应附上最终划分好的网格截图。
有限元分析大作业

有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。
一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受均匀内压作用的厚壁圆筒:
问题描述:
受均匀内压p=12.5N/mm 2作用的厚壁圆筒。
其几何参数为:内径R i =100mm ,
外径R e =200mm ,桶壁后h=100mm ,材料参数为:E=8666.67Mpa ,v=0.3,
s σ=17.32Mpa ,材料符合Mise 屈服条件。
(a)求理想塑性材料的解,给出应力r σ和θσ沿径向r 的分布曲线,并求完全卸载
后圆筒内的残余应力分布。
(b)求线性强化材料(E 1=0.6E 或E 1=0.6E)的解,即应力r σ和θσ沿径向r 的分布
曲线。
(c)求幂硬化材料的解并绘出当弹塑性比例系数为m=0,1/4,1/2,2/3和m=1.0时,
即应力r σ和θσ沿径向r 的分布曲线。
求解分析:
由于该厚壁筒模型是轴对称模型,所以在求解过程中,我们选取了1/4模型
进行了进行建模分析,具体如下图:
建模时取了柱坐标系下厚壁筒从0。
~90。
范围内的部分,高度取为100mm ,模
型完成后进行网格的划分,这里利用了Patran 的Mesh Seed 功能,通过在径向、周向,高度方向撒种生成Mesh 网格,网格划分如上图。
考虑到实体的变形情况,关于模型的边界条件,定义如下:
(1)模型的上、下表面为两个平面,在该两平面上限制z 方向的位移为0;
(2)对于模型的内外两圆弧面,为了方便定义边界条件,建立了柱坐标,该两平
是延径向变形的,所以ρ坐标是放开的,为了限制模型的刚体移动,这里限制角坐标θ为0。
(3)对于模型两个侧平面,是属于模型的对称面,所以该两平面的单元在垂直于平面的方向上位移为零,这里利用柱坐标,即沿周向的位移为零,所以同样要限制角坐标θ为0。
由于厚壁筒受到均匀内压,所以在施加载荷时选择均布载荷Pressure,大小为p=12.5N/mm2,作用在内圆弧表面上。
对于材料塑性的定义,首先定义样式模量和泊松比,然后在弹塑性对话框里定义屈服载荷和硬化系数或通过在Stress/Strain Curve栏中添加事先定义的材料属性场来表征弹塑性比例系数m。
对于求解分析,求解器选择Nastran进行计算分析,单元属性选择3D Solid 属性,分析类型定义为非线性并设置大变形和跟随力及载荷增量步等,以此来进行弹塑性的非线性求解。
结果分析:
(a)对于理性塑性材料,即硬化系数为0,求解结果如下:
该图为100%载荷作用下模型的应力云图及变形情况。
观察可知,筒内壁应力较高且首先达到屈服应力发生塑性变形,沿径向方向向外,各层应力逐渐递减,且外层部分属于弹性变形的范畴,模型某一层为弹塑性变形的分界面。
上图为径向方向应力分布图,其中横坐标为相应节点沿径向距圆心的距离,纵坐标为应力值,坐标范围为0~18Mpa,红色曲线中水平直线部分为应力达到屈服应力,在转折点即为弹塑性变形分界面,斜线部分为弹性变形区域,从曲线分析,结果与上图中的应力云图一致。
应力r σ和θσ沿径向r 的分布曲线分别如下:
r σ-r(纵坐标为负值)
θσ-r
(b) 对于线性强化材料,此处选择E 1=0.6E ,分析方法同上,结果如下:
应力云图及变形情况如下:
应力r σ和θσ沿径向r 的分布曲线分别如下:
上图为r σ-r ,下图为θσ-r
(c)对于幂硬化材料,此处选择幂硬化系数m=1/2,当m 取其他值时求解方法同理,由幂硬化材料的特性可知,当σ≤s σ
时,σ=E ε,当σ>s σ时,σ=A m ε,
A=E m 1s -ε,而s ε=s σ/E,当m=1/2时,可得
σ>s σ时,σ=E 2/1s ε1/2ε,所以材料的应
力应变关系属于分段函数,此处选用
Field 应用工具按钮下的材料特性场来定
义材料的幂硬化特性,选择自变量为
Strain(e),通过tobular 表格输入应力与
应变数据如右图所示,相关数据由以上公
式求得,通过各个个节点间的折线逼近应
力应变曲线,节点数越多精度越高,此处
选择10个节点,模拟出的应力应变曲线如下:
然后再定义材料的弹塑性时将该特性场定义到Stress/Strain Curve 中,最后进行分析即可。
此时的应力云图及变形情况如下:
应力r σ和θσ沿径向r 的分布曲线分别如下:
上图为r σ-r ,下图为θσ-r 总应力沿径向的分布图如下:
.。