2.1.2整式多项式

合集下载

七年级数学上册 2.1.2《整式(多项式)》教案 (新版)新人教版

七年级数学上册 2.1.2《整式(多项式)》教案 (新版)新人教版

七年级数学上册 2.1.2《整式(多项式)》教案(新版)新人教版
《整式(多项式)》
教学任务分析
教学目标知识与
技能
掌握多项式的定义、多项式的项
和次数,以及常数项等概念
过程与
方法
让学生经历新知的形成过程,培
养比较、分析、归纳的能力,由
单项式与多项式归纳出整式,培
养学生分析问题、解决问题的能
力。

情感态
度与
价值观
通过数学探究活动,提高学生对
数学学习的好奇心与求知欲。

教学重点掌握整式和多项式的项及其次数、常数项的概念。

教学难点掌握整式和多项式的项及其次数、常数项的概念。

教学过程设计
[活动3]练习:
[活动4]小结:。

人教版七年级数学上册2.1.2整式(多项式)教学设计

人教版七年级数学上册2.1.2整式(多项式)教学设计

人教版义务教育课程标准教科书七年级上册2.1整式(多项式)教学设计一、教材分析1、地位作用:多项式是在学习单项式的基础上进一步学习整式的另外一个重要知识点,所以只有理解单项式的概念才能进一步理解多项式的概念,而多项式的加减运算正是整式加减运算的基础,整式加减运算又是解解决实际问题的基础,因此学好多项式的有关知识是至关重要的。

2、教学目标:(1)、知识技能:①理解多项式、理解多项式的项、常数项、以及多项式的系数和次数;②能确定多项式的项数和次数。

(2)数学思考:通过小组合作交流、讨论,让学生感受知识的形成过程,培养学生归纳能力。

(3)、解决问题:通过观察不同的多项式,培养学生归纳问题的能力以及语言表达能力。

(4)、情感态度与价值观:培养学生比较、分析、归纳的能力。

3、教学重、难点教学重点:多项式及相关概念。

教学难点:区别单项式与多项式的次数。

突破难点的方法:(1)、利多媒体;(2)小组交流;(3)通过对比。

二、教学准备:多媒体课件、导学案。

三、教学过程单项式 4x 6a2 a3 -n vt 2πa πa2 次数 系数4、 列式表示下列问题:(1)长方形的长和宽分别为a 和b ,则长方形的周长是( );(2)某班有男生X 人,女生21人,则全班共有( )人;(3)鸡兔同笼,鸡a 只,兔b 只,则共有头( )个,脚( )只; (4)一个数比数X 的3倍小2,则这个数是( )。

答,锻炼他们的口答能力。

二、自主探究 合作交流 建构新知观察上面得出的四个式子:2a+2b,x+21,a+b,2a+4b,3x-2,它们与上节课学习的单项式有什么区别?你能试着用和的形式读一下吗?通过学生的观察、思考,对特征的描述,由学生自己说出多项式的定义,教师给予适当的补充。

板书多项式的概念:像这样,几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项。

注意:多项式的项要包含前面的符号。

例如:3x-2中,共有2项,分别是3x 与-2。

第二章整式的加减2.1.2单项式与多项式

第二章整式的加减2.1.2单项式与多项式

1 (8) + y + 2 ; x
3 x yz (9)2
5
3
2
找一找

多项式-2x2+2x-1各由哪些项组成? 第一项的系数是什么? 第三项的次数分别是多少?
找一找
下列多项式各由哪些项组成? 是几次几项多项式? x² -3x+4
拓展迁延
例4. 已知:多项式 1 5
x y
2
m +1
+ xy
2
- 3x2 - 6
是n+1。 ( )
n
2. 多项式 6x3-4x2y+3xy2-y3 的项是
6x3,4x2y,3xy2,y3。 3. m2n 没有系数。 ( ( ) )
4. -13是一次一项式。
(
)
多项式的排列
由于多项式是几个单项式的和,所
以可以用加法的运算定律,来交换各项
的位置,而保持原多项式的值不变。
为了便于多项式的计算,通常总是把
的次数.
注意:单项式是按次数分类,
多项式是几次几项式.
试一试:填 表
3 5
-1 3
5
4 3
2 2
请分别写出下列多项式的项、
项数、常数项、多项式是几次几项式。
3x5 - 4 ;
项:3x5、-4; 项数: 2 ; 常数项 :-4 ; 多项式是三次二项式;

练习:

下列多项式各由哪些项组成?
讨论·发现
-3x + 4 a + 3a - 2 a - b + 3
2
2
2
这些代数式是怎样组成的?和单项式
-3x 2a ab
2

2.1.2整式-单项式和多项式

2.1.2整式-单项式和多项式

整式-单项式、多项式【目标导引】1. 会将一个多项式看成是几个单项式的和的形式.2. 理解多项式及其相关概念.能够举例说明多项式中的项,项的系数,多项式的次数.3.初步理解整式的概念理解实际问题中多项式表示的含义.【学习探究】一、辅垫导入与自主预习1. 回顾:我们学习了用字母表示数,那么用字母表示数应该注意哪些书写规则呢2.思考:从开学到现在我们所学过的用字母表示的数和式子,他们是什么样子的呢请你随手写出几个与同伴交流一,他们有没有什么共同的地方,可以分为几类呢二、知识探究与合作学习.…1.探究一:请看到课本56面上的思考1,你能说出这些式子的特点吗什么是单项式什么是系数,什么是单项式的次数请你说一说2.试一试:下列式子中,单项式有哪些⑴3-;⑵213x y ;⑶2a ;⑷23m ;⑸212ab -;⑹729x -+;⑺2n ;⑻2π+.3.议一议:判定一个式子是否是单项式时,分母中可以含有字母吗为什么单项式中除了符号以外能够含有“+”,“—”号吗单项式中的系数包括它前面的符号吗不含有数字系数的单项式的系数是多少,例如a 的系数是(小组讨论并交流、组内发言人总结)4.指出下列各单项式的系数和次数 ⑴2395x y -; ⑵223ab π;⑶24m n -;⑷4x ;⑸3223mn -;…5.若一个只含字母a b 、的单项式,其系数为-1,次数为3,请写出这样的单项式.6.探究二:请同学们看到书本57面思考二,这些式子具有哪些特点呢小组总结一下,说说你们发现了什么阅读课本58面,请你说一说什么是多项式,什么是多项式的项,什么是常数项,多项式的次数是什么,怎么得到的7.想一想:单项式与多项式有哪些区别和联系单项式和多项式统称为 .8.完成课本上的练习1,2.}9.请指出下列式子中的多项式: ⑴31xy 532x -+; ⑵222a b +; ⑶2mn m n +; ⑷1a b -+;⑸592018ab -;10.指出下列多项式的项和次数,并说出它是几次几项式.⑴22325x y x y --+-; ⑵415mn -;、总结:确定多项式的项时,必须加上前面的 .多项式里,次数最高项的次数,叫做这个多项式的次数.11.将多项式2233432x y xy y x +-+按照x 的降幂排列 .12.将式子:222221111,,,(),,71,8,923236x y x y a x y x a x aπ---++-+,填入相应的集合圈中单项式多项式整式。

2.1.2整式-多项式反思

2.1.2整式-多项式反思

2.1.2整式-多项式反思
我觉得本堂课在对教学时间把握上存在一定的问题。

对于整堂课前面内容的设置虽然不太复杂,但却很琐碎,导致后面的例题结束得比较匆忙。

由于一惯的想把所以知识都教给学生的思维,导致对于多项式的每一项的系数讲得不够容易理解。

所以在今后的备课中还是需要更细致的备课,从细微处发现问题。

在语速上依然比较快,要刻意去放慢自己的语速,让学生更能够接受。

在板书方面,虽然不是很乱,但是也不是很清晰,需要把板书更条理化,让学生一目了然。

总之,要上好一堂课,备好课很重要,不但要备课本,还要备学生,了解学生的理解能力和学习差异,根据学生的特点设置不同的情景和适合他们的方法来教学。

希望自己在今后的教学中,多反思,多找自己的缺点,将教学中存在的问题加以分析为后续教学多作准备。

华兴实验学校张婷婷
2015/10/14。

2.1整式(2) 多项式 教学设计 人教版七年级数学上册

2.1整式(2) 多项式  教学设计 人教版七年级数学上册

2.1整式〔2〕 多项式【教材分析】多项式是在学习单项式的根底上进一步学习的整式的另一个重要知识点,所以只有理解了单项式的概念,才能进一步理解并掌握多项式的概念.而多项式的加减运算正是整式加减运算的的根底,而整式的加减运算又是解决大量的实际问题的根底,因此学好多项式的相关知识是至关重要的.【学情分析】在学习了单项式后,学生对多项式的学习就顺理成章.【教学目标】知识与技能:掌握多项式.多项式的项.常数项.多项式的次数的概念.过程与方法:在预习的根底上,通过小组合作的方式,进一步探究有关多项式的相关概念,并能理解运用.情感与态度:初步体会类比和逆向思维的数学思想.【教学重点】多项式的相关概念【教学难点】多项式的次数【课时安排】1课时一.预学自检 互助点拨自学教材57--58页.45x -是不是单项式?4x ,5-是不是单项式?把4x ,5-的和用式子表示出来:,写成省略加号的形式是,式子45x -表示哪几个单项式的和?式子2427x x -+,22a ab b +-分别表示哪几个单项式的和?.〔1〕几个单项式的和叫〔2〕在多项式中,每个单项式叫做〔3〕在多项式中,不含字母的项叫做〔4〕在多项式中,次数最高的项的次数叫做这个〔5〕单项式和多项式统称二.例题示范 提炼方法合作互学 探究新知自主学习(1)以下多项式各由哪些项组成,各是几次几项式?333,1,,82b ab a a c b a x ++-++-.〔2〕以下式子中,哪些是整式,哪些是单项式,哪些是多项式?ab c +,2ax bx c ++,5-,π,3a b -,32m -. 探究新知 1.以下多项式中,是四次三项式的是〔 〕A.41x - B.232232xyz xy y x +- C.432224+-z y x x D.2x y z -+ 2..如果一个多项式的次数是6,那么这个多项式的任何一项的次数都〔 〕A.小于6B.不大于6 C .不小于6 D.大于63..多项式422y x +中,二次项系数是〔 〕 A.1 B.2 C.21 D.41 4.如果6)2()2(23----x k x k k 是关于x 的二次多项式,那么k 的值是〔 〕A .0B .2 C.0或2 D.不能确定设计意图:稳固多项式的概念及相关概念,同时为学生创造用多项式表示实际问题中的数量关系的时机,培养学生的列式能力.三.师生互动 稳固新知1.多项式43232--+-n mn m 是次项式,最高项的系数是,常数项是2.买一个篮球需要m 元,买一个排球需要n 元,那么买3个篮球和2排球共需元.3.n 表示整数,用含n 的式子表示两个连续奇数4.63513212--+-+x xy y x m 是六次多项式,单项式m n y x -523与该多项式的次数相同,求m.n 的值.四.应用提升挑战自我某影剧院观众席近似于一个扇面的形状,第一排有20个座位,后面的每一排都比前一排多两个座位.〔1〕写出第n 排座位数的表达式;〔2〕如果这个剧院的观众席共25排,那么它最多可以容纳多少观众?设计意图:此题属于一道中难题,学生在学习掌握根底概念之后,有种想突破自我,向更高难度挑战的意识,这道题此时能够较好地激发起学生学习的热情,使思维,解题等能力得到提升,能够较好地到达培优的目的.五.经验总结 反思收获本节课你学到了什么?写出来【板书设计】2.1整式〔2〕 多项式1.多项式2.项 常数项3.多项式的次数4.整式【教学反思】本节内容通过五步教学法,以自学合作为主,充分调动学生学习的主动性.能动性.积极性,学生大多能掌握本节所学内容,到达了教学目标.。

2.1.2整式(多项式)

2.1.2整式(多项式)

老师,请先别给我讲,让我试试,自己是否能学会…… 鸿志学校 七年级数学 科目学案 编号: 审批人 :课题:《2.1.2 整式(多项式)》 第___周第___课时 主备人:袁密 审核人: 授课时间: 学生姓名: 班组: 组评: 师评: 导入: 学习目标:1、掌握整式多项式的项及其次数、常数项的概念。

(重点难点) 2.通过小组讨论、合作交流,经历新知的形成过程,培养比较、分析、归纳的能力。

由单项式与多项式归纳出整式,有利于知识的迁移和知识结构体系的更新。

3.初步体会类比和逆向思维的数学思想。

预测问题:一、自主学习(自学课本58的内容,完成下列习题)1.列代数式:(1)长方形的长与宽分别为a 、b ,则长方形的周长是 ;(2)某班有男生x 人,女生21人,则这个班共有学生 人;(3)鸡兔同笼,鸡a 只,兔b 只,则共有头 个,脚 只。

2.观察以上所得出的三个代数式与上节课所学单项式有何区别。

[自学指导] 上面这些代数式都是由几个单项式相加而成的。

几个单项式的和叫做 。

在多项式中,每个单项式叫做 。

其中,不含字母的项,叫做 。

如:多项式5232+-x x 有 ,它们是23x ,-2x ,5。

其中 是常数项。

一个多项式含有几项,就叫 。

多项式里,次数最高项的 ,就是这个多项式的 。

例如,多项式5232+-x x 是一个二次三项式。

注意:(1)多项式的次数不是所有项的次数之和,是次数最高的项的次数;(2)多项式的每一项都包括它前面的符号。

(3)多项式不包含单项式单项式与多项式统称 二、合作探究(学队内讨论交流完成)1、教材p57例2(观察这些式子的特点,学队之间说一说它们有什么特点)2、判断:①多项式a 3-a 2b+a b 2-b 3的项为a 3、a 2b、a b 2、b 3,次数为12; ( )②多项式3n 4-2n 2+1的次数为4,常数项为1。

( )[注意]:多项式的次数为最高次项的次数。

3、指出下列多项式的项和次数:(1)3x -1+3x 2; (2)4x 3+2x -2y 2 4、指出下列多项式是几次几项式。

2.1.2第2课时单项式和多项式

2.1.2第2课时单项式和多项式
(1)多项式的各项应包括它前面的符号 (2)多项式没有系数的概念,但其每一项均有 系数,每一项的系数也包括前面的符号 (3)要确定一个多项式的次数,先要确定此多项 式中各项(单项式)的次数,然后找次数最高的 (4)一个多项式的最高次项可以不唯一
例3 已知-5xmy+104xm-4xmy2是关于x、y 的六次多项式,求m的值,并写出该多项式.
次数
常数项
3x3 5x 8 三次三项式
单项式与多项式统称为整式.
练一练
1.多项式x2+y-z是单项式_x_2_,__y_,_-__z的
和,它是_二__次_三__项式.
2.多项式3m3-2m-5+m2的常数项是_-__5_,二次
项是__m_2__,二次项的系数是___1__.
例2 下列整式中哪些是多项式?是多项式的指
勿遗漏a的 指数1

1 3
πr2h的系数是
1 3
.( ×)
π是系数 的一部分
归纳总结
1.单项式的系数:单项式中的数字因数.若一个单 项式只含有字母因数,那么它的系数就是1或-1;若 单项式是单独一个数,则系数就是它本身.
2.单项式的次数应是该单项式中所有字母的指数和, 与系数的指数没关系,如24x2y3的次数是5,而不是9; 单独一个数的次数是0.
学习目标
1.通过具体实例理解单项式、多项式、整式的概念. 2.理解单项式的系数、次数,多项式的项数、次数 等概念.(重点、难点)
导入新课
情境引入
某学校的操场如图所示,由一个长方形和
两个半圆组成.
(1)两个半圆的面积和是多少?
π
b 2
2
(2)整个操场的面积是多少?
π
b 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-3ab2的系数?
行家看门道
火眼金睛
• 下列说法或书写是否正确:①1x②-1x Nhomakorabea③a×3
④a÷2

⑥m的系数为1,次数为0
⑦ 的系数为2,次数为2
1、温度由toc下降5oc后是 t-5
oc。
2、买一个篮球需要x元,买一个排球需要y 元买一 个足球需要z元,买3个篮球、5个排球、2个足球共 需要 3x+5y+2z 元。
3、如图三角尺的面积为

4、如图是一所住宅区的建筑平面图,这所住宅
的建筑面积是 x2+2x+18 ㎡。
再挑战“记忆”
我思,我进步2
知识的升华
t-5 3x+5y+2z
x2+2x+18
单项式+单项式
几个单项式的和叫做多项式
判断. 下列代数式哪些是多项式?
单项式和多项式通称整式
我思,我进步2
解剖多项式
你和你的同桌一齐回答
下列关于24的次数说法正确的是( c )
• A. 2次 • B. 4次 • C. 0次 • D. 无法确定
让我们大家一起来想!
小明房间的窗户如图所示, 其中上方的装饰物由两个四分之一圆和 一个半圆组成(他们的半径相同)。
(1)装饰物所占的面积是多少?
(2)窗户中能射进阳光部分的面积是多少?
真金,火炼
师傅领进门
思考题:
1.多项式 如果的次数为4次,则m为多少? 如果多项式只有二项,则m为多少?
师傅领进门
思考题:
2.一个关于字母x的二次三项式的二次项 系数 为4,一次项系数为1,常数项为7
则这个二次三项式为_4_x_2_+_x_+_7.
提高探究
• 已知n是自然数,多项式 y n+1+3x32x 是三次三项式,那么n可以是哪些数 ?
系数:单项式中的数字因数。

次数:所有字母的指数的和。

项:式中的每个单项式叫多项式的项。
(其中不含字母的项叫做常数项)
次数:多项式中次数最高的项的次数。
结束寄语
下课了!
悟性的高低取决于有无悟“心”,其实,人 与人的差别就在于你是否去思考,去发现
成长的足迹
6.下列说法中,正确的是( D )
7、判断题: (1)-5ab2的系数是5(×)
(2)xy2的系数是0(× )
(3) 的系数是 ( × )
(4)-ab2c的次数是2(×)
8、(1)买单价为a元的笔记本m本,付
出20元,应找回_(2_0_-_a_m_)_元.
(2)用字母表示图形中的 3 黑色部分面积是___3_a_-m__2_
• 在多项式中,每个单项式叫做多项式的项 • 不含字母的项叫做常数项 • 多项式里次数最高项的次数就是多项式的次
数 如a2 -3a -2的项分别有a2, -3a, -2 ,
常数项是__-2__,最高次项的次数是___2__。
∴a2- 3a -2为二次三项式。
请分别写出下列多项式的项、 项数、常数项、多项式是几次几项式。
• 一个花坛的形状如图所示,这
a
的两端是半径相等的半圆,求q:想一想:2ar+ πr2
(1)花坛的周长L; (2)花坛的面积S。
是r 几次多项式?分r 别是由哪些项组成 ?每一项的系数是
什么?
解:(1)L=2a+2πr
(2) 花坛的面积是一个长方形 的面积与两个半圆的面积 之和, 即S=2ar+ πr2
2. 多项式x+y-z是单项式 x, y ,_-_z_的和,
它是___次___项式1 . 3 3. 多项式3m3-2m-5+m2的常数项是___-_5,
一次项是_-_2_m__, 二次项的系数是_-_2___.
4.如果-5xym-1为4次单项式,则m=__4__.
5.若-ax2yb+1是关于x、y的五次单项式,且系 数为-1/2,则a= 1/2 ,b= 2 .
致我亲爱的同学们:
天空的幸福是穿一身蓝 森林的幸福是披一身绿 阳光的幸福是如钻石般耀眼 老师的幸福是因为认识了你们 愿你们努力进取,永不言败
单项式的注意点
1.单独一个数或一个字母也叫单项式! 比如 -3,0,m, 等都是单项式。
2.单独一个非零数的次数是0。 比如-3的次数是0 00是没意义的
3.单项式的系数包含符号,当系数为1或—1时, 这个“1”应省略不写。
解: 3x3-4; • 项:3x3、-4; • 项数:2; • 常数项 :-4;
• 多项式是三次二项式;
说一说
• 下列多项式各由哪些项组成? 第一项的系数是什么? 第三项的次数分别是多少? -2x2+2x-1
下列多项式各由哪些项组成?是几次 几项多项式?
x²-3x+4
成长的足迹
1. 单项式m2n2的系数是___1____, 次数是___4___, m2n2是__4__次单项式.
m m
a
9.下列式子中哪些是单项式,哪些是多项式, 哪些是整式?
10.多项式
共有
几项,多项式的次数是多少?
第三项是什么,它的系数和次数分别是多少?
说出下列单项式的系数和次数 (1) 20﹪ m, (2)3×105x²y
写出一个单项式,使它的系数是2,次数是3 写出一个多项式,使它的项数是3,次数是4
相关文档
最新文档