SPSS检验步骤总结

合集下载

SPSS卡方检验具体操作

SPSS卡方检验具体操作

SPSS卡方检验具体操作SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,它包含了许多常用的统计方法,包括卡方检验。

卡方检验是一种经典的假设检验方法,用于检验两个分类变量之间是否存在显著的关联性。

下面将介绍SPSS中进行卡方检验的具体操作步骤。

步骤一:导入数据在SPSS软件中,点击“文件(File)”菜单,然后选择“打开(Open)”选项,找到所需分析的数据文件,点击“打开”。

然后通过哪个方式导入数据,可以选择加载文本文件、Excel文件、数据库等不同的方式。

导入数据后,SPSS会将数据显示在主窗口的数据视图中。

步骤二:设置变量属性在进行卡方检验之前,需要设置变量的属性,告诉SPSS每个变量的测量尺度。

例如,在分析两个分类变量之间的关联性时,需要将这两个变量都设置为“标称(Nominal)”尺度。

步骤三:执行卡方检验在SPSS软件中,点击“分析(Analyse)”菜单,然后选择“描述统计(Descriptive Statistics)”选项,再选择“交叉表(Crosstabs)”。

在弹出的对话框中,将需要分析的两个变量分别选择到“行(Rows)”和“列(Columns)”框中。

然后点击“Statistics”按钮,选中“卡方(Chi-square)”复选框,然后点击“Continue”按钮。

最后,点击“OK”按钮,SPSS将进行卡方检验并生成结果报告。

步骤四:解读结果在SPSS生成的结果报告中,主要包括卡方检验统计量、自由度、卡方值、显著性水平以及卡方检验的判定结果等内容。

卡方检验统计量用于判断两个分类变量之间是否存在显著的关联性。

如果卡方值较大且显著性水平(p值)小于设定的显著性水平(通常为0.05),则说明两个变量之间存在显著的关联性。

如果卡方检验的判定结果为显著,可以进一步进行后续分析,如计算关联性指数(如Cramer's V或Phi系数)来了解两个变量之间的关联性程度。

spss秩和检验操作流程

spss秩和检验操作流程

spss秩和检验操作流程
SPSS是一种常用的统计分析软件,它提供了丰富的数据分析功能,其中包括了秩和检验。

秩和检验是一种非参数检验方法,适用于数据不满足正态分布的情况下进行假设检验。

在SPSS中进行秩和检验操作流程如下:
1. 打开SPSS软件并导入数据:首先打开SPSS软件,然后导入需要进行秩和检验的数据文件。

可以通过“文件”菜单中的“打开”选项来导入数据文件。

2. 进行秩和检验:在SPSS软件中,进行秩和检验的操作是通过“非参数检验”功能来实现的。

在菜单栏中选择“分析”-“非参数检验”-“两组样本”-“秩和检验”。

3. 设置变量:在弹出的对话框中,需要设置需要进行秩和检验的变量。

将需要比较的两组变量分别添加到“测试变量”和“分组变量”中。

4. 设置参数:在设置参数的选项中,可以选择检验的类型,包括单样本、独立样本和配对样本秩和检验。

根据实际情况选择适当的检验类型。

5. 进行分析:点击“确定”按钮后,SPSS会自动进行秩和检验分析,并生成相应的结果报告。

在结果报告中会包括秩和检验的统计
量、显著性水平和推断结论等信息。

6. 结果解读:根据结果报告中的显著性水平,判断两组样本之
间是否存在显著差异。

如果显著性水平小于设定的显著性水平(通
常为0.05),则可以拒绝原假设,认为两组样本之间存在显著差异。

总的来说,SPSS软件提供了方便快捷的秩和检验功能,可以帮
助研究人员进行非参数假设检验,从而更准确地分析数据并得出科
学结论。

通过以上操作流程,可以轻松地进行秩和检验分析,为研
究工作提供有力支持。

SPSS检验步骤总结

SPSS检验步骤总结

SPSS检验步骤总结SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,广泛应用于社科、医学、生物、市场调研等领域。

SPSS 提供了众多的统计分析方法和功能,可以用来处理和分析数据,进行假设检验、回归分析等统计操作。

在使用SPSS进行假设检验时,通常有以下几个步骤:1. 数据导入:首先需要将待分析的数据导入SPSS软件。

SPSS支持导入各种格式的数据,包括Excel、CSV、文本文件等。

导入数据后,可以查看数据的基本信息和属性。

2.数据清理:数据清理是数据分析的重要步骤。

在数据清理过程中,需要检查数据的完整性和准确性,删除缺失值、异常值等不符合要求的数据。

SPSS提供了丰富的数据处理和清理工具,可以帮助用户轻松完成数据清理操作。

3.描述性统计分析:在进行假设检验之前,可以先对数据进行描述性统计分析。

描述性统计分析可以提供数据的基本统计信息,包括均值、标准差、频数分布等。

SPSS提供了简单和直观的功能来生成这些统计结果。

4. 建立假设:在进行假设检验之前,需要先建立研究假设。

研究假设通常包括原假设(null hypothesis)和备择假设(alternative hypothesis)。

原假设是指对现象或关系的默认假设,备择假设则是指要证明的假设。

5.选择合适的统计检验方法:根据研究问题的性质和变量类型,选择合适的统计检验方法。

SPSS提供了多种常见的假设检验方法,如t检验、方差分析(ANOVA)、卡方检验等。

不同的检验方法适用于不同类型的数据和研究设计。

6.进行假设检验:一旦选定了合适的统计检验方法,就可以进行假设检验了。

SPSS提供了简便的功能来执行各种假设检验操作。

用户需要输入所需参数和所需样本,之后SPSS将生成检验结果,包括显著性水平(P 值)和置信区间等。

7.结果解释:假设检验完成后,需要对结果进行解释。

如果P值小于设定显著性水平(通常为0.05),则可以拒绝原假设,接受备择假设。

spss正态分布检验方法

spss正态分布检验方法

spss正态分布检验方法SPSS正态分布检验方法。

SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学、生物医学、教育研究等领域。

在数据分析过程中,正态分布检验是一项重要的统计方法,用于检验数据是否符合正态分布。

本文将介绍在SPSS中进行正态分布检验的方法及步骤。

SPSS正态分布检验方法主要包括两种统计检验,Shapiro-Wilk 检验和Kolmogorov-Smirnov检验。

Shapiro-Wilk检验是一种较为常用的正态性检验方法,适用于样本量较小(通常小于50)的情况。

在SPSS中,进行Shapiro-Wilk检验的步骤如下:1. 打开SPSS软件,导入需要进行正态分布检验的数据文件。

2. 选择“分析”菜单中的“描述统计”选项,然后在弹出的对话框中选择“探索性数据分析”。

3. 在“探索性数据分析”对话框中,将需要进行正态性检验的变量移动到“因子”框中。

4. 点击“统计”按钮,在弹出的对话框中勾选“Shapiro-Wil k”复选框。

5. 点击“确定”按钮,SPSS将输出Shapiro-Wilk检验的结果,包括统计量W和显著性水平。

Kolmogorov-Smirnov检验适用于样本量较大的情况,其原理是通过比较累积分布函数来检验数据是否符合正态分布。

在SPSS中进行Kolmogorov-Smirnov检验的步骤如下:1. 打开SPSS软件,导入需要进行正态分布检验的数据文件。

2. 选择“分析”菜单中的“非参数检验”选项,然后在弹出的对话框中选择“单样本K-S检验”。

3. 在“单样本K-S检验”对话框中,将需要进行正态性检验的变量移动到“测试变量列表”框中。

4. 点击“确定”按钮,SPSS将输出Kolmogorov-Smirnov检验的结果,包括统计量D和显著性水平。

在进行正态分布检验时,需要注意以下几点:1. 正态性检验是基于样本数据进行的统计推断,结果受样本量的影响。

卡方检验spss步骤

卡方检验spss步骤

卡方检验spss步骤咱先来说说啥是卡方检验吧。

卡方检验就是一种统计方法,用来分析两个分类变量之间有没有关系。

比如说,你想知道男生和女生对某种颜色的喜好有没有差别呀,就可以用这个卡方检验。

那在SPSS里怎么做呢?一、数据准备你得先把数据都整理好。

就像你要去旅行,得先把行李收拾好一样。

数据得是那种每个观测值对应着不同变量的情况。

比如说你有一个变量是性别,男或者女,还有一个变量是对颜色的喜好,红、蓝、绿啥的。

这些数据要整整齐齐地放在SPSS的数据视图里。

如果数据乱七八糟的,那卡方检验可就没法好好做啦。

二、打开分析菜单在SPSS的界面里呢,你要找到“分析”这个菜单。

这个菜单就像是一个装满了各种工具的魔法盒子,卡方检验这个小魔法就在里面呢。

你轻轻一点这个“分析”菜单,就会看到好多选项冒出来。

三、选择描述统计里的交叉表在这个分析菜单里,有个叫“描述统计”的部分,在那里你能找到“交叉表”这个选项。

这就像是在一堆糖果里找到你最爱的那一颗一样。

点了“交叉表”之后,会弹出一个新的窗口。

四、设置变量在这个新窗口里呀,你要把你的两个分类变量分别放到行和列里面。

比如说,你把性别放到行里,把颜色喜好放到列里。

这就像是给每个小玩具找到它该待的小格子一样。

这个步骤很重要哦,要是放错了地方,结果可就不对啦。

五、点击统计量按钮在这个交叉表的窗口里,你能看到一个叫“统计量”的按钮。

点这个按钮就像是打开一个神秘的小盒子,里面藏着卡方检验这个宝贝呢。

在统计量的选项里,你要找到“卡方”这个选项,然后把它勾上。

就像你在菜单里点了你最爱吃的菜一样。

六、确定并查看结果勾好卡方检验之后呢,你就可以点“确定”按钮啦。

然后SPSS 就会像个勤劳的小蜜蜂一样,开始计算结果。

结果出来之后呢,你要看一个叫“卡方检验”的表格。

这个表格里会告诉你卡方值、自由度还有显著性水平这些东西。

如果显著性水平小于0.05,那就说明这两个分类变量之间是有关系的哦。

如果大于0.05呢,那可能就没什么关系啦。

SPSS卡方检验步骤

SPSS卡方检验步骤
T o tal
effect
阴转人数 阳性数
30
14
9
36
39
50
T o tal 44 45 89
Chi-Square Tests
Pearson Chi-Square Continuity Correctiona
Value 20.979b
19.068
df 1 1
Asymp. Sig. (2 -si d e d) .000
A 47 52 99
血型 B
66 54 120
AB 20 19 39
O 106 62 168
T o ta l 239 187 426
Chi-Square Tests
Pearson Chi-Square
Value 6.755a
df 3
Asymp. Sig. (2 -si d e d) .080
X2=20.687,p=0.000,按a=0.05水 准,拒绝H0,接受H1,差异有统计 学意义,可认为试验组有效率高于对 照组。
P440 第5题 配对设计卡方检验 步骤: 1、定义变量
11
步骤: 2、输入数据
12
步骤: 3、变量加权
13
步骤: 3、变量加权:按频数加权
14
步骤: 4、分析:选 Analyze
35
X2=20.979,p=0.000,按a=0.0167水 准,拒绝H0,接受H1,差异有统计 学意义,可认为甲、乙两种疗法对尿 路感染治疗效果有差别,甲疗法优于 乙疗法。
36
甲、丙检 验结果
group * effect Crosstabulation
Count
group 甲 丙
T o tal

配对卡方检验spss步骤

配对卡方检验spss步骤

配对卡方检验spss步骤配对卡方检验SPSS步骤引言:配对卡方检验是一种常用的统计方法,用于比较两个相关变量之间的关系是否显著。

在SPSS软件中进行配对卡方检验非常方便,本文将详细介绍使用SPSS进行配对卡方检验的步骤。

步骤一:准备数据在进行配对卡方检验之前,首先需要准备数据。

假设我们有两个相关的分类变量X和Y,且每个变量都有两个或多个水平(例如,男性和女性)。

确保数据已经输入到SPSS,每个变量拥有自己的列。

步骤二:导入数据到SPSS打开SPSS软件并选择“文件”选项,然后选择“打开”命令来导入数据文件。

确保选择正确的文件路径,并选择数据文件。

在弹出窗口中选择适当的选项,然后点击“确定”按钮将数据导入到SPSS 软件中。

步骤三:选择配对卡方检验在SPSS软件中,选择“分析”选项,并从下拉菜单中选择“非参数检验”,然后选择“配对样本”和“卡方检验”选项。

步骤四:设定变量在弹出的“配对样本卡方检验”对话框中,将需要进行配对卡方检验的变量移动到“变量对”框中。

确保变量的顺序与数据文件中的顺序一致。

步骤五:设定统计量在同一对话框中,选择“卡方相关系数”以计算配对变量之间的关系强度。

选择“精确度”选项以获取更加精确的结果。

如果选择“对称测验”,则将计算渐近P值,并且结果会更快。

步骤六:运行配对卡方检验点击对话框底部的“确定”按钮来运行配对卡方检验。

SPSS将计算卡方统计量和与之相关的P值。

结果将以表格形式呈现在输出窗口中。

步骤七:解读结果配对卡方检验的结果将显示在输出窗口中的“卡方相关系数”表格中。

首先,关注卡方值(χ^2)的大小。

如果卡方值较大,则意味着两个变量之间的关系较强。

其次,观察P值。

如果P值小于事先设定的显著性水平(通常为0.05),则可以拒绝无关假设,即认为两个变量之间的关系是显著的。

步骤八:结果报告在结果报告中,应包括所进行的配对卡方检验的变量名称、样本数量、卡方值、自由度和P值。

此外,还应说明结果对研究问题的意义和解释。

SPSS检验步骤总结

SPSS检验步骤总结

检验步骤总结:1、t检验2、方差分析3、卡方检验4、秩和检验5、相关分析6、线性回归1、t检验要求数据来自正态总体,可能需要先做正态检验(1)单一样本t检验数据特征:单一样本变量均数与某固定已知均数进行比较方法:ANALYZE-COMPARE MEANS-ONE SAMPLE t TEST(2)独立样本t检验数据特征:两个独立、没有配对关系的样本有专门变量表示组数方法:ANALYZE-COMPARE MEANS-INDEPENDENT SAMPLES t TEST注意观察方差分析结果,判断查看的数据是哪一行(3)配对样本t检验数据特征:两个不独立的,有配对关系的样本没有专门变量表示组数方法:ANALYZE-COMPARE MEANS-PAIRED SAMPLES t TEST不需要方差分析结果检验步骤:(1)正态性检验1有同学推荐,老师没有强调,但依据理论应进行(2)建立假设H0:;;;;来自同一样本; H1:;;;;不来自同一样本(3)确定检验水准(4)计算统计量依据上面不同样本类型选择检验方法,注意独立样本t检验要先注明方差分析结果(5)确定概率值P(6)得出结论2、方差分析要求数据来自正态总体,可能需要先做正态检验(1)单因素方差分析数据特征:相互独立、来自正态总体、随机、方差齐性的多样本有专门变量表示组数,且组数大于2方法:ANALYZE-COMPARE MEANS-ONE WAY ANOVA注意需要在options 里面选择homogeneity variance test 做方差分析符合方差齐性才可以得出结论>(2)双因素方差分析1正态性检验方法:analyze-explore-plot里面选择normality test数据特征:有三列数据,1列是主要研究因素,1列是配伍组因素,1列是研究数据;方法:GENERAL LINEAR MODEL-UNIVARIATE 注意选择model里的custom,type是main effect,注意把两个因素选择为fixed factor检验步骤:(1)正态性检验有同学推荐,老师没有强调,但依据理论应进行(2)建立假设H0:;;;;来自同一样本; H1:;;;;不全来自同一样本或全不来自同一样本(3)确定检验水准(4)计算统计量依据上面不同样本类型选择检验方法,注意单因素方差分析要先注明方差分析结果(5)确定概率值P(6)得出结论3、卡方检验(1)Crosstabs数据特征:单个或多个样本率的比较;加权数据有三列数据,注意将最后一列数字加权其不参与运算,仅是说明前两列数据的数量;不加权数据有两列;其中运算列中通常第一列表述组数,可以大于二;第二列表述阳性或阴性,通常为1或2;检验方法:ANALYZE-DESCRIPTIVE STASTICS-CROSS TABS-注意加选statistics里面的chi-square复选框得到检验结果后,根据样本量以及每框的数据选择查看的数据行详见课件如果要看有无线性趋势,直接查看linear行(2)非参数检验数据特征:如果针对的是明确两种检测疾病手段的差异性,那么两种手段的阳性结果都要被剔除,此时选择非参数检验具体理论不详检验方法:NONPARAMETIC TESTS- TWO RELATED SAMPLES- 勾选MC MEAR复选框检验步骤:(1)建立假设H0:;;;;来自同一样本; H1:;;;;(2)确定检验水准(3)计算统计量注意cross tabs检验依据样本量以及单元格数据大小选择适宜的数据读取(4)确定概率值P(5)得出结论4、秩和检验T检验以及方差分析中,不满足条件的资料,可以进行秩和检验即非参数检验获得结论参数检验以及非参数检验范围详见课件,依据特征可以分为4类(1)两独立样本数据特征:两列,类似独立样本T检验,一列表明组数,一列是数据检验方法:NONPARAMETIC TESTS-2 INDEPENDENT SAMPLES-复选框勾选KOMOLGOROV(2)两配对样本数据特征:两列,类似独立样本T检验,分别是不同组数据检验方法:NONPARAMETIC TESTS-2 related SAMPLES-复选框勾选wilcoxon (3)多组独立随机样本数据特征:两列, 类似单因素方差分析检验方法:NONPARAMETIC TESTS-k INDEPENDENT SAMPLES-复选框勾选Krushal—Wallis H(4)多组配对样本数据特征:多列,1列说明分组,其余多列都为数据检验方法:NONPARAMETIC TESTS-k related SAMPLES-复选框勾选Friedman检验步骤:(1)建立假设H0:;;;;来自同一样本; H1:;;;;(2)确定检验水准(3)计算统计量(4)确定概率值P(5)得出结论5、相关分析(1)制作散点图:数据特点:双变量,两列数据方法: graphs------scatter,可利用双击左键方式选择绘出相关直线(2)双变量正态分布且连续相关性分析:数据特点:双变量,两列计算方法:一定要检验正态性,首先对两者进行正态性检验,两个正态结果CORRELATE-BIVARIATE-勾选Pearson(3)等级资料相关性分析:数据特点:明显等级资料,三列一列是编号,但不入计算CORRELATE-BIVARIATE-勾选spearman(4)双变量非正态;;;数据特点:检验后非正态CORRELATE-BIVARIATE-勾选kendall检验步骤:非等级资料:(1)正态性检验(2)计算相关系数r(3)建立相关系数的假设检验H0:p=0, 两变量间无直线相关关系H1:p≠0,两变量间有直线相关关系(4)确定检验水准a=(5)计算统计量其实表中会直接给出(6)确定p值(7)得出结论等级资料:(1)计算相关系数r(2)建立相关系数的假设检验H0:p=0, H1:p≠0,(3)确定检验水准a=(4)计算统计量其实表中会直接给出(5)确定p值(6)得出结论6、一元线性回归需建立拟合方程是否需要正态检验、相关分析铺垫7、8、数据类型:类似相关分析计算方法:regression-linear-勾选好后,选enter模式拟合步骤:1)计算回归系数系数表内看,通常<12)对回归系数b进行假设检验系数表内,最后1列3)建立回归方程系数表内4)评价回归方程模型汇总表内R2xybxay bb1+=+=ΛΛ或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算方法:regression-linear-勾选好后,选enter模式
拟合步骤:
1)计算回归系数(系数表内看,通常<1)
2)对回归系数b进行假设检验(系数表内,最后1列)
3) 建立回归方程(系数表内)
4)评价回归方程(模型汇总表内R2)
检验步骤总结:
1、t检验
2、方差分析
3、卡方检验
4、秩和检验
5、相关分析
6、线性回归
1、t检验(要求数据来自正态总体,可能需要先做正态检验)
(1)单一样本t检验
数据特征:单一样本变量均数与某固定已知均数进行比较
方法:ANALYZE-COMPARE MEANS-ONE SAMPLE t TEST
(2)独立样本t检验
数据特征:两个独立、没有配对关系的样本(有专门变量表示组数)
方法:ANALYZE-COMPARE MEANS-INDEPENDENT SAMPLES t TEST
注意观察方差分析结果,判断查看的数据是哪一行!
(3)配对样本t检验
数据特征:两个不独立的,有配对关系的样本(没有专门变量表示组数)
方法:ANALYZE-COMPARE MEANS-PAIREDSAMPLES t TEST
不需要方差分析结果
检验步骤:
(1)正态性检验(有同学推荐,老师没有强调,但依据理论应进行)
(2)建立假设(H0:。。。。来自同一样本。H1:。。。。不来自同一样本)
(3)确定检验水准
(4)计算统计量(依据上面不同样本类型选择检验方法,注意独立样本t检验要先注明方差分析结果)
(5)确定概率值P
(6)得出结论
得到检验结果后,根据样本量以及每框的数据选择查看的数据行(详见课件)
如果要看有无线性趋势,直接查看linear行
(2)非参数检验
数据特征:如果针对的是明确两种检测疾病手段的差异性,那么两种手段的阳性结果都要被剔除,此时选择非参数检验(具体理论不详)
检验方法:NONPARAMETIC TESTS- TWO RELATED SAMPLES-勾选MC MEAR复选框
检验步骤:
(1)建立假设(H0:。。。。来自同一样本。H1:。。。。)
(2)确定检验水准
(3)计算统计量
(4)确定概率值P
(5)得出结论
5、相关分析
(1)制作散点图:
数据特点:双变量,两列数据
方法:graphs------scatter,可利用双击左键方式选择绘出相关直线
(2)双变量(正态分布且连续)相关性分析:
数据特点:双变量,两列
计算方法:一定要检验正态性,首先对两者进行正态性检验,两个正态结果
CORRELATE-BIVARIATE-勾选Pearson
(3)等级资料相关性分析:
数据特点:明显等级资料,三列(一列是编号,但不入计算)
CORRELATE-BIVARIATE-勾选spearman
(4)双变量(非正态。。。)
检验步骤:
(1)正态性检验(有同学推荐,老师没有强调,但依据理论应进行)
(2)建立假设(H0:。。。。来自同一样本。H1:。。。。不全来自同一样本或全不来自同一样本)
(3)确定检验水准
(4)计算统计量(依据上面不同样本类型选择检验方法,注意单因素方差分析要先注明方差分析结果)
(5)确定概率值P
(6)得出结论
2、方差分析(要求数据来自正态总体,可能需要先做正态检验)
(1)单因素方差分析
数据特征:相互独立、来自正态总体、随机、方差齐性的多样本(有专门变量表示组数,且组数大于2)
方法:ANALYZE-COMPARE MEANS-ONE WAY ANOVA
注意需要在options里面选择homogeneity variance test做方差分析
数据特点:检验后非正态
CORRELATE-BIVARIATE-勾选kendall
检验步)计算相关系数r
(3)建立相关系数的假设检验(H0:p=0,两变量间无直线相关关系H1:p≠0,两变量间有直线相关关系)
(4)确定检验水准(a=0.05)
(5)计算统计量(其实表中会直接给出)
(3)多组独立随机样本
数据特征:两列,类似单因素方差分析
检验方法:NONPARAMETIC TESTS-k INDEPENDENT SAMPLES-复选框勾选Krushal—Wallis H
(4)多组配对样本
数据特征:多列,1列说明分组,其余多列都为数据
检验方法:NONPARAMETIC TESTS-k related SAMPLES-复选框勾选Friedman
(1)两独立样本
数据特征:两列,类似独立样本T检验,一列表明组数,一列是数据
检验方法:NONPARAMETIC TESTS-2 INDEPENDENT SAMPLES-复选框勾选KOMOLGOROV
(2)两配对样本
数据特征:两列,类似独立样本T检验,分别是不同组数据
检验方法:NONPARAMETIC TESTS-2 related SAMPLES-复选框勾选wilcoxon
检验步骤:
(1)建立假设(H0:。。。。来自同一样本。H1:。。。。)
(2)确定检验水准
(3)计算统计量(注意cross tabs检验依据样本量以及单元格数据大小选择适宜的数据读取)
(4)确定概率值P
(5)得出结论
4、秩和检验
T检验以及方差分析中,不满足条件的资料,可以进行秩和检验即非参数检验获得结论(参数检验以及非参数检验范围详见课件),依据特征可以分为4类
3、卡方检验
(1)Crosstabs
数据特征:单个或多个样本率的比较。加权数据有三列数据,注意将最后一列数字加权(其不参与运算,仅是说明前两列数据的数量)。不加权数据有两列。其中运算列中通常第一列表述组数,可以大于二;第二列表述阳性或阴性,通常为1或2。
检验方法:ANALYZE-DESCRIPTIVE STASTICS-CROSS TABS-注意加选statistics里面的chi-square复选框
符合方差齐性才可以得出结论!(>0.1)
(2)双因素方差分析
数据特征:有三列数据,1列是主要研究因素,1列是配伍组因素,1列是研究数据。
方法:GENERAL LINEAR MODEL-UNIVARIATE(注意选择model里的custom,type是main effect,注意把两个因素选择为fixed factor)
(6)确定p值
(7)得出结论
等级资料:
(1)计算相关系数r
(2)建立相关系数的假设检验(H0:p=0,H1:p≠0,)
(3)确定检验水准(a=0.05)
(4)计算统计量(其实表中会直接给出)
(5)确定p值
(6)得出结论
6、一元线性回归(需建立拟合方程)(是否需要正态检验、相关分析铺垫?)
数据类型:类似相关分析
相关文档
最新文档