(完整版)高二数学选修2-2导数及其应用测试题(含答案),推荐文档
人教A版选修2-2高二数学测试(2-2,导数及其应用)答案.docx

东至三中2007-2008学年度高二数学单元试题(1)(选修2-2)导数及其应用测试题答案一、选择题:1-5:AABBD 6-10:DDCDC 11-12:CB二、填空题13.递增区间为:(-∞,13),(1,+∞)递减区间为(13-,1)(注:递增区间不能写成:(-∞,13)∪(1,+∞))14. 6 15.),2()1,(+∞⋃--∞ 16. 16 三、解答题17. 解;(1)∵曲线()y f x =上的点(1,(1))P f 处的切线方程为31y x =+,∴(1)3,(1)4f f '==。
而2()32f x x ax b '=++且函数()y f x =在2x =-时取极值,有(2)1240(1)323(1)14f a b f a b f a b c '-=-+=⎧⎪'=++=⎨⎪=+++=⎩,得2,4,5a b c ==-= (2)由题意知2()3f x x bx b '=-+,又函数()y f x =在区间[-2,1]上单调递增,所以()0f x '>在(-2,1)上恒成立。
即:163[(1)]1b x x >++--在(-2,1)上恒成立。
而1163[(1)]62(1)011x x x x++-≤-⨯⋅-=--,因此0b ≥18. 解:由函数的定义域可知, 210x -> 即11x -<<又222211()ln [ln(1)ln(1)]12x f x x x x +==+---,2222122()()21111x x x x f x x x x x -'=-=++-+- 令()0f x '>,得1x <-或01x <<综上所述,()f x 的单调递增区间为(0,1) 19.32500120075y x x =-+-(x N ∈)当x =产量为25件时,总利润最大。
高二数学选修2-2第一章 导数及其应用测试题及答案

(数学选修2-2) 第一章 导数及其应用一、选择题1.若()sin cos f x x α=-;则'()f α等于( ) A .sin α B .cos α C .sin cos αα+D .2sin α2.若函数2()f x x bx c =++的图象的顶点在第四象限;则函数'()f x 的图象是( )3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数;则实数a 的取值范围是( )A .),3[]3,(+∞--∞B .]3,3[-C .),3()3,(+∞--∞D .)3,3(-4.对于R 上可导的任意函数()f x ;若满足'(1)()0x f x -≥;则必有( )A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>5.若曲线4y x =的一条切线l 与直线480x y +-=垂直;则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ;导函数)(x f '在),(b a 内的图象如图所示; 则函数)(x f 在开区间),(b a 内有极小值点( )abxy)(x f y ?=OA .1个B .2个C .3个D .4个二、填空题1.若函数2f xx x c 在2x =处有极大值;则常数c 的值为_________;2.函数x x y sin 2+=的单调增区间为 。
3.设函数())(0)f x ϕϕπ=+<<;若()()f x f x '+为奇函数;则ϕ=__________ 4.设321()252f x x x x =--+;当]2,1[-∈x 时;()f x m <恒成立;则实数m 的 取值范围为 。
高二数学选修2-2导数及其应用测试题(含答案)

高二数学选修2-2导数及其应用测试题一、 选择题(本大题共12小题,每小题5分,共60分)1.设xx y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .xx x x sin )1(sin 22--- 2.设1ln)(2+=x x f ,则=)2('f ( ). A .54 B .52 C .51 D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在4.曲线3x y =在点)8,2(处的切线方程为( ).A .126-=x yB .1612-=x yC .108+=x yD .322-=x y 5.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( )A .4B .5C .6D .不确定6.在R 上的可导函数c bx ax x x f +++=22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则12--a b 的取值范围是( ). A .)1,41( B .)1,21( C .)41,21(- D .)21,21(-7.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为( ). A .]21,21[2πe B .)21,21(2πe C .],1[2πe D .),1(2πe 8.076223=+-x x 在区间)2,0(内根的个数为 ( )A .0B .1C .2D .39.1. 已知函数)(x f y =在0x x =处可导,则hh x f h x f h )()(lim 000--+→等于 ( )A .)(0/x fB .2)(0/x fC .-2)(0/x fD .010.如图是导函数/()y f x =的图象,那么函数()y f x =在下面哪个区间是减函数( )A. 13(,)x xB. 24(,)x xC.46(,)x xD.56(,)x x第Ⅱ卷(非选择题,共90分)二、填空题(每小题4分,共16分。
(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
高中数学选修2-2第一章《导数及其应用》单元测试(一)

A. y 2x 1
B. y 3x 2
C. y 2x 3
D. y x 2
7.函数 f (x) e ln x x 在 (0, 2e] 上的最大值为
A.1 e C. e
B. 1 D. 0
8.若函数 f (x) x(x c) 2 在 x 2 处取得极大值,则常数 c
A. 2 C. 2 或 6
数学选修 2-2 第一章《导数及其应用》单元测试
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项
是符合题目要求的)
1.定积分 2 (ex 2x)dx 的值为 0
A.1
B. e2
C. e2 3
D. e2 4
2.某物体的位移 s (米)与时间 t (秒)的关系式为 s t 2 t ,则该物体在 t 2 时的瞬时速度为
A. 2 米/秒 C. 5 米/秒
B. 3 米/秒 D. 6 米/秒
3.已知曲线 y x2 上一点 P 处的切线与直线 2x y 1 0 平行,则点 P 的坐标为
A. (1,1)
B. (1,1)
C. (2, 4)
D. (3, 9)
4.已知 f (x) x2 2x f (1) ,则 f (3)
11.若函数 f (x) lnx ax 1 在[1, ) 上是单调函数,则实数 a 的取值范围为 x
A. (, 0] [1 , ) 4
B. (, 1 ] [0, ) 4
C.[ 1 , 0] 4
D. (,1]
12.已知函数 f (x) ax 1 (a 1) ln x 1 在 (0,1] 上的最大值为 3 ,则实数 a x
即 2x y 1 0 .(6 分)
【高二】选修2 2第一章 导数及其应用测试题及答案

【高二】选修2 2第一章导数及其应用测试题及答案【高二】选修2-2第一章导数及其应用测试题及答案(数学选修2-2)第一章导数及其应用一、1.如果是,则等于()a.b.c.d.2.如果函数图像的顶点位于第四象限,则函数图像为()3.已知函数在上是单调函数,则实数的值范围为()a.b.c、 d。
4.对于上可导的任意函数,若满足,则必有()a、 b。
c.d.5.如果曲线的一条切线与直线垂直,则方程为()a.b.c.d.6.函数的定义域是一个开区间,包含导数函数的图像如图所示,则函数在开区间内有极小值点()a、一个b.个c、一个d.个2、头衔1.若函数在处有极大值,则常数的值为_________;2.函数的单调递增区间为。
3.设函数,若为奇函数,则=__________4.假设此时常数成立,则实数为取值范围为。
5.对于正整数,将切线与曲线处轴的交点的纵坐标设置为数列的前项和的公式是三、回答问题1.求函数的导数。
2.找到函数的值范围。
3.已知函数在与时都取得极值(1)函数的值与单调区间(2)若对,不等式恒成立,求的取值范围。
4.已知是否有实数满足以下两个条件:(1)它是上的减函数和上的增函数;(2)的最小值是,如果存在,找到它,如果不存在,解释原因(数学选修2-2)第一章导数及其应用参考答案一、ww1.a2.a对称轴,直线过第一、三、四象限3.B成立于横城,4.c当时,,函数在上是增函数;当时,,在上是减函数,故当时取得最小值,即有不得不5.a与直线垂直的直线为,即在某一点的导数为,而,所以在处导数为,此点的切线为6.A最小值点应先减小后增大,即二、题1.在以下情况下取最小值:2.对于任何实数都成立3.要使为奇函数,需且仅需,即:。
再一次,所以只能如此。
4.时,5.,令,求出切线与轴交点的纵坐标为,所以,则数列的前项和三、回答问题1.解:。
2.解:函数的定义域为,在那个时候,也就是函数的增加间隔,在那个时候,所以值域为。
新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作1)眼神关注客人,当客人距3米距离侯客迎询问客户送客户要求注意事项时,应主动跨出自己的位置迎宾,然后15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课标⾼⼆数学选修2-2第⼀章导数及其应⽤测试题(含答案)新课改⾼⼆数学选修2-2第⼀章导数及其应⽤测试题第Ⅰ卷(选择题,共40分)⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分)1.设xx y sin 12-=,则='y ().A .x x x x x 22sin cos )1(sin 2---B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .xx x x sin )1(sin 22---2.设1ln )(2+=x x f ,则=)2('f ().A .54 B .52 C .51 D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为().A .4-B .0C .8D .不存在 4.曲线3x y =在点)8,2(处的切线⽅程为().A .126-=x yB .1612-=x yC .108+=x yD .322-=x y 5.满⾜()()f x f x '=的函数是A . f (x )=1-x B. f (x )=x C . f (x )=0D . f (x )=16.曲线34y x x =-在点(-1,-3)处的切线⽅程是A . 74y x =+ B. 72y x =+ C. 4y x =- D. 2y x =-7.若关于x 的函数2m n y mx -=的导数为4y x '=,则m n +的值为 A. -4 B. 1- C. D . 48.设ln y x x =-,则此函数在区间(0,1)内为A .单调递增, B.有增有减 C.单调递减, D.不确定 9.函数3()31f x x x =-+在闭区间[-3,0]上的最⼤值、最⼩值分别是A . 1,-1 B. 3,-17 C. 1,-17 D. 9,-1910.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所⽰,则函数)(x f 在开区间),(b a 内有极⼩值点 A 1个B 2个C 3个D 4个第Ⅱ卷(⾮选择题,共60分)⼆、填空题(每⼩题5分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 2 + 1 高二数学选修 2-2 导数及其应用测试题
一、 选择题(本大题共 12 小题,每小题 5 分,共 60 分)
1 - x 2
1. 设 y =
sin x
,则 y ' = (
).
- 2x sin x - (1- x 2 ) cos x
A .
sin 2 x - 2x sin x + (1 - x 2 )
-
2x sin x + (1- x 2 ) cos x
B .
sin 2 x
- 2x sin x - (1 - x 2 )
C.
D .
sin x sin x 2.设 f (x ) = ln ,则 f '(2) = ( ).
4 2 1
3 A.
B .
C .
D .
5
5
5
5
2x - 3 f (x ) 3.已知 f (3) = 2, f '(3) = -2 ,则lim
x →3
x - 3
的值为( ).
A. - 4
B. 0
C . 8
D .不存在
4. 曲线 y = x 3 在点(2,8) 处的切线方程为( ).
A . y = 6x - 12 C . y = 8x + 10
B . y = 12x - 16 D . y = 2x - 32
5. 已知函数 f (x ) = ax 3 + bx 2 + cx + d 的图象与 x 轴有三个不同交点(0,0),(x 1
,0) , (x 2 ,0) ,且 f (x ) 在 x = 1, x = 2 时取得极值,则 x 1 ⋅ x 2 的值为( )
A .4
B .5
C .6
D .不确定
6. 在 R 上的可导函数 f (x ) =
1 x 3 + 1 ax 2
+ 2bx + c ,当 x ∈ (0,1) 取得极大值,当 3 2 x ∈ (1,2) 取得极小值,则 b - 2
的取值范围是( ).
a - 1
A. ( 1 ,1)
B. ( 1 ,1)
C. (- 1 , 1 )
D. (- 1 , 1 )
4 2
2 4 2 2 7. 函数 f (x ) = 1 e x (sin x + cos x ) 在区间[0,
]的值域为( ).
2 1 1 2
1 1 A .[ ,
2 e 2
] 2
B . ( , 2 2 e 2 )
C .[1, e 2 ]
D .(1, e 2 )
8. 2x 3 - 6x 2
+ 7 = 0 在区间(0,2) 内根的个数为 (
)
A .0
B .1
C .2
D .3
9.1.
已知函数 y = f (x ) 在 x = x 处可导,则lim
f (x 0 + h ) - f (x 0 - h )
等于
(
)
A. f / (x 0 )
B. 2 f / (x 0 )
C .-2 f / (x 0)
h →0
h
D .0
10.如图是导函数 y = 是减函数( ) f / (x ) 的图象,那么函数 y = f (x ) 在下面哪个区间 A. (x 1 , x 3 ) B. (x 2 , x 4 )
C. (x 4 , x 6 )
D. (x 5 , x 6 )
第Ⅱ卷(非选择题,共 90 分)
二、填空题(每小题 4 分,共 16 分。
请将答案填在答题卷相应空格上。
)
13.曲线 y = x 3 在点(a , a 3 )(a ≠ 0) 处的切线与 x 轴、直线 x = a 所围成的三角形的面积为
1
,则 a =。
6
x
15、函数 f (x ) =
+ cos x 2
x ∈ (0,2) 的单调递减区间为
8. f (x ) = ax 3 + 3x 2 + 2 ,若 f '(-1) = 4 ,则 a 的值等于
9.函数 f(x)=3x-4x 3
(x ∈[0,1])的最大值是
三、解答题:(本大题共 5 小题,共 74 分,解答应写出文字说明,证明过程或演算步骤) (17)(本小题满分 10 分)已知函数 f (x ) = x 3 + ax 2 + bx + c ,当 x = -1 时, f (x ) 的极大值为 7;当 x = 3 时, f (x ) 有极小值.求(1) a , b , c 的值;(2)函数 f (x ) 的极小值.
(18)(本小题满分 12 分)已知函数 f (x ) = ax 3 + bx 2 - 3x 在 x = ±1处取得极值.
(1)讨论 f (1) 和 f (-1) 是函数 f (x ) 的极大值还是极小值; (2)过点 A (0,16) 作曲线 y = f (x ) 的切线,求此切线方程.
(19)(本小题满分14 分)
设0 ≤x ≤a ,求函数f (x) = 3x 4 - 8x3 - 6x 2 + 24x 的最大值和最小值。
(21)(本小题满分12 分)已知函数f (x) =-x3 + 3x 2 + 9x +a.
(1)求f (x) 的单调递减区间;
(2)若f (x) 在区间[-2,2]上的最大值为 20,求它在该区间上的最小值(22)(本小题满分14 分)
已知函数f (x) = ln x, g(x) =1
ax 2 +bx, a ≠ 0 。
2
(1)若b = 2 ,且函数h(x) =f (x) -g(x) 存在单调递减区间,求a 的取值范围。
(2)设函数f (x) 的图象C1与函数g(x) 的图象C2交于点P, Q ,过线段PQ 的中点作x 轴的垂线分别交C1、C2于点M , N 。
证明:C1在点M 处的切线与C2在点N 处的切线不平行。
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。