同底数幂的乘法公开课课件

合集下载

14.1.1同底数幂的乘法公开课课件

14.1.1同底数幂的乘法公开课课件

5
5
(乘方的意义)
(3)
= a鬃 a a鬃 a a?a (乘法结合律) 6 =a (乘方的意义)
= ( a鬃 a) ×( a a鬃 a a)
a ×a
2
4
(乘方的意义)
这几道题有什么共同的特点呢?计算的结果有什么规
律吗?
1 2 2
3 2
4 3
2
7
(2)5 5 5
2 4
5
(3)a a a
3
(1) 23 ×24
=(2 ×2 ×2) ×(2 ×2 ×2 ×2) (乘方的意义) = 2 ×2 ×2 ×2 × 2 ×2 ×2 (乘法结合律) =27 (乘方的意义)
(2)5 5 (5 5) (5 5 5) (乘方的意义)
2 3
5 5 5 5 5 (乘法的结合律)
八年级 数学
14.1.1同底数幂的乘法
a a a
m n
m n
计算:a a
3
a a a a
5
4
5
9
想一想: 当三个或三个以上同底数幂相乘时,是 否也 具有这一性质呢? 怎样用公式表示?
公式 : a a a
m n p
2 3
a
m n p (当m、n、p都是正
a2 a 2 解: 3 3 3 2 9 18
3
a b
3 3 2 5 10
a b
点播:同底数幂乘法公式的逆用也很重要
八年级 数学
14.1.1同底数幂的乘法
a a a
m n
m n
深入分析----相信自己 m m n n (1)已知:a = 5,a 10.求a 的值.

同底数幂的乘法课件公开课

同底数幂的乘法课件公开课

幂的乘法运算性质
幂的乘法规则:同底数幂相乘,底数不变,指数相加。
幂的乘法运算性质在数学中的重要性:是数学运算的基本规则之一,是幂运算的基础。 幂的乘法运算性质的应用:在解决实际问题、数学证明和科学计算中都有广泛的应用。
幂的乘法运算性质的证明:可以通过指数法则和代数运算进行证明。
幂的乘法运算实例
幂的乘法规则:同底数幂相乘,底数不变,指数相加 运算实例:a^m * a^n = a^(m+n) 运算实例:x^2 * x^3 = x^(2+3) = x^5 运算实例:y^4 * y^6 = y^(4+6) = y^10
在计算机科学中的应用
数据存储:同底数幂的乘法用于快速计算大数乘积,例如在处理大数据时,可以提高计算效率。
加密算法:同底数幂的乘法在RSA等加密算法中起到关键作用,保障信息安全。
图形处理:在计算机图形学中,同底数幂的乘法用于实现缩放、旋转等变换,增强图像效果。
人工智能:机器学习算法中,同底数幂的乘法用于权重更新和模型训练,提高人工智能的准确 性和效率。
幂是一个数学运算,表示一个数自 乘若干次
同底数幂的乘法规则是指底数不变, 指数相加
添加标题
添加标题
幂的指数表示自乘的次数
添加标题
添加标题
幂的运算法则是数学中的重要概念 之一
同底数幂的乘法规则
定义:同底数幂相乘,底数不变,指数相加 公式:a^m * a^n = a^(m+n)(a≠0,m、n均为正整数) 推导过程:利用指数的性质和运算律进行推导 应用:在数学、物理等学科中都有广泛应用
添加标题
添加标题
幂的乘法运算中,指数为小数时, 底数相乘
Part Five
同底数幂的乘法应 用

同底数幂的乘法PPT公开课获奖课件百校联赛一等奖课件

同底数幂的乘法PPT公开课获奖课件百校联赛一等奖课件

变式训练:
填空:
(1) x4· x5 = x9 (2) (-y)4 · (-y)7 =(-y)11 (3) a2m · am =a3m (4) (x-y)2 · (x-y)3 =(x-y)5
我思,我进步
填空: (1) 8 = 2x,则 x = 3 ;
23 (2) 8× 4 = 2x,则 x = 5 ;
观察讨论
请同学们观察下面各题左右两边,底数、指数有什么关 系?
103 ×102 = 10( 5 ) = 10(3+2 ); 23 ×22 = 2( 5 ) = 2( 3+2 );
a3× a2 = a( 5 ) = a( 3+2) 。
猜测: am ·an=
? (当m、n都是正整数)
分组讨论,并尝试证明你旳猜测是否正确.
义务教育课程原则试验教科书(沪科版)数学七年级下册 《8.1幂旳运算》
8.1.1 同底数幂旳乘法
问题情景
一种电子计算机每秒可进行1014次运算,它工作103秒可 进行多少次运算?
列式:1014×103
怎样计算 1014×103呢?
知识回忆
1.什么叫乘方? 求几种相同因数旳积旳运算叫做乘方。
指数
底数 an =
(4) b2m • b2m+1 = b2m+2m+1 = b4m +1.
拓展延伸
例2.计算: (1) -y ·(-y)2 ·y3
解:原式= -y ·y2 ·y3 = -y1+2+3=-y6
(2) (x+y)3 ·(x+y)4
am · an = am+n
公式中旳a可代表 一种数、字母、式 子等。
解: (x+y)3 ·(x+y)4 =(x+y)3+4 =(x+y)7

《同底数幂的乘法》公开课一等奖课件

《同底数幂的乘法》公开课一等奖课件

根据幂的定义和乘法运算的性质,我们可 以推导出同底数幂的乘法规则为 a^m*a^n=a^(m+n)。
同底数幂的乘法规则的公式表达
同底数幂的乘法公式 a^m*a^n=a^(m+n)。
公式中各符号的含义
a表示底数,m和n表示指数,*表示乘法运算,^表示乘方运算。
公式的适用范围
适用于底数相同、指数为正整数的幂的乘法运算。
心。
04
CATALOGUE
课程总结与展望
本节课的总结
重点内容回顾
回顾了同底数幂的乘法规 则的定义、性质和应用, 以及如何利用这些规则进 行计算。
课堂互动分析
对课堂互动环节进行了评 估,包括学生的参与度、 提问和回答的质量等。
教学效果评估
通过课堂练习和课后作业 的完成情况,对教学效果 进行了评估,并提出了改 进建议。
练习题目的选取与解析
01
02
03
04
基础练习
选取涉及同底数幂乘法基础知 识的题目,帮助学生巩固基本
概念。
综合运用
设计涉及多个知识点的题目, 培养学生综合运用知识的能力

难度分级
根据学生水平,提供不同难度 的题目,满足不同层次学生的
需求。
题目解析
教师详细解析每道题目,让学 生明确解题思路和方法,提高
同底数幂的乘法规则的应用实例
计算(2^3)*(2^4)
根据同底数幂的乘法规则,可以将其化简为2^(3+4)=2^7。
解释物理现象
在物理学中,同底数幂的乘法规则可以用来描述物理量之间的关系,比如速度与时间的关 系v=s/t和压强与压力的关系p=F/S。
解决实际问题
在解决实际问题时,同底数幂的乘法规则可以用来计算一些指数型的数据,比如人口增长 、放射性物质的衰变等。

同底数幂的乘法课件(公开课)-PPT

同底数幂的乘法课件(公开课)-PPT

(2)y ·y2 ·y3
解:(1)23×24×25=23+4+5=212
(2)y ·y2 ·y3 = y1+2+3=y6
➢思考题
2.计算:
(x+y)3 ·(x+y)4 .
公式中的 a 可代表
一个数、字母、式
子等.
a3 · a4 = a3+4
解:
(x+y)3 ·(x+y)4 = (x+y)3+4 =(x+y)7
n个a
幂的意义:
同底数幂的乘法性质:
m
n
m+n
m
n
p
a ·a =a
(m,n都是正整数)
a ·a ·a = a
m+n+p
(m、n、p都是正整数)
“特殊→一般→特殊”
方法
例子
公式
应用
布置作业
教科书96页练习(2)(4);
习题14.1第1(1)(2)题 .
通过对本节课的
学习,你有哪些收获
呢?
2.填空:
(3)x5 ·x5 = x25 (× )
(4)y·y5 = y5 ( × )
x5 ·x5 = x10
y ·y5 =y6
ቤተ መጻሕፍቲ ባይዱ
3
10
7
y
3、填空: y • _______ y 5 , x 3 • _______
x .
x
2
探索并推导同底数幂的乘法的性质
a m a n a m n (m,n 都是正整数)表述了两个
次运算,它工作103 s 共进行
多少次运算?
15
列式:10 ×10

14.1.1同底数幂的乘法 课件(共20张PPT)

14.1.1同底数幂的乘法  课件(共20张PPT)
14.1.1同底数幂的乘法
人教版 八年级数学上
学习目标
1.理解并掌握同底数幂的乘法法则.(重点) 2.能够运用同底数幂的乘法法则进行相关计算.(难点) 3.通过对同底数幂的乘法运算法则的推导与总结,提升自
身的推理能力和计算能力.
温故旧知
指数

an = a·a·a…(表示n个a相乘)
底数 n个相同因数的积的运算叫做乘方,乘方的结果叫幂.
(2) (a-b)3·(a-b)3=(__a_-_b_)_6_;
(3) -a6·(-a)2=___-_a_8__; (4) y4·y3·y2·y =__y_1_0___.
7.填空: (1)x·x2·x( 6 )=x9;
(2)xm·( x4m )=x5m; (3)16×4=2x,则x=( 6 ).
实战演练
典例精析
例1 计算: (1)x2 · x5 ; (3)(-2) × (-2)4 × (-2)3;
(2)a · a6; (4) xm · x3m+1.
解:(1) x2 · x5= x2+5 =x7
(2)a · a6= a1+6 = a7;
(3)(-2) × (-2)4 × (-2)3= (-2) 1+4+3 = (-2)8 = 256;
8.计算下列各题: (1)(2a+b)2n+1·(2a+b)4; (3) (-3)×(-3)3 ×(-3)3;
(2)(a-b)5·(b-a)4; (4)-a3·(-a)2·(-a)3.
解:(1)(2a+b)2n+1·(2a+b)4=(2a+b)2n+5; (2)(a-b)5·(b-a)4=(a-b)9; (3) (-3)×(-3)3 ×(-3)3=-37; (4)-a3·(-a)4·(-a)3=a10.

《同底数幂的乘法》课件

《同底数幂的乘法》课件
《同底数幂的乘法》课件
2023-10-27
目 录
• 同底数幂乘法概述 • 同底数幂乘法规则与技巧 • 同底数幂乘法在数学中的应用 • 同底数幂乘法的实际应用 • 同底数幂乘法的扩展知识
01
同底数幂乘法概述
定义与公式
定义
同底数幂的乘法是指将相同的底数和指数相乘。
公式
a^m × a^n = a^(m+n)(其中a为底数,m和n为指数)。
在代数中的应用
整式乘法
同底数幂的乘法是整式乘法的基础,可以用于解决整式的乘法问 题,如求解代数式的值、化简多项式等。
幂的运算
同底数幂的乘法可以用于求解幂的运算,如求解$x^n \times x^m$的值,以及求解$(a^m)^n$的值等。
指数运算
同底数幂的乘法可以用于求解指数运算,如求解$a^n \times a^m$的值,以及求解$(a^m)^n$的值等。
运算性质
交换律
同底数幂乘法满足交换律,即 a^m × a^n = a^n × a^m。
结合律
同底数幂乘法满足结合律,即 (a^m × a^n) × a^p = a^(m+n) × a^p = a^(m+n+p)。
指数分配律
同底数幂乘法满足指数分配律 ,即a^(m+学知识的联系
与指数幂的定义
同底数幂的乘法是建立在指数幂的基础上的 ,因此需要先理解指数幂的概念和运算规则 。
与乘法的结合律和分配律
同底数幂的乘法满足结合律和分配律,与普 通乘法有相似之处,但也有其独特性质。
与其他数学运算的关系
与除法
同底数幂的除法可以看作是乘法的逆运算 ,满足相同的运算规则。
规则详解
总结词:了解规则

1.1同底数幂的乘法PPT课件(华师大版)

1.1同底数幂的乘法PPT课件(华师大版)
2.同底数幂的乘法法则对三个或三个以上的同底数幂的 乘法同样适用,底数可以是单项式,也可以是多项式.
3.同底数幂的乘法法则可以正用,也可以逆用,am+n = am·an (m,n都是正整数).
解:(1)103×104 =103+4 =107.
(2)a ·a3 = a1+3 = a4.
(3)a • a3 • a5 = a1+3+5 = a9 .
例2 计算:(1)(x-y)3·(y-x)5;(2)(x-y)3·(x-y)2·(y-x); (3)(a-b)3·(b-a)4.
导引:先将不是同底数的幂转化为同底数的幂,再运用法则计算. 解:(1)(x-y)3·(y-x)5=(x-y)3·[-(x-y)5] =-(x-y)3+5=-(x-y)8; (2)(x-y)3·(x-y)2·(y-x)=(x-y)3·(x-y)2·[-(x-y)] =-(x-y)3+2+1=-(x-y)6; (3)(a-b)3·(b-a)4=(a-b)3·(a-b)4 =(a-b)3+4=(a-b)7.
总结
底数互为相反数的幂相乘时,可以利用幂确定符号 的方法先转化为同底数幂,再按法则计算,统一底 数时尽可能地改变偶次幂的底数,这样可以减少符 号的变化.
1 下列各式能用同底数幂的乘法法则进行计算的是( ) A.(x+y)2·(x-y)3 B.(-x-y)(x+y)2 C.(x+y)2+(x+y)3 D.-(x-y)2·(-x-y)3
知识点 1 同底数幂的乘法法则
试一试
根据幂的意义填空: (1)23×24 =(2×2×2)×(2×2×2×2)
=2( ) ; (2)53×54 =_____________________
=5( ) ; (3) a3 • a4 =____________________
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)
(23 )2 =
23 ×
23 =2(
6
)
(2) (am )n = a(
) (m、n为正整数)
八年级 数学
14.1.1同底数幂的乘法
am · n = am+n a
八年级 数学
14.1.1同底数幂的乘法
am · n = am+n a
小结:
今天,我们学到了什么?
同底数幂的乘法: am · an = am+n (m、n为正整数)
同底数幂相乘,底数不变,指数相加。
m a
·
n a
·
p a
( m、n、p为正整数)
=
m+n+p a
祝大家马到成功!
(×) (×)
④ a3+a3 = a6
八年级 数学
14.1.1同底数幂的乘法
am · n =am+n a
深入挖潜(1)----想一想 计 算:(结果写成幂的形式)
公式中 的a可代 表一个 数、字 母、式 子等.
① (- 2)4×(- 2)5 = (-2)9
②( ③ )
3
×( )
2= (
)
5
2 (a+b)
(2) (-2)4 = (-2)×(-2)×(-2)×(-2)
(1) 23 ×24
=(2 ×2 ×2) ×(2 ×2 ×2 ×2) (乘方的意义) = 2 ×2 ×2 ×2 × 2 ×2 ×2 (乘法结合律) =27 (乘方的意义)
(2) 53×54 =(5 × 5 × 5) ×(5 × 5 × 5 × 5) (乘方的意义) =5×5×5×5×5×5×5 (乘法的结合律)
想一想: 当三个或三个以上同底数幂相乘时,是 否也 具有这一性质呢? 怎样用公式表示?

am·n·p = am+n+(m、n、p都是正整数) a a
p
八年级 数学
14.1.1同底数幂的乘法
am · n = am+n a
中国奥委会为了把2008年北京奥运会办 成一个环保的奥运会,做了一个统计,一平 方千米的土地上,一年内从太阳得到的能量 相当于燃烧108千克煤所产生的能量。那么 105平方千米的土地上,一年内从太阳得到 的能量相当于燃烧煤多少千克?
=57 (乘方的意义)
(3) a3 · a4 =(a · a · a) (a · a · a · a) (乘方的意义) =a·a·a·a·a·a·a =a7 (乘法结合律) (乘方的意义)
这几道题有什么共同的特点呢?计算的结果有什么规 律吗?
(1)23 ×24=27 (2)53×54 =57 (3)a3 · a4 =a7
108
×105=
8+5= 10
13 10
八年级 数学
14.1.1同底数幂的乘法
am · n = am+n a
牛刀小试
(1)107 ×104 ;(2)x2 · 5 x 1.计算: 解:(1)107 ×104 =107 + 4= 1011 (2)x2 · 5 = x2 + 5 = x7 x
y y 2.计算:(1)23×24×25 (2)y · 2 · 3
如果把(3)中指数3、4换成正整数m、n,你能得 出am ·an的结果吗?
(1)23 ×24=27 (2)53×54 =57 (3)a3 · a4 =a7 (4)am ·an =
猜想:
am · n= am+n (当m、n都是正整数) a
(乘方的意义) am · n = a (aa…a) (aa…a)
m个a
n个a
(乘法结合律)
= aa…a
(m+n)个a
=am+n
(乘方的意义)
am · n = am+n a 即:
(当m、n都是正整数)
真不错,你的猜想是正确的!
八年级 数学
14.1.1同底数幂的乘法
同底数幂的乘法公式:
m a n= · a
我们可以直接利 请你尝试用文字概 括这个结论。 用它进行计算.
致我亲爱的同学们
天空的幸福是穿一身蓝 森林的幸福是披一身绿
阳光的幸福是如钻石般耀眼
老师的幸福是因为认识了你们
愿你们努力进取,永不言败
新乡市外国语学校 数学老师 王三朝赠
情景导入
中国奥委会为了把2008年北京奥运会办成一 个环保的奥运会,做了一个统计:一平方千米的 土地上,一年内从太阳得到的能量相当于燃烧108 千克煤所产生的能量。那么105平方千米的土地上,
m+n (当m、n都是正整数) a
运算方法(底不变、指相加)
同底数幂相乘,底数 不变,指数相加 。
运算形式 (同底、乘法)
幂的底数必须相同, 相乘时指数才能相加.
如 43×45= 43+5 =48
八年级 数学
14.1.1同底数幂的乘法
am · n = am+n a
a ·a3 ·a5 = a4 ·a5 =a9
一年内从太阳得到的能量相当于燃烧多少千克煤?
108 ×105
知识回顾
①什么叫乘方?
求几个相同因数的积的运算叫做乘方。
2、a·a·a·a·a = a( 5 ) 3、a · a · · · a = a( n ) ···
n个
1、2×2 ×2=2( 3
)
知识回顾
②乘方的结果叫做什么?

n a
底数
指数
说出am的乘法意义,并将下列各式写成 乘法形式: (1) 108 = 10×10×10×10×10×10×10×10
5 ·(a+b)
=(a+b)7
八年级 数学
14.1.1同底数幂的乘法
am · n = am+n a
深入挖潜(2)----算一算
计算:(结果写成幂的形式)
23 + 23= 2 × 23 = 24
34 × 27= 34 × 33 =37 b2· b3+b · b4 = b5 + b5 =2b5
八年级 数学
解:(1)23×24×25=23+4+5=212
(2)y · 2 · 3 = y1+2+3=y6 y y
八年级 数学
14.1.1同底数幂的乘法
am · n = am+n a
辩一辩 判断下列计算是否正确,并简要说明理由:
① a · a2= a2
② a+a2 = a3 ③ a3 · a3= a9
(×) (×)
14.1.1同底数幂的乘法
am · n = am+n a
深入拓展(1)----议一议
已知:am=2, an=3.
m+n 求a
=?.
=2 × 3=6
解: am+n = am · an
八年级 数学
14.1.1同底数幂的乘法
am · n = am+n a
深入拓展(2)----议一议
根据乘方的意义及同底数幂的乘法填空:
相关文档
最新文档