八年级上册数学月考试题
江苏省连云港市灌南县2024-2025学年八年级上学期第一次月考数学试卷(含答案)

2024-2025学年度第一学期学业质量阶段性检测八年级数学试题(A 卷)(满分分值:150分 考试时间:100分钟)一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上)1.《国语・楚语》记载:“夫美也者,上下、内外、大小、远近皆无害焉,故曰美.”这一记载充分表明传统美的本质特征在于对称和谐。
下列四个图案中,是轴对称图形的是( )A. B. C. D.2.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.有下列说法:(1)线段是轴对称图形;(2)成轴对称的两个图形中,对应点的连线被对称轴垂直平分;(3)成轴对称的两个图形一定全等;(4)轴对称图形的对称点一定在对称轴的两侧。
其中正确的有( )A.1个B.2个C.3个D.44.如图,已知,那么添加下列一个条件后,不能判定的是( )A. B. C. D.5.如图,若,四个点B 、E 、C 、F 在同一直线上,,,则CF 的长是( )A.2 B.3 C.5 D.76.如图,两个三角形是全等三角形,x 的值是( )A.30B.45C.50D.857.如图,在中,,平分交边BC 于点,若,,则的面积是()AB AD =ABC ADC ≅△△CB CD=BAC DAC ∠=∠BCA DCA ∠=∠90B D ︒∠=∠=ABC DEF ≅△△7BC =5EC =ABC △90C ∠=︒AD BAC ∠D 3CD =8AB =ABD △A.36B.24C.12D.108.如图,已知,为的平分线,、、…为的平分线上的若干点.如图1,连接BD 、CD ,图中有1对全等三角形;如图2,连BD 、CD 、BE 、CE ,图中有3对全等三角形;如图3,连接BD 、CD 、BE 、CE 、BF ,CF ,图中有6对全等三角形,依此规律,第2025个图形中全等三角形的对数是( )图1 图2 图3A.2049300 B.2051325 C.2068224 D.2084520二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如图,,则AD 的对应边是________。
人教版八年级上册数学月考考试卷【含答案】

人教版八年级上册数学月考考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
江西2024-2025学年八年级上学期第一次月考数学试题(解析版)

江西省2024-2025学年八年级上学期第一次月考数学试题一、单选题1. 在ABC 中,已知3AC =,4BC =,则AB 的取值范围是( )A. 68AB <<B. 17AB <<C. 214AB <<D. 114AB <<【答案】B【解析】【分析】根据三角形三边关系求解.【详解】解: 在ABC 中,3AC =,4BC =, ∴BC AC AB BC AC −<<+,∴4343AB −<<+,即17AB <<.故选B .【点睛】本题考查三角形三边关系的应用,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.2. 如图,△ABC ≌△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A. 30°B. 100°C. 50°D. 80°【答案】C【解析】 【分析】根据全等三角形的性质得到∠C 的度数,然后利用三角形内角和定理计算即可.【详解】解:∵△ABC ≌△ABD ,∴∠C =∠ADB =100°,∴∠BAC =180°-100°-30°=50°,故选C.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知全等三角形的对应边相等,对应角相等是解题关键.3. 如图,在ABC 中,AB AC =,AE AF =,AD BC ⊥,垂足为D .则全等三角形有( )A. 2组B. 3组C. 4组D. 5组【答案】C【解析】 【分析】本题主要考查了全等三角形的性质和判定,先根据HL 证明Rt ADE ≌Rt ADF ,可得DE DF =,进而得出Rt ABD △≌Rt ACD △,可得BD CD =,即可得出BE CF =,再根据SSS 证明ABE ≌ACF △,ACE △≌ABF △,可得答案.【详解】∵AE AF =,AD AD =,∴Rt ADE ≌Rt ADF ,∴DE DF =.∵AB AC =,AD AD =,∴Rt ADB △≌Rt ADC ,∴BD CD =,∴B D D E C D D F −=−,即BE CF =.∵AB AC =,AE AF =,∴ABE ≌ACF △.∵B D D F C D D E +=+,即BF CE =.∵AB AC =,AE AF =,∴ABF △≌ACE △.全等三角形有4组.故选:C .4. 如图,在ABC 中,,ABC ACB ∠∠的平分线交于点O ,连接AO ,过点O 作,,OD BC OE AB ABC ⊥⊥△的面积是16,周长是8,则OD 的长是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】本题主要考查了角平分线的性质,先过点O 作OF AC ⊥于点F ,然后根据角平分线的性质,证明OE OF OD ==,然后根据ABC 的面积AOB =△的面积BOC +△的面积AOC +△的面积,求出答案即可.【详解】如图所示:过点O 作OF AC ⊥于点F ,OB ,OC 分别是ABC ∠和ACB ∠角平分线,OD BC ⊥,OE AB ⊥,OF AC ⊥,OE OD OF ∴==,16ABC AOB BOC AOC S S S S =++= , ∴11116222AB OE BC OD AC OF ⋅+⋅+⋅=, 11116222AB OD BC OD AC OD ⋅+⋅+⋅=, 1()162OD AB BC AC ++=, 8++= AB BC AC ,4OD ∴=,故选:D .5. 如图,ABC ∆中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则( )的A. 3180αβ+°B. 2180αβ+°C. 390αβ−=°D. 290αβ−=°【答案】D【解析】 【分析】根据三角形外角等于不相邻两个内角的和,直角三角形两锐互余解答【详解】解:AB BC = ,A C ∴∠=∠,A αβ−∠= ,90C α+∠=°,290αβ∴=°+,290αβ∴−=°,故选:D .【点睛】本题考查了三角形外角,直角三角形,熟练掌握三角形外角性质,直角三角形两锐角性质,是解决此类问题的关键6. 下列条件,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一个锐角和斜边对应相等C. 两条直角边对应相等D. 一条直角边和斜边对应相等【答案】A【解析】【分析】本题主要考查全等的判定方法,熟练掌握判定方法是解题的关键.根据判定方法依次进行判断即可.【详解】解:A 、两个锐角对应相等,不能判定两个直角三角形全等,故A 符合题意;B 、一个锐角和斜边对应相等,利用AAS 可以判定两个直角三角形全等,故B 不符合题意;C 、两条直角边对应相等,利用SAS 可以判定两个直角三角形全等,故C 不符合题意;D 、一条直角边和斜边对应相等,利用HL 可以判定两个直角三角形全等,故D 不符合题意;故选:A .7. 如图,在ACD 和BCE 中,,,,,AC BC AD BE CD CE ACE m BCD n ===∠=∠= ,AD 与BE 相交于点P ,则BPA ∠的度数为( )A. n m −B. 2n m −C. 12n m −D. 1()2n m − 【答案】D【解析】 【分析】由条件可证明△ACD ≌△BCE ,根据全等三角形的性质得到∠ACB 的度数,利用三角形内角和可求得∠APB=∠ACB ,即可解答.【详解】在△ACD 和△BCE 中AC BC AD BE CD CE===∴△ACD ≌△BCE (SSS ),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(n-m ) ∵∠B+∠ACB=∠A+∠BPA ,∴BPA ∠=∠ACB=1()2n m −. 故选D .【点睛】此题考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8. 如图,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,90E F ∠=∠=°,B C ∠=∠,AE AF =,给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ≌;④CD DN =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】根据90E F ∠=∠=°,B C ∠=∠,AE AF =,可得ABE ACF ≌,三角形全等的性质BE CF =;BAE CAF ∠=∠可得①12∠=∠;由ASA 可得ACN ABM ≌,④CD DN =不成立.【详解】解:∵90E F ∠=∠=°,B C ∠=∠,AE AF =,∴ABE ACF ≌,∴BE CF =;BAE CAF ∠=∠,故②符合题意;∵BAE BAC CAF BAC ∠−∠=∠−∠,∴12∠=∠;故①符合题意;∵ABE ACF ≌∴B C ∠=∠,AB AC =,又∵BAC CAB ∠=∠∴ACN ABM ≌,故③符合题意;∴AM AN =,∴MC BN =,∵,B C MDC BDN ∠=∠∠=∠, ∴MDC NDB ≌,∴CD DB =,∴CD DN =不能证明成立,故④不符合题意.故选:B .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,难度适中.9. 已知AOB ∠,下面是“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹.该尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】 【分析】本题主要考查了尺规作图作一个角等于已知角、全等三角形判定等知识点,掌握尺规作图作一个角等于已知角的作法成为解题的关键.根据“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹,结合全等三角形的判定定理即可解答.【详解】解:由题意可知,“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图的依据是SSS .故选:B .10. 如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A. AB AD CB CD −>−B. AB AD CB CD −=−C. AB AD CB CD −<−D. AB AD −与CB CD −的大小关系不确定【答案】A【解析】 【分析】先通过在AB 上截取AE =AD ,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A 选项正确.【详解】解:如图,在AB 上取AE AD =,对角线AC 平分BAD ∠,BAC DAC ∴∠=∠,在ACD ∆和ACE ∆中,的AD AE BAC DAC AC AC = ∠=∠ =, ()ACD ACE SAS ∴∆≅∆,CD CE ∴=,BE CB CE >− ,AB AD CB CD ∴−>−.故选:A .【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等.二、填空题11. 若正多边形的一个外角为60°,则这个正多边形的边数是______.【答案】六##6【解析】【分析】本题考查了多边形的外角和,熟练掌握任意多边形的外角和都是360度是解答本题的关键.根据任意多边形的外角和都是360度求解即可.【详解】解:360606°÷°=.故答案为:六.12. 四条长度分别为2cm ,5cm ,8cm ,9cm 的线段,任选三条组成一个三角形,可以组成的三角形的个数是___________个.【答案】2【解析】【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:四条木棒的所有组合:2,5,8和2,5,9和5,8,9和2,8,9;∵2+5=7<8,∴2,5,8不能组成三角形;∵2+5=7<9,∴2,5,9不能组成三角形;∵5+8=13>9,∴5,8,9能组成三角形;∵2+8=10>9,∴2,8,9能组成三角形.∴ 5,8,9和2,8,9能组成三角形.只有2个三角形.故答案是:2.【点睛】此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.13. 如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若140∠=°,230∠=°,则B ∠=______.【答案】40°##40度【解析】【分析】本题考查了三角形的角平分线,高线的定义;由AE 平分BAC ∠,可得角相等,由140∠=°,230∠=°,可求得EAD ∠的度数,在直角三角形ABD 在利用两锐角互余可求得答案.【详解】解:AE 平分BAC ∠12EAD ∴∠=∠+∠,12403010EAD ∴∠=∠−∠=°−°=°,Rt ABD 中,9090401040BBAD ∠=°−∠=°−°−°=°. 故答案为:40°.14. 如图,BE 平分∠ABC ,CE 平分外角∠ACD ,若∠A =52°,则∠E 的度数为_____.【答案】26°【解析】【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【详解】∵BE 平分∠ABC ,CE 平分外角∠ACD ,∴∠EBC =12∠ABC ,∠ECD =12∠ACD , ∴∠E =∠ECD ﹣∠EBC =12(∠ACD ﹣∠ABC ) ∵∠ACD-∠ABC=∠A ,∴∠E =12∠A =12×52°=26° 故答案为26°【点睛】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.15. 如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n −=__________.【答案】0【解析】【分析】将图1原六边形分成两个三角形和一个四边形可得到m 的值,将图2原六边形分成四个三角形可得到n 的值,从而得到答案.【详解】解:如图1,将原六边形分成两个三角形和一个四边形,,1234562180360720m ∴°=∠+∠+∠+∠+∠+∠=×°+°=°,如图2,将原六边形分成四个三角形,,∴°=∠+∠+∠+∠+∠+∠=×°=°,1234564180720n∴==,m n720∴−=,m n故答案为:0.【点睛】本题考查了多边形的内角和,此类问题通常连接多边形的顶点,将多边形分割成四边形和三角形,通过计算四边形和三角形的内角和,求得多边形的内角和.16. 如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③ ACN≌ ABM;④CD=DN.其中符合题意结论的序号是_____.【答案】①②③【解析】【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC,∴∠1=∠2,即结论①正确;∴△AEM ≌△AFN (ASA ),∴AM =AN ,∴CM =BN ,∵∠CDM =∠BDN ,∠C =∠B ,∴△CDM ≌△BDN ,∴CD =BD ,无法判断CD =DN ,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点睛】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.三、解答题17. 如图,已知点D ,E 分别AB ,AC 上,B C ∠=∠,DC BE =,求证:ABE ACD △△≌.【答案】见解析【解析】【分析】本题考查了全等三角形的判定,根据已知条件选择恰当的判定方法是解题的关键.【详解】解:在ABE 和ACD 中,B C A A BE DC ∠=∠ ∠=∠ =, ∴()AAS ABE ACD ≌.18. 如图,请你仅用无刻度直尺作图.在(1)在图①中,画出三角形AB 边上的中线CD ;(2)在图②中,找一格点D ,使得ABC CDA △△≌.【答案】(1)见解析 (2)见解析【解析】【分析】(1)如图,连接CD 即可;(2)按如图所示,找到点D ,连接AD CD ,即可.【小问1详解】【小问2详解】如图,CDA 即为所求;【点睛】本题考查了作图,三角形中线的性质、全等三角形的判定方法,掌握中线的性质及全等三角形判定的方法是关键.19. (1)在ABC 中,ABC ∠的角平分线和ACB ∠的角平分线交于点P ,如图1,试猜想P ∠与A ∠的关系,直接写出结论___________:(不必写过程)(2)在ABC 中,一个外角ACE ∠的角平分线和一个内角ABC ∠的角平分线交于点P ,如图2,试猜想P ∠与A ∠的关系,直接写出结论____________;(不必写过程) (3)在ABC 中,两个外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,如图3,试猜想P ∠与A ∠的关系,直接写出结论_________,并予以证明.【答案】(1)1902P A∠=°+∠;(2)12P A∠=∠;(3)1902P A∠=°−∠【解析】【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=12∠ABC,∠PCE=12∠ACE,然后整理即可得证;(3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解.【详解】解:(1)1902P A ∠=°+∠;理由:在△ABC中,∠ABC+∠ACB=180°-∠A,∵点P为角平分线的交点,∴1=2PBC ABC∠∠,1=2PCB ACB∠∠,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,在△PBC中,∠P=180°-(90°-12∠A)=90°+12∠A;故答案为:1902P A ∠=°+∠;(2)12P A ∠=∠.理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∴12(∠A+∠ABC)=∠P+12∠ABC,∴∠P=12∠A;(3)1902P A ∠=°−∠; 证明: 外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,11()()22PBC PCB A ACB A ABC ∴∠+∠=∠+∠+∠+∠ 111()90222A A ABC ACB A =∠+∠+∠+∠=∠+° 在PBC ∆中,11180909022P A A ∠=°−∠+°=°−∠. 故答案为:1902P A ∠=°−∠; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用.20. 如图,在ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时,若6AE =,ABC 的面积为30,求CD 的长;(2)当AD 为BAC ∠的角平分线时,若6636C B ∠=°∠=°,,求DAE ∠的度数.【答案】(1)5 (2)15°【解析】【分析】本题考查了用三角形中线求三角形面积、三角形外角性质、直角三角形性质.(1)利用三角形中线定义及三角形面积求出CD 长;(2)利用三角形内角和先求BAC ∠,再用外角性质和直角三角形性质求出DAE ∠.【小问1详解】∵AD 为边BC 上的中线, ∴1152ADC ABC S S == , ∵AE 为边BC 上的高, ∴1152DC AE ××=, ∴5CD =.【小问2详解】∵6636C B ∠=°∠=°,∴18078BAC B C =°−−=°∠∠∠,∵AD 为BAC ∠的角平分线,∴39BAD DAC ∠=∠=°,∴393675ADC BAD B ∠=∠+∠=°+°=°,∵AE BC ⊥,∴90AED ∠=°,∴9015DAE ADC ∠=°−∠=°21. 如图,点A ,D ,B ,E 在同一直线上,AC =DF ,AD =BE ,BC =EF .求证:AC ∥DF .【答案】详见解析【解析】【分析】根据等式的性质得出AB =DE ,利用SSS 证明△ABC 与△DEF 全等,进而解答即可.【详解】证明:∵AD =BE ,∴AD +DB =BE +DB ,∴AB =DE ,在△ABC 与△DEF 中,AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠A =∠FDE ,∴AC ∥DF .【点睛】此题主要考查了平行线的性质和判定,全等三角形的判定和性质,做题的关键是找出证三角形全等的条件.22. 如图,在ACB △中,90ACB ∠=°,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF CFE ∠=∠.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中. (1)由于ACD ∠与B ∠都是BCD ∠的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出9090CFA CAF AED DAE ∠=°−∠∠=°−∠,,再根据角平分线的定义得出CAF DAE ∠=∠,然后由对顶角相等的性质,等量代换即可证明CEF CFE ∠=∠.【小问1详解】证明:90ACB ∠=° ,CD AB ⊥于D ,90ACD BCD ∴∠+∠=°,90B BCD ∠+∠=°,ACD B ∴∠=∠;【小问2详解】证明:在Rt AFC △中,90CFA CAF ∠=°−∠,同理Rt AED △中,90AED DAE ∠=°−∠.又AF 平分CAB ∠,CAF DAE ∴∠=∠,AED CFE ∴∠=∠,又CEF AED ∠=∠ ,CEF CFE ∴∠=∠.23. 如图,AC ,BD 相交于点O ,OB OD =,A C ∠=∠,求证:△≌△AOB COD .在【答案】见解答【解析】【分析】本题主要考查全等三角形的判定,熟练掌握判定方法是解题的关键.根据全等三角形的判定方法证明即可.【详解】证明:AOB 和COD △中,A C AOB COD OB OD∠=∠ ∠=∠ = , (AAS)AOB COD ∴≌△△.24. 材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC 与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=°,则ABD ACD +=∠∠ ° . Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=°∠=°,,求BDC ∠的度数.【答案】(1) BDC A B C ∠=∠+∠+∠,理由见解析(2)Ⅰ.50;Ⅱ. 85°【解析】【分析】本题考查的是三角形内角和定理,三角形外角性质以及角平分线的定义得运用.根据题意连接AD 并延长至点 F ,利用三角形外角性质即可得出答案.Ⅰ.由(1)可知BDC A B C ∠=∠+∠+∠,因为40A ∠=°,90D ∠=︒,所以904050ABD ACD ∠+∠=°−°=°;Ⅱ.由(1)的已知条件,由于BD 平分ABP CD ∠,平分ACP ∠,即可得出在1452ABD ACD ABP ACP ∠+∠=∠+∠=°(),因此4540=85BDC ∠=°+°°. 【小问1详解】 解:如图连接AD 并延长至点 F , 根据外角的性质,可得 BDF BAD B ∠=∠+∠, CDF C CAD ∠=∠+∠, 又∵BDC BDF CDF BAC BAD CAD ∠=∠+∠∠=∠+∠,, ∴BDC BAC B C ∠=∠+∠+∠;【小问2详解】解:Ⅰ. 由(1)可得,BDC ABD ACD A ∠=∠+∠+∠; 又∵4090A D ∠=°∠=°,, ∴9040=50ABD ACD ∠+∠=°−°°, 故答案为:50; Ⅱ.由(1),可得BPC ABP ACP BDC BAC ABD ACD ∠=∠+∠+∠∠=∠+∠+∠,, ∴1304090ABP ACP BPC BAC ∠+∠=∠−∠=°−°=°, 又∵BD 平分ABP CD ∠,平分ACP ∠, ∴1452ABD ACD ABP ACP ∠+∠=∠+∠=°(), ∴4540=85BDC ∠=°+°°.。
数学八年级上册第一次月考试卷

数学八年级上册第一次月考试卷一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A. 14.B. 15.C. 16.D. 17.3. 三角形的一个外角小于与它相邻的内角,这个三角形是()A. 直角三角形。
B. 钝角三角形。
C. 锐角三角形。
D. 不确定。
4. 若等腰三角形的顶角为80°,则它的底角度数为()A. 80°.B. 50°.C. 40°.D. 20°.5. 如图,在△ABC中,∠A = 60°,∠B = 40°,则∠C等于()A. 80°.B. 70°.C. 60°.D. 100°.6. 下列图形中具有稳定性的是()A. 正方形。
B. 长方形。
C. 直角三角形。
D. 平行四边形。
7. 在△ABC中,∠A:∠B:∠C = 1:2:3,则∠C的度数为()A. 30°.B. 60°.C. 90°.D. 120°.8. 如图,已知AB = AC,AD = AE,欲证△ABD≌△ACE,须补充的条件是()A. ∠B = ∠C.B. ∠D = ∠E.C. ∠1 = ∠2.D. ∠CAD = ∠DAC.9. 如图,△ABC≌△DEF,若AB = DE,∠B = ∠E,则下列结论错误的是()A. AC = DF.B. ∠A = ∠D.C. BC = EF.D. ∠C = ∠D.10. 已知△ABC≌△A'B'C',且△ABC的周长为20,AB = 8,BC = 5,则A'C'等于()A. 7.B. 8.C. 5.D. 15.二、填空题(每题3分,共15分)11. 三角形的内角和等于______。
八年级数学上册册月考试卷

八年级数学月考试题一、选择题:(3×10)1.如图;两只手的食指和拇指在同一个平面内;它们构成的一对角可看成是()A、同位角B、内错角C、对顶角D、同旁内角2.如图;直线a//b;∠1=400;∠2的度数为---------------------------------()A 1400B 500C 400D 10003.已知等腰三角形的两边长分别为4、9;则它的周长为()(A)17 (B)22 (C)17或22 (D)134.如果∠α和∠β是同位角;且∠α=55°则∠β等于()A.55° B。
125° C。
55°或125° D。
无法确定5.下列图形中;不一定...是轴对称图形的是()A.线段 B.角 C.直角三角形 D.等腰三角形6.3、以下列三个数为边长的三角形能组成直角三角形的是()A 1; 1 ;2B 5; 8 10C 6 ;7 ;8D 3 ;4 ;5 7.下列能断定△ABC为等腰三角形的是()(A)∠A=30º、∠B=60º(B)∠A=50º、∠B=80º(C)∠A=30º、∠B=80º(D)∠A=50º、∠B=70º8.等腰三角形的顶角等于70o;则它的底角是 ( )A、70oB、55oC、60oD、 70o或55o9.下列说法正确的是()A.同位角相等B.内错角相等C.对顶角相等 D.同旁内角互补10.已知等腰△ABC的底边BC=8cm;且│AC-BC│=2cm;那么腰AC的长为() A.10cm或6cm B、10cm C、6cm D、8cm或6cm二、填空题:(3×10)1.如图;直线a∥b;∠1=130°;则∠2=度.2.在等腰三角形ABC中;AB=AC;若∠B=40°;则∠A= ;∠C= 。
3.等边三角形有条对称轴。
沪科版数学八年级上册 月考检测卷(一)(含答案)

月考检测卷(一)(时间:120分钟满分:150分)题号一二三四五六七八总分得分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数y=x+3x−1中,自变量x的取值范围是 ( )A.x≥-3B.x≥-3且x≠1C. x≠1D. x≠-3且x≠12.点P在第四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P 的坐标为 ( )A.( -3,-2)B.(3,-2)C.(2,3)D.(2,-3)3.点P(m−1,m+3))在平面直角坐标系的y轴上,则点 P的坐标为( )A.( -4,0)B.(0,-4)C.(4,0)D.(0,4)4.一次函数y=(k+2)x+k²−4的图象经过原点,则k的值为( )A.2B. -2C.2或-2D.35.在平面直角坐标系中,线段A′B′是由线段AB 经过平移得到的,已知点A( -2,1)的对应点为.A′(3,1),点 B 的对应点为.B′(4,0),则点 B 的坐标为 ( )A.(9,0)B.(-1,0)C.(3,-1)D.( -3,-1)6.若一次函数y=(1−3m)x+1的图象经过点A(x₁,y₁)和点B(x₂,y₂),当x₁<x₂时,y₁<y₂,则 m 的取值范围是 ( )A. m<0B. m>0C.m<13D.m>137.一次函数y=2(x-3)的图象在y轴上的截距是 ( )A.2B. -3C. -6D.68.一次函数的图象交x轴于(2,0),交y轴于(0,3),当函数值大于0时,x的取值范围是 ( )A. x>2B. x<2C. x>3D. x<39.如图中表示一次函数 y =mx +n 与正比例函数:y=mnx;(m,n是常数,mn≠0)图象的是( )10.在同一条道路上,甲车从A地到B地,乙车从B地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是 ( )A.乙先出发的时间为0.5小时B.甲的速度是80 千米/小时C.甲出发0.5 小时后两车相遇D.甲到B 地比乙到A 地早 112小时二、填空题(本大题共4小题,每小题5分,满分20分)11.如果将电影票上“6排3 号”简记为(6,3),那么“9排21 号”可表示为 .12.已知直线y =x --n 与 y =2 x +m 的交点为( -2,3),则方程组 {x−y−n =0,2x−y +m =0的解是 .13.三角形ABC 中 BC 边上的中点为 M ,在把三角形 ABC 向左平移2 个单位,再向上平移3 个单位后,得到三角形A ₁B ₁C ₁的B ₁C ₁边上中点M ₁此时的坐标为(-1,0),则M 点坐标为 .14.已知一次函数y=(m+4)x+2m+2,无论m 取何值时,它的图象恒过的定点P ,则点 P 的坐标为 .若m 为整数,且它的图象不过第四象限,则m 的最小值为 .三、(本大题共2 小题,每小题8分,满分16 分)15.已知一次函数图象经过(3,5)和(-4,-9)两点,求此一次函数的表达式.16.如图,三角形ABC 三个顶点的坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点 A₁,B₁,C₁,,画出三角形.A₁B₁C₁;(2)将三角形ABC 向左平移5个单位,再向下平移5个单位得到三角形 A₂B₂C₂,,画出三角形.A₂B₂C₂.四、(本大题共2 小题,每小题8分,满分16 分)17.在平面直角坐标系中,点A从原点O出发,沿x轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1 个单位长度,这时点A₁,A₂,A₃,A₄的坐标分别为A₁(0,0),A₂(1,1) ,A₃(2,0),A₄(3,−1),按照这个规律解决下列问题:(1)写出点.A₅,A₆,A₇,A₈的坐标;(2)试写出点.Aₙ的坐标(n是正整数).18.如图,直线y=kx+b分别与x轴、y轴交于点A(−2,0),B(0,3),直线y=1−mx分别与x轴交于点C,与直线AB交于点 D.已知关于x的不等式kx+b>1−mx的解集是x>−45.分别求出k,b,m的值.五、(本大题共2 小题,每小题10 分,满分20 分)19.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+b−4=0,点 C的坐标为(0,3).(1)求a,b的值及.S三角形ABC;(2)若点 M在x轴上,且S三角形ACM =13S三角形ABC,试求点 M的坐标.20.在平面直角坐标系中,O 为坐标原点,将三角形 ABC 进行平移,平移后点A,B,C的对应点分别是点D,E,F,点A,B,D,E的坐标分别为(0,a),(0,b),(a,12a),(m−b,12a+4).(1)若a=1,求m的值;(2)若点C(−a,14m+3),其中a>0..直线CE交y轴于点 M,且三角形BEM的面积为1,试探究AF和BF的数量关系,并说明理由.六、(本题满分12 分)21.在平面直角坐标系中,折线y=−|x−2|+1与直线y=kx+2k(k⟩0)如图所示.(1)直线y=kx+2k(k⟩0)与x轴交点的坐标为;(2)请用分段函数的形式表示折线y=−|x−2|+1;(3)若直线y=kx+2k(k⟩0)与折线y=−|x−2|+1有且仅有一个交点,直接写出k的取值范围.七、(本题满分12分)22.某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种文具盒的进价和售价如下表.预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒数量x(个)之间的函数关系如图所示.甲乙进价/元1631售价/元2138(1)求y与x之间的函数表达式;(2)若超市准备用不超过6 300元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?(3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的表达式,并求出获得的最大利润.八、(本题满分14分)23.如图,在平面直角坐标系中,长方形 OABC 的顶点 O 与坐标原点重合,顶点A,C分别在坐标轴上,顶点 B的坐标为(4,2).E为AB 的中点,过点D(6,0)和点 E的直线分别与BC,y轴交于点F,G.(1)求直线 DE 的函数表达式;(2)函数y=mx−1的图象经过点 F且与x轴交于点 H,求出点 F的坐标和m值;(3)在(2)的条件下,求出四边形 OHFG的面积.月考检测卷(一)1. B2. D3. D4. A5. B6. C7. C8. B9. C 10. D11.(9,21) 12.{x =−2,y =3 13.(1,-3) 14.(-2,-6) -115.解:设一次函数的表达式为y=kx+b.∵一次函数的图象经过(3,5)和(-4,9)两点,则有 {3k +b =5,−4k +b =−9.解得 {k =2,b =−1...一次函数的表达式为y=2x-1.16.解:(1)如图,三角形A ₁B ₁C ₁ 即为所求.(2)如图,三角形A ₂B ₂C ₂即为所求.17.解:(1)由图可得,A ₅(4,0),A ₆(5,1),A ₇(6,0),A ₈(7,-1).(2)根据图形可知,点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0,1,0,-1循环,∴点An 的坐标(n 是正整数)为A(n-1,0)或A(n-1,1)或A(n-1,0)或A(n-1,-1).18.解:∵直线y=kx+b 分别与x 轴、y 轴交于点A( -2,0),B(0,3),∴{−2k +b =0,b =3.解得过点 A ,B 的直线的表达式为 y =32x +3.∵关于x 的不等式kx+b>1-mx 的解集是 x >−45,.点 D 的横坐标为 −45. 将 x =−45代入 y =32x +3,解得 y =95.∴ 点 D 的坐标为 (−54,95).将 x =−45,y =95代入y=1-mx,得 95=1−(−45)m.解得m=1.19.解:(1)∵|a+2|+√b-4=0,∴a+2=0,b-4=0.∴a=-2,b=4.∴点A 的坐标为(-2,0),点B 的坐标为(4,0).又∵点C 的坐标为(0,3),∴AB=|-2-4|=6,CO=3. ∴S 三角形ABC =12AB ⋅CO =12×6×3=9.(2)设点M 的坐标为(x,0),则AM=|x-( -2)|=|x+2|.又: ⋅S 三角形ACM =13S 三角形ABC ,∴12AM ⋅OC =13×9.∴12|x +2|×3=3.∴ |x+2|=2,即x+2=±2,解得x=0或x=-4.故点M 的坐标为(0,0)或(-4,0).20.解:(1)当a=1时,根据三角形ABC 平移得到三角形DEF,点A(0,1),点B(0,b)的对应点分别为点 D (1,12),点 E (m−b ,92),得 {m−b =1,b−92=1−12.解得 {b =5,m =6.故m 的值为6.(2)AF=BF.理由如下:由三角形ABC 平移得到三角形DEF ,点A(0,a),点B(0,b)的对应点分别为点D (a ,12a ),点 E(m−b ,12a +4),得 {a =m−b,①a−12a =b−(12a +4).②由②得b=a+4.③ 把③代入①,得m=2a+4.∴14m +3=12a +4.∴点 C 与点 E 的纵坐标相等.∴CE∥x 轴.∴M (0,12a +4).∴三角形 BEM 的面积 =12BM ⋅EM =1.:a >0,∴BM =a +4−(12a +4)=12a,EM =a.∴14a 2=1.∴a =2.∴点A 的坐标为(0,2),点B 的坐标为(0,6),点 C 的坐标为( -2,5),点 D 的坐标为((2, 12).又∵在平移中,点 F 与点 C 是对应点,点 D 与点 A 是对应点,∴点F 的坐标为(0,4).∴AF=4-2=2,BF=6-4=2.∴AF=BF.21.解:(1)( -2,0)(2)∵函数y=-|x-2|+1,∴当x>2时,|x-2|=x-2.∴函数的表达式为y=-x+2+1=-x+3.当x≤2时,|x-2|=2-x,∴函数的表达式为y=x-2+1=x-1.∴用分段函数的形式表示折线为 y ={x−1(x ≤2),−x +3(x⟩2)(3)k 的取值范围是 k>1或 k =14.22.解:(1)设y 与x 之间的函数表达式为y=kx+b,根据题意,得 {250=50k +b,150k +b.解得∴y 与x 之间的函数表达式为y=-x+300.(2)根据题意,得16x+31(-x+300)≤6300,解得x≥200.∵x 为正整数,∴至少购进200 个甲种文具盒.(3)根据题意,得W=(21-16)x+(38-31)(-x+300)= -2x+2 100.∵k= -2<0,∴W 随x 的增大而减小.23.解:(1)设直线DE 的函数表达式为y=kx+b.∵顶点B 的坐标为(4,2),E 为AB 的中点,∴点E 的坐标为(4,1).∵点D 的坐标为(6,0),将D,E 的坐标代入y=kx+b,得 {0=6k +b,1=4k +b.解得 {k =−12,b =3.直线 DE 的函数表达式为 y =−12x +3.(2)∵点 F 的纵坐标为2,且点 F 在直线 DE 上,∴将y=2代入 y =−12x +3,得 −12x +3=2.解得x=2.∴点F 的坐标为(2,2).∵函数y=mx-1的图象经过点 F,将(2,2)代入y=mx-1,得2m-1=2.解得 m =32.(3)设直线 FH 交y 轴于点 K.对于 y =32x−1,当y=0时, 32x−1=0,解得 x =23,即点H 的坐标为(23,0).∴OH =23.当x=0时,y=-1,即点K 的坐标为(0,-1).∴OK=1.同理可得,点G 的坐标为(0,3),则KG=4.∵长方形OABC 的顶点与O 重合,点B 的坐标为(4,2),∴点C 的坐标为(0.2).∴CF=2.23=113.。
人教版八年级上册数学第一次月考数学试卷及答案

人教版八年级上册数学第一次月考数学试卷及答案人教版数学八年级上册第一次月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A。
3cm,4cm,5cmB。
4cm,6cm,10cmC。
1cm,1cm,3cmD。
3cm,4cm,9cm2.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A。
22B。
17C。
17或22D。
263.一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A。
6B。
8C。
10D。
124.在如图中,正确画出AC边上高的是()A。
B。
C。
D。
5.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A。
三角形的角平分线B。
三角形的中线C。
三角形的高D。
以上都不对6.适合条件∠A=∠B=∠C的三角形是()A。
锐角三角形B。
等边三角形C。
钝角三角形D。
直角三角形7.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A。
8B。
9C。
10D。
118.若一个多边形的内角和等于1080°,则这个多边形的边数是()A。
9B。
8C。
7D。
69.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A。
5B。
6C。
7D。
810.三角形的一个外角是锐角,则此三角形的形状是()A。
锐角三角形B。
钝角三角形C。
直角三角形D。
无法确定二、填空题(共10小题,每小题3分,共30分)13.如图,共有10个三角形。
14.如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是 100°。
15.如图,∠1,∠2,∠3是△XXX的不同的三个外角,则∠1+∠2+∠3= 360°。
16.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条。
17.一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是11边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学月考试题
一、填空题 (每空1分,共32 分)
1、81的平方根是 ;27的立方根是 。
2.32-的相反数是______ _,绝对值是____ __.
3.计算2)23(⨯= ,23)2(= ;
4.计算:=⋅34
43x x
; )32(3y x xy -- =__________________。
)3(532xy y x -⋅= . ()()
=⋅4
3
3
2y y ; ()=⨯-8
9
425.0 ;
()
()=-÷+-a a a a
296423
; ()()=+-2312x x 。
5.若3,1x y x y +=⋅=-,则)1)(1(++y x =___________。
6、直接写出因式分解的结果:
(1)=-12x ; (2)=--962a a ; (3) x x 253-=
7.填上适当的式子,使以下等式成立:)(222⋅=-+xy xy y x xy
8.在Rt △ABC 中,∠C=900,(1)若a=6,b=8,则c= ; (2)若c=13,b=12,则a= ; 9.直角三角形两条直角边的长分别为5、12,则斜边上的高为 . 10.162
++mx x
如果是一个完全平方式,那么=m。
11.如图,△OCD 是由△OAB 线段CD 和线段 是对应线段;旋转中心是 旋转角是 。
12. 13. 已知EFG ABC ∆≅∆,有=∠68B 14.如右图,在ABC ∆中,AD=AE ,︒=∠=∠105AEC ADB , ︒=∠40B ,则 15.四边 别为____________.
16.已知的对角线相交于点O △BCO 的周长比△AOB 的周长多 17.在 中,6AC cm =,8BD = 二、选择题 (每题2分,共24分)
18.下列各计算中,正确的是( )
A.5
5
5
2b b b =⋅ B.10
5
5
x x x =+ C.5
3
2
m m m =⋅ D.2
2
2
b a b a =⋅
19.3-、0 3.1415、π 2.123122312233……中, 无理数的 个数为 A 、2个 B 、3个20.(mx +8)(2
-3x )展开后不含x A 、3 B 、3
2
C 21.计算(x -3y)(x+3y)的结果是 A.x 2-3y 2 B.x 2-6y 2 22. ① ②A 、①② B 、②④23.(A )一组对边平行且相等 (B )两组对边分别相等
(C )对角线互相平分 (D )一组对边平行,另一组对边相等
24. 如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等 的图形是 ( )
A .甲和乙 B.乙和丙 C.只有乙 D.只有丙
25. 如图,AB ∥CD ,AD ∥BC ,OE=OF ,则图中全等三角形的组数是 ( )
A. 3
B. 4
C. 5
D. 6
26.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 ( )
A . 等边三角形
B . 钝角三角形
C . 直角三角形
D . 锐角三角形. 27.以下各组数为三角形的三边,则不是直角三角形的是 ( )
A 、13、12、5
B 、25、24、8
C 、
23、2、2
5
D 、5、112、7 28. 已知四边形ABCD 中,AB ∥CD ,AB =CD ,周长为40cm ,两邻边的比是3∶2,则较大边
的长度是 A 、8cm B 、10cm C 、12cm 14cm ( )
29.如图,在等腰△ABC 的底边BC 上任取一点D ,作DE ∥AC 、DF ∥AB ,分别交AB 、AC 于 点E 、F ,若等腰△ABC 的腰长为m ,底边长为n ,则四边形AEDF 的周长为 ( )
A 、2m
B 、2n
C 、m+n
D 、2m-n
三.计算题( 每题2分,共8分)
(1))33(22+-⋅-a a a (2)()()y x y x 44--+-
(3) (x+3)(x-4)-(x-1)2 (4) )53()35(-+
四.因式分解:( 每题2分,共8分)
(1) 22916y x - (2)2(2-x)-x(x -2)
(3) a 2m+2am+m (4) abc bc a -2
五.解答题: ( 每题3分,共6分) 1.已知1
3a a
+=,求221a a +的值。
2.若a +b =10,ab =6,求:a 2+b 2的值;
3.根据要求,在给出的方格图中 画出图形:(本题4分)
⑴画出四边形ABCD 关于点D 成 中心对称的图形A 'B 'C 'D ', ⑵将图形A 'B 'C 'D '向右平
w
D
B
A
移8格,再向下平移2格后的图 形A "B "C "D "。
4.如图,在中,AE 、AF 分别为BC 、CD 上的高,且∠EAF=40°,
求各内角的度数。
(本题4分)
5.如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13, 求四边形ABCD 的面积. (本题4分)
6.已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F . 求证:四边形BEDF 是平行四边形.(本题5分)
7.如图,在平行四边形ABCD 中,点E 、F 在对角线AC 上,且AE =CF ,请你以F 为一个 端点,和图中已标明字母的某一点连成新的线段,猜想并说明它和图中已有的某一条线段 相等。
⑴.连结:_______。
⑵.猜想:___=___。
⑶.说明你的理由 (本题5分)
C B。