八年级上册数学月考试卷
八年级上学期数学第一次月考试卷(含答案)

八年级上学期数学第一次月考试卷(满分150分时间:120分钟)一.单选题。
(每小题4分,共40分)1.在下列实数中,无理数有().A.﹣1B.3.14C.√2D.152.在平面直角坐标系中,点P(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.﹣8的立方根是()A.﹣2B.﹣12C.12D.24.用式子表示16的平方根,正确的是()A.±√16=±4B.√16=4C.√16=±4D.±√16=45.根据下列描述,能确定准确位置的是()A.某影城3号厅2排B.经十路中段C.南偏东40°D.东经117°,北纬36°6.点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,则点P的坐标为()A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)7.与点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是()A.﹣1B.﹣5C.1D.58.下列运算正确的是()A.√2+√3=√5B.2×√3=√6C.3√2-√2=3D.√12÷√3=29.如图,已知小华的坐标为(﹣2,﹣1),小亮的坐标为(﹣1,0),则小东的坐标应该是()A.(﹣3,﹣2)B.(1,1)C.(1,2)D.(3,2)10.已知直线MN∥x轴,M点的坐标为(1,3),且线段MN=4,则点N的坐标为()A.(5,3)B.(3,5)C.(5,3)或(﹣3,3)D.(3,5)或(3,﹣3)二.填空题。
(每小题4分,共24分)11.如果用有序数对(1,4)表示第一单元4号的住户,则第二单元6号住户用有序数对表示为 .12.36的算式平方根是 .13.在平面直角坐标系中,点(﹣3,1)关于x 轴对称的点的坐标是 . 14.在平面直角坐标系中,点M (a+1,a -1)在x 轴上,则a= . 15.对于任意不相等的两个数a ,b ,定义一种运算如下:a ×b=√a+b a -b,如3×2=√3+23-2,那么6×3= .16.已知a ,b 都是实数,若|a -2|+√b -4=0,则√ab a= . 三.解答题。
八年级上册数学第一册月考试卷(含答案)

一、选择题(本大题共12小题,共36.0分)1.如果AD是△ABC的中线,那么下列结论:CB; ②AB=AC; ③S△ABD=S△ACD.其中一定成立的有() ①BD=12A. 3个B. 2个C. 1个D. 0个2.若一个正n边形的每个内角为144∘,则这个正n边形的所有对角线的条数是()A. 7B. 10C. 35D. 703.已知a,b,c是△ABC的三条边长,化简|a+b−c|−|c−a−b|的结果为()A. 2a+2b−2cB. 2a+2bC. 2cD. 04.将一张三角形纸片剪开分成两个三角形,这两个三角形不可能()A. 都是直角三角形B. 都是钝角三角形C. 都是锐角三角形D. 是一个直角三角形和一个钝角三角形5.把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数不可能是()A. 16B. 17C. 18D. 196.在△ABC中,,则此三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7.画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.8.如果三角形的两边长分别为3和5,则周长L的取值范围是().A. 6<L<15B. 6<L<16C. 11<L<13D. 10<L<169.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD//AB交BD于点D,已知∠ACB=34°,则∠D的度数为()A. 30°B. 28°C. 26°D. 34°10.满足下列条件的△ABC中,不是直角三角形的是()A. ∠A=2∠B=3∠CB. ∠B+∠A=∠CC. 两个内角互余D. ∠A:∠B:∠C=2:3:511.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A. 80°B. 90°C. 100°D. 110°12.如图,有一条等宽纸带,按图折叠时(图中标注的角度为40°),那么图中∠ABC的度数等于()A. 70°B. 60°C. 50°D. 40°二、填空题(本大题共5小题,共15.0分)13.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为______.14.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,则S△BEF=.15.如图,小林从P点向西直走8米后,向左转,转动的角度为α,再走8米,如此重复,小林共走了72米回到点P,则α为______.16.已知AH为△ABC的高,若∠B=40°,∠ACH=65°,则∠BAC的度数为______°.17.如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的AB、CD),这样做的数学道理是__________________________。
八年级上第一次月考数学试卷(有答案)

八年级上第一次月考数学试卷(有答案)一、选择题(每题3分,共30分)1.(3分)下列各数:0,3.14,﹣π,π﹣|1﹣π|,之间每次增加一个2),其中无理数的个数是()A.1B.2C.3D.4,,0.121221222122221…(每两个12.(3分)A.8的算术平方根是()D.±B.±8C.3.(3分)下列说法正确的有()(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A.1B.2C.3D.4﹣1之值介于下列哪两个整数之间?()C.5,6D.6,7等于()D.﹣2某4.(3分)判断2A.3,4B.4,55.(3分)若某<0,则A.某B.2某C.06.(3分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CC.a2=c2﹣b2B.∠A:∠B:∠C=1:2:3D.a:b:c=3:4:67.(3分)和数轴上的点成一一对应关系的数是()A.自然数B.有理数C.无理数D.实数8.(3分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或379.(3分)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+第1页共15页10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=的面积为1,则它的周长为(),如果Rt△ABCA.B.+1C.+2D.+3二、填空题(每空3分,共24分)11.(3分)的相反数是,绝对值是,倒数是.12.(3分)如图,若圆柱的底面周长是30cm,高是40cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处做装饰,则这条丝线的最小长度是.13.(3分)若一个正数的平方根是2a+1和﹣a+2,则a=,这个正数是.14.(3分)若+=0,则某=.15.(3分)已知一个Rt△的两边长分别为3和4,则第三边长是.16.4cm,3cm的木箱中,(3分)有一根7cm木棒,要放在长,宽,高分别为5cm,(填“能”或“不能”)放进去.17.(3分)要使代数式有意义,则某的取值范围是.18.(3分)如图所示,分别以直角三角形的三边为直径作三个半圆,S1=25,S2=144,则S3等于.第2页共15页三、解答题(共66分)19.(12分)计算题(1)(2)(3)(4)20.(8分)解方程(1)3(某﹣2)2﹣=0.(2)(2某﹣1)3﹣8=0.21.(8分)若+(b﹣3)2+|c﹣2|=0,求(a﹣b+c)3的值.,AD=1,且∠B=90°.试求:22.(10分)已知:如图,四边形ABCD中,AB=BC=1,CD=(1)∠BAD的度数.(2)四边形ABCD的面积.(结果保留根号)23.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,(1)求BF长度;(2)求CE的长度.24.(8分)某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,第3页共15页其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?25.(12分)阅读下面计算过程:1;.请解决下列问题(1)根据上面的规律,请直接写出(2)利用上面的解法,请化简:(3)你能根据上面的知识化简﹣﹣2=..吗?若能,请写出化简过程.第4页共15页八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列各数:0,3.14,﹣π,π﹣|1﹣π|,,,0.121221222122221…(每两个1之间每次增加一个2),其中无理数的个数是()A.1B.2C.3D.4【解答】解:0是有理数,3.14是有理数,﹣π是无理数,π﹣|1﹣π|=π﹣(π﹣1)=1是有理数;=3是有理数;=2是有理数;0.121221222122221…是无理数.故选:B.2.(3分)A.8的算术平方根是()D.±=8,.B.±8C.【解答】解:∵∴的算术平方根是:故选:C.3.(3分)下列说法正确的有()(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A.1B.2C.3D.4【解答】解:(1)有理数包括整数、分数,原来的说法是错误的;(2)π是无理数,原来的说法是错误的;第5页共15页。
江苏省连云港市灌南县2024-2025学年八年级上学期第一次月考数学试卷(含答案)

2024-2025学年度第一学期学业质量阶段性检测八年级数学试题(A 卷)(满分分值:150分 考试时间:100分钟)一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上)1.《国语・楚语》记载:“夫美也者,上下、内外、大小、远近皆无害焉,故曰美.”这一记载充分表明传统美的本质特征在于对称和谐。
下列四个图案中,是轴对称图形的是( )A. B. C. D.2.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.有下列说法:(1)线段是轴对称图形;(2)成轴对称的两个图形中,对应点的连线被对称轴垂直平分;(3)成轴对称的两个图形一定全等;(4)轴对称图形的对称点一定在对称轴的两侧。
其中正确的有( )A.1个B.2个C.3个D.44.如图,已知,那么添加下列一个条件后,不能判定的是( )A. B. C. D.5.如图,若,四个点B 、E 、C 、F 在同一直线上,,,则CF 的长是( )A.2 B.3 C.5 D.76.如图,两个三角形是全等三角形,x 的值是( )A.30B.45C.50D.857.如图,在中,,平分交边BC 于点,若,,则的面积是()AB AD =ABC ADC ≅△△CB CD=BAC DAC ∠=∠BCA DCA ∠=∠90B D ︒∠=∠=ABC DEF ≅△△7BC =5EC =ABC △90C ∠=︒AD BAC ∠D 3CD =8AB =ABD △A.36B.24C.12D.108.如图,已知,为的平分线,、、…为的平分线上的若干点.如图1,连接BD 、CD ,图中有1对全等三角形;如图2,连BD 、CD 、BE 、CE ,图中有3对全等三角形;如图3,连接BD 、CD 、BE 、CE 、BF ,CF ,图中有6对全等三角形,依此规律,第2025个图形中全等三角形的对数是( )图1 图2 图3A.2049300 B.2051325 C.2068224 D.2084520二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如图,,则AD 的对应边是________。
山东日照港中学2024年八年级上学期10月月考数学试卷

2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。
2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
山东省菏泽市单县2024—-2025学年上学期八年级上册数学第一次月考试卷

山东省菏泽市单县2024—-2025学年上学期八年级上册数学第一次月考试卷一、单选题1.杭州亚运会将于2023年9月23日举行,下面是比赛项目中几个项目的图标,其图案可看作轴对称图形的是( )A .B .C .D . 2.一个三角形的三边长为5,x ,14,另一个三角形的三边长为5,10,y ,如果由“SSS ”可以判定两个三角形全等,则x y +的值为( )A .15B .19C .24D .253.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .24.如图,在ABC V 和DEC V 中,已知AB DE =,还需添加两个条件才能使ABC DEC ≌△△,不能添加的一组条件是( )A .,BC ECB E =∠=∠B .,BC EC AC DC == C .,BC DC AD =∠=∠ D .,AC DC A D =∠=∠5.如图,点C 在AOB ∠的边OB 上,用尺规作出了NCE AOD ∠=∠,作图痕迹中,弧FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧6.A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC V 的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点7.等腰三角形的两边长分别为4和9,这个三角形的周长是( )A .17B .22C .17或22D .17和228.如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且100ADC ∠=︒,则M A B ∠的度数是( )A .50︒B .40︒C .45︒D .55︒9.如图,ABC V 中,AB AE =,且AD BC EF ⊥,垂直平分AC ,交AC 于点F ,交BC 于点E ,若ABC V 周长为166AC =,,则DC 为( )A .5B .8C .9D .1010.如图,△ABC 是等边三角形,D 是线段AC 上一点(不与点A ,C 重合),连接BD ,点E ,F 分别在线段BA ,BC 的延长线上,且DE=DF=BD ,则△AED 的周长等于( )A .AB AE + B .BFC .2ACD .AC BD +二、填空题11.在平面直角坐标系中,点A (2,﹣3)关于y 轴对称的点的坐标为.12.如图,△ABC ≌△DBE ,∠ABC =80°,∠D =65°,则∠C 的度数为.13.如图,小李用若干长方体小木块,分别垒了两堵与地面垂直的木块墙AD 、CE ,其中木块墙AD =24cm ,CE =12cm .木块墙之间刚好可以放进一个等腰直角三角板,点B 在DE 上,点A 和C 分别与木块墙的顶端重合,则两堵木块墙之间的距离DE =cm .14.如图,一长方形纸片ABCD ,E 为AB 上一点,把三角形CEB 沿CE 翻折,点B 落在点B '处,设B E '交DC 于点F ,若80EFD ∠=︒,则ECF ∠的度数为.15.如图所示,在ABC V 中,90︒∠=C ,30B °?,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N 再分别以MN 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的有.①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的中垂线上;④:1:3DAC ABC S S =V V16.如图:ABC V 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达B 时,P 、Q 两点停止运动,当点P到达B 时,P 、Q 两点停止运动.设点P 运动的时间为(s)t .当t 为时,PBQ V 是直角三角形.三、解答题17.如图,在ABE V 和DCF V 中,B 、E 、C 、F 共线,AB CD AB CD BF CE ==P ,,,求证:(1)AE DF =.(2)AE DF P18.如图,在ABC V 中,90B ??,过点C 作CD AC ⊥,且使CD AC =,过点D 作DE BC ⊥,交BC 的延长线于点E .求证:BC ED =.19.已知:如图,线段AB 和射线BM 交于点B .(1)利用尺规完成以下作图,并保留作图痕迹.(不要求写作法)①在射线BM 上求作一点C ,使AC AB =;②在线段AB 上求作一点D ,使点D 到,BC AC 的距离相等,并说明你作图的依据.(2)在(1)所作的图形中,若72ABM ∠=︒,直接写出与BC 相等的线段,不用证明.20.在如图所示的正方形网格中,ABC V 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出ABC V 关于y 轴对称的111A B C △,并写出1A ,11,B C 的坐标;(2)在y 轴上寻找一点P ,使得PA PC +最小,请在图上标出点P 的位置并保留作图痕迹. 21.如图,在ABC V 中,点D 是BC 的中点,连接AD ,DE 垂直平分AC ,垂足为E ,F 是BA 的中点,连接DF ,求证:DF 是AB 的垂直平分线.22.如图,点A B ,分别在O ∠的两边上,点P 是O ∠内一点,PC OA PD OB ⊥⊥,,垂足分别为C D ,,且OA OB PC PD ==,.求证:PA PB =.⊥于点D,点E为CD上一点,且DE=AD,23.已知:在△ABC中,∠ABC=45°,CD AB连接BE并延长交AC于点F,连接DF.求证:BE=AC.△,连QB并24.如图,在Rt AOP△中,以OA为边作等边OAB△,以AP为边作等边APQ延长交OP于点C.=;(1)求证:OP BQ(2)判断COB△的形状,并说明理由.。
数学八年级上册第一次月考试卷

数学八年级上册第一次月考试卷一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A. 14.B. 15.C. 16.D. 17.3. 三角形的一个外角小于与它相邻的内角,这个三角形是()A. 直角三角形。
B. 钝角三角形。
C. 锐角三角形。
D. 不确定。
4. 若等腰三角形的顶角为80°,则它的底角度数为()A. 80°.B. 50°.C. 40°.D. 20°.5. 如图,在△ABC中,∠A = 60°,∠B = 40°,则∠C等于()A. 80°.B. 70°.C. 60°.D. 100°.6. 下列图形中具有稳定性的是()A. 正方形。
B. 长方形。
C. 直角三角形。
D. 平行四边形。
7. 在△ABC中,∠A:∠B:∠C = 1:2:3,则∠C的度数为()A. 30°.B. 60°.C. 90°.D. 120°.8. 如图,已知AB = AC,AD = AE,欲证△ABD≌△ACE,须补充的条件是()A. ∠B = ∠C.B. ∠D = ∠E.C. ∠1 = ∠2.D. ∠CAD = ∠DAC.9. 如图,△ABC≌△DEF,若AB = DE,∠B = ∠E,则下列结论错误的是()A. AC = DF.B. ∠A = ∠D.C. BC = EF.D. ∠C = ∠D.10. 已知△ABC≌△A'B'C',且△ABC的周长为20,AB = 8,BC = 5,则A'C'等于()A. 7.B. 8.C. 5.D. 15.二、填空题(每题3分,共15分)11. 三角形的内角和等于______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学月考试卷
一、选择题(每小题4分,共48分)
1、下列长度的线段,不能组成三角形的是()
A.1,2,3
B.2,3,4
C.3,4,5
D.5,12,13
2、若一个多边形的内角和是外角和的3倍,则这个多边形是()
A.五边形
B.六边形
C.七边形
D.八边形
3、如图所示,AB∥CD,∠A=∠ACB=70°,则∠DCE等于()
A.55°
B.70°
C.40°
D.110°
4、如图所示,已知ΔABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()
A.90°
B.135°
C.270°
D.315°
5、如图所示,点O是ΔABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()
A.95°
B.120°
C.135°
D.无法确定
6、如图所示,AD,AE分别是ΔABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE的度数为
()
A.20°
B.18°
C.38°
D.40°
7、已知ΔABC≌ΔA1B1C1,且ΔABC的周长是20,AB=8,BC=5,那么A1B1等于()
A.5
B.6
C.7
D.8
8、下列条件能判定ΔABC≌ΔDEF的是()
A.AB=DE,∠A=∠E,BC=EF
B.AB=DE,∠C=∠F,BC=EF
C.∠A=∠E,AB=DF,∠B=∠D
D.AB=DE,∠B=∠E,BC=EF
9、如图所示,已知AB⊥BD,ED⊥BD,C是BD上一点,AB=CD,BC=ED,那么下列结论中,不正确的是
()
A.∠A=∠DCE
B.AC=CE
C.∠ACB+∠CED=90°
D.AC⊥CE
10、如图所示,H是ΔABC的高AD,BE的交点,且AD=BE,则下列结
论:①AE=BD,②AH=BH,③EH=DH,④∠HAB=∠HBA.其中正确的有()
A.1个
B.2个
C.3个
D.4个
11、如图所示,要测量湖两岸相对两点A,B间的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时可得ΔABC≌ΔEDC,用于判定全等的方法是
()
A.SSS
B.SAS
C.ASA
D.AAS
12、如图所示,已知在ΔABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC等于
()
A.28°
B.59°
C.60°
D.62°
二、填空题(每小题4分,共24分)
13、.如图所示,∠1+∠2+∠3+∠4=.
14、如图所示,已知在ΔABC中,CF,BE分别是AB,AC边上的中线,若AE=2,AF=3,且ΔABC的周长为15,则BC的长为.
15、等腰三角形的两边长分别为6cm和8cm,则这个三角形的周长是.
16、将一副三角板按如图所示的方式摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=.
17、如图所示,点B,F,C,E在同一直线上,且BF=CE,∠B=∠E.请你只添加一个边相等或角相等的条件(不再添加辅助线),使ΔABC≌ΔDEF.你添加的条件是.
18、如图所示,在ΔABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=64,且BD∶CD=9∶7,则点D
到AB边的距离为.
2017年下学期八年级数学月考试卷答卷
一、选择题(每小题4分,共48分)
题号123456789101112
答案
二、填空题(每小题4分,共24分)
13、14、. 15、.
16、. 17、 . 18、.
三、解答题(共48分)
19、(6分)如图所示,DE∥BC交AB,AC于D,E两点,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A的度数。
20、(8分)如图所示,已知ΔABC≌ΔDEF,AF=5 cm.
(1)求CD的长.
(2)AB与DE平行吗?为什么?
解:(1)∵ΔABC≌ΔDEF(已知),
∴AC=DF(),
∴AC-FC=DF-FC(等式性质),
即=.
∵AF=5 cm,
∴=5 cm.
(2)∵ΔABC≌ΔDEF(已知),
∴∠A=(),
∴AB∥()
21、(6分)ΔABC中,∠ABC=∠ACB,BD⊥AC,CE⊥AB,D,E分别为垂足,那么ΔBCD与ΔCBE全等吗?为什么?
22、(8分)如图所示,在ΔABC中,∠C=90° DE⊥AB于D,交AC于E,若BC=BD,AC=5 cm,则
AE+ED的长。
23、(8分)如图所示,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D.
(1)求证ΔACD≌ΔCBE.
(2)求证BE=AD-DE
24(12分)如图所示,过线段AB的两个端点作射线AM,BN,使AM∥BN,∠MAB和∠NBA的平分线交于
点E,过点E作一直线垂直于AM,垂足为点D,交BN于点C.
(1)观察DE,EC,你有什么发现?请证明你的结论;
(2)请你再研究AD+BC与AB的关系,并给予证明.。