AD精度和分辨率的区别
AD、DA器件的精度

AD、DA器件的精度沈阳单片机开发网――帮您精确掌握电子器件的使用细节AD、DA器件的精度几乎所有的教科书、参考书、文献选编都只关心模数器件的分辨率和速度,而忽略了器件的精度。
而关系到器件精度的两个非常重要的参数就是INL值和DNL值。
知道INL、DNL 这两个参数意义的朋友并不多。
说精度之前,首先要说分辨率。
分辨率决不等同于精度。
比如一块精度0.2%(或常说的准确度0.2级)的四位半万用表,测得A点电压1.0000V,B电压1.0005V,可以分辨出B 比A高0.0005V,但A点电压的真实值可能在0.9980~1.0020之间不确定。
那么,既然数字万用表存在着精度和分辨率两个指标,那么,对于ADC和DAC,除了分辨率以外,也存在精度的指标。
模数器件的精度指标是用积分非线性度(Interger NonLiner)即INL值来表示。
也有的器件手册用Linearity error 来表示。
他表示了ADC器件在所有的数值点上对应的模拟值,和真实值之间误差最大的那一点的误差值。
也就是,输出数值偏离线性最大的距离。
单位是LSB (即最低位所表示的量)。
比如12位ADC:__,INL值为1LSB。
那么,如果基准4.095V,测某电压得的转换结果是1000,那么,真实电压值可能分布在0.999~1.001V之间。
对于DAC也是类似的。
比如__,INL值为8LSB,那么,如果基准4.095V,给定数字量1000,那么输出电压可能是0.992~1.008V之间。
下面再说DNL值。
理论上说,模数器件相邻量个数据之间,模拟量的差值都是一样的。
就相一把疏密均匀的尺子。
但实际并不如此。
一把分辨率1毫米的尺子,相邻两刻度之间也不可能都是1毫米整。
那么,ADC相邻两刻度之间最大的差异就叫差分非线性值(Differencial NonLiner)。
DNL值如果大于1,那么这个ADC甚至不能保证是单调的,输入电压增大,在某个点数值反而会减小。
AD的静态误差指标

AD 的静态误差指标的静态误差指标 分辩率分辩率(Resolution) (Resolution)指数字量变化一个最小量时模拟信号的变化量 定义为满刻度与2n 的比值。
分辨率可以采用若干不同的方式表达 包括最低有效位(LSB)、百万分之一满刻度(ppm FS)、毫伏(mV)。
量化误差 (Quantizing Error)由于AD 的有限分辩率而引起的误差 即有限分辩率AD 的阶梯状转移特性曲线与无限分辩率AD 理想AD 的转移特性曲线 直线 之间的最大偏差。
通常是1 个或半个最小数字量的模拟变化量 表示为1LSB、1/2LSB。
这两个参数都已经描述过了。
绝对精度绝对精度(Absolute Accuracy) (Absolute Accuracy)是指在整个刻度范围内 任一输入数码所对应的模拟量实际输出值与理论值之间的最大误差。
相对精度相对精度(Relative Accuracy)(Relative Accuracy)(Relative Accuracy)与绝对精度表示同一含义 用最大误差相对于满刻度百分比表示。
偏移误差 Offset ErrorAD 理想输出与实际输出之差 所有数字代码都存在这种误差。
在实际中 偏移误差会使传递函数或模拟输入电压与对应数值输出代码间存在一个固定的偏移。
通常计算偏移误差方法是测量第一个数字代码转换或“零”转换的电压 并将它与理论零点电压相比较。
ADC 的传输特性: D = K + GA(D 数字编码 A 模拟信号 K 和G 是常数)。
在单极性转换器中 K 是零 而在偏移双极性转换器中 K 是-1 MSB。
偏移误差是实际数值K 与其理想数值之间的偏移量。
增益误差 Gain Error预估传递函数和实际斜率的差别 增益误差通常在模数转换器最末或最后一个传输代码转换点计算。
增益误差是实际数值G与其理想数值之间的差值 并且通常被表示为两者之间的百分比差 虽然在满刻度时被定义为对总误差的增益误差贡献(单位是mV或LSB)。
ADC和DAC主要技术指标简介

2、AD转换器的主要技术指标1)分辨率(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2的比值。
分辩率又称精度,通常以数字信号的位数来表示。
2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需要的时间的倒数。
积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。
常用单位是Ksps和Msps,表示每秒采样千/百万次(kilo/Million Samples per Second)3)量化误差(Quantizing Error)由于AD的有限分辩率而引起的误差,即有限分辩率AD 的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差.通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。
4)偏移误差(Offset Error)输入信号为零时输出信号不为零的值,可外接电位器调至最小。
5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差. 6)线性度(Linearity)实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。
其它指标有:绝对精度(Absolute Accuracy),相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distortion缩写THD)和积分非线性.3、DA转换器DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类.大多数DA转换器由电阻阵列和N个电流开关(或电压开关)构成.按数字输入值切换开关,产生比例于输入的电流(或电压)。
ad芯片参数

ad芯片参数AD芯片是模拟数字转换器(Analog-to-Digital Converter)的简称,它可以将模拟信号转换为数字信号。
AD芯片通常由多个模块组成,包括模拟前端、数据转换器和数字后处理等。
下面将介绍AD芯片的一些主要参数。
首先是分辨率,它衡量了AD芯片能够将模拟信号转换为多少个不同的离散数值。
分辨率通常以位(bit)为单位进行表示,比如8位、10位、12位等。
分辨率越高,表示AD芯片能够更准确地测量模拟信号的细微变化。
其次是采样率,也称为取样率,它表示AD芯片每秒钟对模拟信号进行多少次采样。
采样率通常以赫兹(Hz)为单位表示,比如1 kHz、10 kHz、100 kHz等。
采样率越高,表示AD芯片能够更快速地对模拟信号进行采样,从而更准确地还原原始信号。
接下来是输入电压范围,它指定了AD芯片能够接受的模拟信号的电压范围。
输入电压范围通常以伏特(V)为单位表示,比如±5V、±10V等。
输入信号超出电压范围可能会导致AD芯片失真或损坏,因此在设计中需要注意选择合适的输入电压范围。
此外,AD芯片还有一些其他参数,如信噪比(SNR)、失真等。
信噪比是指在AD转换过程中,有效信号与噪声之间的比值,通常以分贝(dB)为单位表示。
信噪比越高,表示AD芯片能够更好地提取有效信号并抑制噪声。
失真是指AD芯片在信号转换过程中引入的误差,常见的失真包括量化失真、非线性失真等。
还有一些其他常见的AD芯片参数,如供电电压、功耗、工作温度范围、封装类型等。
这些参数在具体的应用中也需要考虑。
总之,AD芯片的参数涉及到分辨率、采样率、输入电压范围、信噪比、失真等多个方面,这些参数决定了AD芯片的性能和适用范围。
在选择AD芯片时,需要根据具体的应用需求来综合考虑这些参数。
AD转换原理

AD转换原理前⾔在数据采集系统中,模数转换器是其中⾄关重要的环节,模数转换器的精度以及系统的成本直接影响到系统的实⽤性,因此,如何提⾼模数转换器的精度和降低系统的成本是衡量系统是否具有实际应⽤价值的标准。
⼀般来说,想提⾼模数转换器的精度,势必会引起成本的增加,这就要求我们按照具体的精度要求合理的设计模数转换器,来达到具体的要求和降低系统的成本。
在精度要求不是很⾼的场合,我们经常利⽤嵌⼊微控制器⽚内的A/D转换器来实现模数转换,以此来降低系统的成本,但由此⼜产⽣了另外的问题,嵌⼊式模数转换器是否具有所要求的精度,若超出测量范围如何与测量电路进⾏接⼝,以及如何减⼩微控制器的电磁⼲扰提⾼嵌⼊式模数转换器的精度问题。
这都要求我们采取不同的措施来提⾼嵌⼊式模数转换器的精度。
1 精度与分辨率ADC的精度和分辨率是两个不同的概念。
精度是指转换器实际值与理论值之间的偏差;分辨率是指转换器所能分辨的模拟信号的最⼩变化值。
ADC分辨率的⾼低取决于位数的多少。
⼀般来讲,分辨率越⾼,精度也越⾼,但是影响转换器精度的因素很多,分辨率⾼的ADC,并不⼀定具有较⾼的精度。
精度是偏移误差、增益误差、积分线性误差、微分线性误差、温度漂移等综合因素引起的总误差。
因量化误差是模拟输⼊量在量化取整过程中引起的,因此,分辨率直接影响量化误差的⼤⼩,量化误差是⼀种原理性误差,只与分辨率有关,与信号的幅度,采样速率⽆关,它只能减⼩⽽⽆法完全消除,只能使其控制在⼀定的范围之内,⼀般在±1/2LSB范围内。
1.1 偏移误差偏移误差是指实际模数转换曲线中数字0的代码中点与理想转换曲线中数字0的代码中点的最⼤差值电压。
这⼀差值电压称作偏移电压,⼀般以满量程电压值的百分数表⽰。
在⼀定温度下,多数转换器可以通过对外部电路的调整,使偏移误差减⼩到接近于零,但当温度变化时,偏移电压⼜将出现,这主要是由于输⼊失调电压及温漂造成的。
⼀般来说,温度变化较⼤时,要补偿这⼀误差是很困难的。
AD_DA原理及主要技术指标

AD_DA原理及主要技术指标AD(模数转换器)与DA(数模转换器)是数字信号处理中常用的模拟转换器。
AD将模拟信号转换为数字信号,而DA则将数字信号转换为模拟信号。
两者在数字系统与模拟系统之间起着重要的桥梁作用。
本文将介绍AD_DA的原理及主要技术指标。
AD原理:AD原理基于采样定理,即将连续时间的模拟信号转换为离散时间的数字信号。
在AD转换过程中,首先通过取样器获取模拟信号的离散样点,然后由量化器将取样点量化为离散的数字信号。
主要技术指标:1.量化精度:量化精度决定了AD转换器的分辨率,以位数表示,常见的有8位、10位、12位、16位等。
位数越大,分辨率越高,对信号的重建越精准。
2.采样率:采样率指的是AD转换器每秒采样的次数,常用单位为Hz。
采样率要满足采样频率大于信号频率两倍以上的采样定理,否则会产生混叠效应。
3.带宽:AD转换器的带宽是指转换器能够正确采样和重建信号的频率范围。
带宽越大,能够处理的信号频率范围越宽。
4.功耗:功耗是指AD转换器在工作过程中消耗的电能。
低功耗的AD转换器具有节能环保的特点。
5.采样保持电路:采样保持电路对模拟信号进行采样并保持,以确保量化器能够准确对信号进行量化,有利于提高AD转换器的性能。
DA原理:DA原理是将数字信号转换为模拟信号的过程。
在DA转换过程中,首先通过数值控制器获得数字信号,然后由DA转换器将数字信号转换为模拟信号输出。
主要技术指标:1.分辨率:分辨率是指DA转换器的数字输入可以表示的最小幅度变化。
分辨率越高,输出模拟信号的精度越高。
2.采样率:采样率指的是DA转换器每秒从数字输入读取的次数,常用单位为Hz。
采样率决定了DA转换器能够输出多少个模拟信号样本。
3.输出精度:输出精度指的是DA转换器输出模拟信号与所期望模拟信号之间的偏差。
输出精度越高,输出模拟信号的准确性越高。
4.失真度:失真度是指DA转换器输出的模拟信号与原始模拟信号之间的差异。
分辨率与精度

分辨率与精度的区别2010-10-07 10:28:37很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。
我们搞编码器制做和销售的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。
简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。
从定义上看,这两个量应该是风马牛不相及的。
(是不是有朋友感到愕然^_^)。
很多卖传感器的JS就是利用这一点来糊弄人的了。
简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。
那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。
当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。
我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!)所以在这里利用这个例子帮大家把这两个概念理一下,以后大家就可以理直气壮的说精度和分辨率了,而不是将精度理解为分辨率。
呵呵,希望对大家有用!^_^加工精度是加工后零件表面的实际尺寸、形状、位置三种几何参数与图纸要求的理想几何参数的符合程度。
理想的几何参数,对尺寸而言,就是平均尺寸;对表面几何形状而言,就是绝对的圆、圆柱、平面、锥面和直线等;对表面之间的相互位置而言,就是绝对的平行、垂直、同轴、对称等。
零件实际几何参数与理想几何参数的偏离数值称为加工误差。
加工精度与加工误差都是评价加工表面几何参数的术语。
加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。
加工精度高,就是加工误差小,反之亦然。
任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。
AD转换器主要技术指标

AD转换器的主要技术指标1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。
分辩率又称精度,通常以数字信号的位数来表示。
2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。
积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。
常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。
3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。
通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。
4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。
5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。
6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。
其他指标还有:绝对精度(Absolute Accuracy) ,相对精度(Re lative Accuracy),微分非线性,单调性和无错码,总谐波失真(T otal Harmonic Distotortion缩写THD)和积分非线性。
AD的选择,首先看精度和速度,然后看是几路的,什么输出的比如SPI或者并行的,差分还是单端输入的,输入范围是多少,这些都是选AD需要考虑的。
DA呢,主要是精度和输出,比如是电压输出啊,4-20mA电流输出啊,等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最近做了一块板子,当然考虑到元器件的选型了,由于指标中要求精度比较高,所以对于AD的选型很慎重。
很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。
我们搞电子开发的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。
简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。
从定义上看,这两个量应该是风马牛不相及的。
(是不是有朋友感到愕然^_^)。
很多卖传感器的JS就是利用这一点来糊弄人的了。
简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。
那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。
当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。
我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!)
回到电子技术上,我们考察一个常用的数字温度传感器:AD7416。
供应商只是大肆宣扬它有10位的AD,分辨率是1/1024。
那么,很多人就会这么欣喜:哇塞,如果测量温度0-100摄氏度,100/1024……约等于0.098摄氏度!这么高的精度,足够用了。
但是我们去浏览一下AD7416的数据手册,居然发现里面赫然写着:测量精度0.25摄氏度!所以说分辨率跟精度完全是两回事,在这个温度传感器里,只要你愿意,你甚至可以用一个14位的AD,
获得1/16384的分辨率,但是测量值的精度还是0.25摄氏度^_^
AD的参考电压为VREF,则AD理论上能测到的最小电压值为分辨率*VREF。
实际上还跟精度有关系。
所以很多朋友一谈到精度,马上就和分辨率联系起来了,包括有些项目负责人,只会在那里说:这个系统精度要求很高啊,你们AD的位数至少要多少多少啊……
其实,仔细浏览一下AD的数据手册,会发现跟精度有关的有两个很重要的指标:DNL和INL。
似乎知道这两个指标的朋友并不多,所以在这里很有必要解释一下。
DNL:DifferencialNonLiner——微分非线性度
INL:IntergerNonLiner——积分非线性度(精度主要用这个值来表示)
他表示了ADC器件在所有的数值点上对应的模拟值,和真实值之间误差最大的那一点的误差值。
也就是,输出数值偏离线性最大的距离。
单位是LSB(即最低位所表示的量)。
当然,像有的AD如△—∑系列的AD,也用Linearity error 来表示精度。
为什么有的AD很贵,就是因为INL很低。
分辨率同为12bit的两个ADC,一个INL=±3LSB,而一个做到了±1.5LSB,那么他们的价格可能相差一倍。
所以在这里帮大家把这两个概念理一下,以后大家就可以理直气壮的说精度和分辨率了,而不是将精度理解为分辨率。
呵呵,希望对大家有用!^_^。