高考典型例题等效重力场
高考物理 模型系列之算法模型 专题10 等效重力场模型学案

专题10 等效重力场模型模型界定物体在运动过程中所受的外力包含有恒定的场力作用,如匀强电场中的电场力、匀强磁场中恒定电流与磁场间方向关系不变时所受的安培力等,可将其与重力的合力作为一个"等效重力",然后利用重力场中的相关结论来解决的一类问题.模型破解(i)在等效重力场中平衡的液体,其液面与等效重力方向垂直.例1.粗细均匀的U形管内装有某种液体,开始静止在水平面上,如图所示,已知:L=10cm,当此U形管以4m/s2的加速度水平向右运动时,求两竖直管内液面的高度差。
()【答案】0.04m(ii).在等效重力场中,从斜面上某点由静止释放的物体,当等效重力与水平方向的夹角大于等于斜面倾角时物体可静止于斜面上或沿面运动;当等效重力与水平方向的夹角小于斜面倾角时物体将沿等效重力方向做类自由落体的匀加速直线运动.例2.如图,一质量为m的小物块带正电荷Q,开始时让它静止在倾角θ的固定光滑斜面顶端,整个装置放在场强大小为E=mg/Q、方向水平向左的匀强电场中,斜面高为H,释放物块后,求在斜面倾角分别为300与600一情况下物块到达水平地面时的速度大小为多少?(重力加速度为g)【答案】【解析】物体受到恒定的电场力与重力两个场力的作用,其合力即"等效重力"的大小为,方向与水平方向间夹角满足,即.将整个空间沿逆时针转过450角,如图所示.由图可以看出,当θ=300时,物体沿斜面下滑到地面,由动能定理(或"等效机械能"守恒)有,可得;当θ=600时,物体沿等效重力的方向做类自由落体运动,同理可得.(iii)沿任意方向以相同动能抛出的物体,只有等效重力做功时,沿等效重力方向通过位移最大的物体动能改变量最大例3.如图所示,ab是半径为R的圆的一条直径,该圆处于匀强电场中,匀强电场与圆周在同一平面内。
现在该平面内,将一带正电的粒子从a点以相同的动能抛出,抛出方向不同时,粒子会经过圆周上不同的点,在这些所有的点中,到达c点时粒子的动能最大。
【高考物理】等效重力场的应用

等效重力场的应用在处理一些不是很熟悉的问题时,若能类比熟悉的模型和方法,将较为生疏、不方便处理的问题,转化为熟悉的模型,使用类似的方法来处理,往往可以创造性的解决很多问题。
等效法属于这种创造性解决问题的方法之一,高中物理中但凡涉及恒力、恒定加速度类问题时,若能采取等效重力场——类比重力场中的问题的方式处理,往往可以迅速找到解决问题的突破口。
一、加速运动体系中的等效重力场加速运动体系的典型代表是竖直加速或减速的升降机和水平加速或减速的车辆,当讨论这样的体系中物体所受的弹力、压力、浮力或相对运动等问题,选升降机或者车辆为参考系,引入等效重力场,就可以将运动体系内的问题转化为静止参考系下的问题,从而类比重力场中的静止参考系下问题的处理方法,将复杂问题简化处理。
1、超重失重问题的一种理解方式由牛顿第二定律和牛顿第三定律可知,当升降机具有向上的加速度a 时,其内质量为m 的物体对升降机的压力为N F mg ma =+,此即超重现象;当升降机具有向下的加速度a 时,其内质量为m 的物体对升降机的压力为N F mg ma =-,此即失重现象。
对这个现象,我们可以这样理解:选升降机为参考系,物体静止,如果我们引入等效重力G mg ''=,超重中g g a '=+,失重中g g a '=-,则在升降机参考系中,用平衡条件N 0F mg ''-=和牛顿第三定律N N F F '=即可计算物体对升降机的压力N F G mg ''==。
我们还可以进一步理解成这样:升降机加速度向上,则等效重力G '在原来G 的基础上向下..“超重”了ma ,故G mg mg ma ''==+;升降机加速度向下,则等效重力G '在原来G 的基础上向上..“超重”了ma ,故矢量合成结果是G mg mg ma ''==-。
高考典型例题:等效重力场

高考典型例题:等效重力场标准化工作室编码[XX968T-XX89628-XJ668-XT689N]运用等效法巧解带电粒子在匀强电场中的运动一、等效法将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法。
中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力 等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、题型归类(1)单摆类问题(振动的对称性)例1、如图2-1所示`,一条长为L 的细线上端固定在O点,下端系一个质量为m 的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α。
求:当悬线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零运动特点:小球在受重力、电场力两个恒力与不做功的细线拉力作用下的运动, 对应联想:在重力场只受重力与细线拉力作用下的运动的模型:单摆模型。
等效分析:对小球在B 点时所受恒力力分析(如图2-2),将重力与电场力等效为一个恒力,将其称为等效重力可得:αcos mg g m =',小球就做只受“重力”mg ′与绳拉力运动,可等效为单摆运动。
规律应用:如图2-3所示,根据单摆对称运动规律可得,B 点为振动的平衡位置,竖直位置对应小球速度为零是最大位移处,另一最大位移在小球释放位置,根据振动对称性即可得出,当悬线与竖直线的夹角满足αβ2=,小球从这一位置静止释放后至细线到竖直位置时,小球速度恰好为零。
“等效重力场”解答匀强电场题目[整理版]
![“等效重力场”解答匀强电场题目[整理版]](https://img.taocdn.com/s3/m/91099f70a88271fe910ef12d2af90242a895ab4d.png)
解题应用1.解直线运动例1 如图1所示,在离坡顶为l 的山坡上的C 点树直固定一根直杆,杆高也是L 。
杆上端A 到坡底B 之间有一光滑细绳,一个带电量为q 、质量为m 的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角 30=θ。
若物体从A 点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间。
(2/10s m g =,60.037sin = ,80.037cos = )解析 因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向。
建立“等效重力场”如图2所示,“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30,大小:30cos gg ='带电小球沿绳做初速度为零,加速度为g '的匀加速运动30cos 2L S AB = ①221t g S AB '=②由①②两式解得gL t 3=2.解抛类运动例3 如图3所示,在电场强度为E 的水平匀强电场中,以初速度为0v 竖直向上发射一个质量为m 、带电量为+q 的带电小球,求小球在运动过程中具有的最小速度。
解析 建立等效重力场如图4所示,等效重力加速度g 'E图1图2设g '与竖直方向的夹角为θ,则θcos g g ='其中22arcsin )()(mg qE qE +=θ则小球在“等效重力场”中做斜抛运动θsin 0v v x = θc o s 0v v y = 当小球在y 轴方向的速度减小到零,即0=y v 时,两者的合速度即为运动过程中的最小速度2200min sin )()(qE mg qEv v v v x +===θ例 4 如图5-1所示,匀强电场水平向右,310=E N/C ,一带正电的油滴的质量5100.2-⨯=m kg ,电量5100.2-⨯=q C 。
在A 点时速度大小为20=v m/s ,方向为竖直向上,则油滴在何时速度最小且求出最小速度?3.解振动类例5 如图5所示,让单摆处在电场强度为E ,方向水平向右的匀强电场中,让摆球带上q 的电量,求单摆的周期。
用“等效法”处理带电粒子在电场和重力场中的运动

用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.【题型1】在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B 点的初速度多大?【题型2】如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)【题型3】如图所示,一质量为m1=1 kg,带电荷量为q=+0.5 C的小球以速度v0=3 m/s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A点沿切线落入竖直光滑圆弧轨道ABC,圆弧轨道ABC的形状为半径R<3 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点竖直线OO′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g=10 m/s2)求:(1)两极板间的电势差大小U;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R的取值应满足的条件.【题型4】如图所示,竖直平面内的直角坐标系O–xy中,第二象限内有一半径为R的绝缘光滑管道,其圆心坐标为(0,R),其底端与x轴相切于坐标原点处,其顶端与y轴交于B点(0,2R);第一象限内有一与x轴正方向夹角为45°、足够长的绝缘光滑斜面,其底端坐标为(R,0);x轴上0≤x≤R范围内是水平绝缘光滑轨道,其左端与管道底端相切、右端与斜面底端平滑连接;在第二象限内有场强大小E1=3mg、方向水平向右的匀强电场区域Ⅰ;在第一象限内x≥R范围内有场强大小E2=mgq、方向水平向左的匀强电场区域Ⅱ。
2021高考物理模型系列之算法模型专题10等效重力场模型学案

2021高考物理模型系列之算法模型专题10等效重力场模型学案模型界定物体在运动过程中所受的外力包含有恒定的场力作用,如匀强电场中的电场力、匀强磁场中恒定电流与磁场间方向关系不变时所受的安培力等,可将其与重力的合力作为一个"等效重力",然后利用重力场中的相关结论来解决的一类问题.模型破解(i)在等效重力场中平稳的液体,其液面与等效重力方向垂直.例1.粗细平均的U形管内装有某种液体,开始静止在水平面上,如图所示,已知:L=10cm,当此U形管以4m/s2的加速度水平向右运动时,求两竖直管内液面的高度差。
()【答案】0.04m(ii).在等效重力场中,从斜面上某点由静止开释的物体,当等效重力与水平方向的夹角大于等于斜面倾角时物体可静止于斜面上或沿面运动;当等效重力与水平方向的夹角小于斜面倾角时物体将沿等效重力方向做类自由落体的匀加速直线运动.例2.如图,一质量为m的小物块带正电荷Q,开始时让它静止在倾角θ的固定光滑斜面顶端,整个装置放在场强大小为E=mg/Q、方向水平向左的匀强电场中,斜面高为H,开释物块后,求在斜面倾角分别为300与600一情形下物块到达水平地面时的速度大小为多少?(重力加速度为g)【答案】【解析】物体受到恒定的电场力与重力两个场力的作用,其合力即"等效重力"的大小为,方向与水平方向间夹角满足,即.将整个空间沿逆时针转过450角,如图所示.由图能够看出,当θ=300时,物体沿斜面下滑到地面,由动能定理(或"等效机械能"守恒)有,可得;当θ=600时,物体沿等效重力的方向做类自由落体运动,同理可得.(iii)沿任意方向以相同动能抛出的物体,只有等效重力做功时,沿等效重力方向通过位移最大的物体动能改变量最大例3.如图所示,ab是半径为R的圆的一条直径,该圆处于匀强电场中,匀强电场与圆周在同一平面内。
现在该平面内,将一带正电的粒子从a点以相同的动能抛出,抛出方向不同时,粒子会通过圆周上不同的点,在这些所有的点中,到达c点时粒子的动能最大。
“等效重力场”模型(解析版)--2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法“等效重力场”模型目录一.“等效重力场”模型解法综述二.“等效重力场”中的直线运动模型三.“等效重力场”中的抛体类运动模型四.“等效重力场”中的单摆类模型五.“等效重力场”中的圆周运动类模型一.“等效重力场”模型解法综述将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法.中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)“等效重力场”建立方法--概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系.具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二.“等效重力场”中的直线运动模型【运动模型】如图所示,在离坡底为L的山坡上的C点树直固定一根直杆,杆高也是L.杆上端A到坡底B之间有一光滑细绳,一个带电量为q、质量为m的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角θ=30º.若物体从A点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间.(g=10m/s2,sin37º=0.6,cos37º=0.8)因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向.建立“等效重力场”如图所示“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30°,大小:g =gcos30°带电小球沿绳做初速度为零,加速度为g 的匀加速运动S AB=2L cos30° ①S AB=12g t2 ②由①②两式解得t=3L g“等效重力场”的直线运动的几种常见情况匀速直线运动匀加速直线运动匀减速直线运动1如图所示,相距为d的平行板A和B之间有电场强度为E、方向竖直向下的匀强电场.电场中C点距B板的距离为0.3d,D点距A板的距离为0.2d,有一个质量为m的带电微粒沿图中虚线所示的直线从C点运动至D点,若重力加速度为g,则下列说法正确的是()A.该微粒在D点时的电势能比在C点时的大B.该微粒做匀变速直线运动C.在此过程中电场力对微粒做的功为0.5mgdD.该微粒带正电,所带电荷量大小为q=mg E【答案】 C【解析】 由题知,微粒沿直线运动,可知重力和电场力二力平衡,微粒做匀速直线运动,微粒带负电,B、D 错误;微粒从C点运动至D点,电场力做正功,电势能减小,A错误;此过程中电场力对微粒做的功为W= Fx=mg(d-0.3d-0.2d)=0.5mgd,C正确.2(2023·全国·高三专题练习)AB、CD两块正对的平行金属板与水平面成30°角固定,竖直截面如图所示。
高考典型例题等效重力场
高考典型例题等效重力场Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】1、如图所示,在水平方向的匀强电场中的O 点,用长为l的轻、软绝缘细线悬挂一质量为m 的带电小球,当小球位于B 点时处于静止状态,此时细线与竖直方向(即OA 方向)成θ角.现将小球拉至细线与竖直方向成2θ角的C 点,由静止将小球释放.若重力加速度为g ,则对于此后小球的受力和运动情况,下列判断中正确的是 A .小球所受电场力的大小为mg tan θB .小球到B 点的速度最大C .小球可能能够到达A 点,且到A 点时的速度不为零D .小球运动到A 点时所受绳的拉力最大2、、半径R=0.8m 的光滑绝缘导轨固定于竖直面内,加上某一方向的匀强电场后,带电小球沿轨道内侧做圆周运动,小球动能最大的位置在A 点,圆心O 与A 点的连线与竖直方向的夹角为θ,如图所示.在A 点时小球对轨道的压力F N =120N ,若小球的最大动能比最小动能多32J ,且小球能够到达轨道上的任意一点(不计空气阻力).试求:(1)小球最小动能等于多少(2)若小球在动能最小位置时突然撤去轨道,并保持其他量不变,则小球经 时间后,其动能与在A 点时的动能相等,小球的质量是多少3、如图14所示,ABCD 为表示竖立放在场强为E=104V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切A 为水平轨道的一点,而且.2.0m R AB ==把一质量m=100g 、带电q=10-4C 的小球,放在水平轨道的A 点上面由静止开始被释放后,在轨道的内侧运动。
(g=10m/s 2)求:(1)它到达C 点时的速度是多大(2)它到达C 点时对轨道压力是多大(3)小球所能获得的最大动能是多少4、水平放置带电的两平行金属板,相距d,质量为m 的微粒由板中间以某一初速平行于板的方向进入,若微粒不带电,因重力作用在离开电场时,向下偏转d/4,若微粒带正电,电量为q ,仍以相同的初速度进入电场,微粒恰好不再射出电场,则两板的电势差应为多少并说明上下板间带电性5、如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。
(完整word版)高考典型例的题目:等效重力场
1、如图所示,在水平方向的匀强电场中的O 点,用长为l 的轻、软绝缘细线悬挂一质量为m 的带电小球,当小球位于B 点时处于静止状态,此时细线与竖直方向(即OA 方向)成θ角.现将小球拉至细线与竖直方向成2θ角的C 点,由静止将小球释放.若重力加速度为g ,则对于此后小球的受力和运动情况,下列判断中正确的是A .小球所受电场力的大小为mg tan θB .小球到B 点的速度最大C .小球可能能够到达A 点,且到A 点时的速度不为零D .小球运动到A 点时所受绳的拉力最大2、、半径R=0.8m 的光滑绝缘导轨固定于竖直面内,加上某一方向的匀强电场后,带电小球沿轨道内侧做圆周运动,小球动能最大的位置在A 点,圆心O 与A 点的连线与竖直方向的夹角为θ,如图所示.在A 点时小球对轨道的压力F N =120N ,若小球的最大动能比最小动能多32J ,且小球能够到达轨道上的任意一点(不计空气阻力).试求: (1)小球最小动能等于多少?(2)若小球在动能最小位置时突然撤去轨道,并保持其他量不变,则小球经 0.04s 时间后,其动能与在A 点时的动能相等,小球的质量是多少?3、如图14所示,ABCD 为表示竖立放在场强为E=104V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切A 为水平轨道的一点,而且.2.0m R AB ==把一质量m=100g 、带电q=10-4C 的小球,放在水平轨道的A 点上面由静止开始被释放后,在轨道的内侧运动。
(g=10m/s 2)求:(1)它到达C 点时的速度是多大? (2)它到达C 点时对轨道压力是多大? (3)小球所能获得的最大动能是多少?4、水平放置带电的两平行金属板,相距d,质量为m 的微粒由板中间以某一初速平行于板的方向进入,若微粒不带电,因重力作用在离开电场时,向下偏转d/4,若微粒带正电,电量为q ,仍以相同的初速度进入电场,微粒恰好不再射出电场,则两板的电势差应为多少?并说明上下板间带电性?5、如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。
等效重力场
例题六:C 从距地面高为H 的A 点平抛一物体,其水平射程为2s ,在A 的正上方距地面高2H 的B 点,以同方向抛出另一物体,其水平射程为s ,两物体在空中运动的轨迹在同一竖直面内,且都从同一屏的顶端擦过,求该屏的高度。
等效重力场例1:用长为L 的细线把一个小球悬挂在倾角为θ的光滑斜面上,然后将小球偏离自然悬挂的位置拉到A 点,偏角α≤5°,如图5所示.当小球从A 点无初速释放后,小球在斜面上往返振动的周期为( ).2A.2/B.2n C.2s i /D π例2:如图,小球的质量为m 、带电量为q ,整个区域加一个电场强度为E 的水平方向的匀强电场,小球可在绳子与竖直方向成45°角的F 点处静止。
则(1)电场力qE =?(2)如果小球在C 点释放,则小球到达A 点的速度是多少?绳子上的拉力T A =?(3)上述过程中小球的最大速度在哪点?最大速度为多少?此时绳图5子上的拉力为多少?(4)要使小球在竖直面上作圆周运动,必须在C 点加多大的初速度? 解析:因为重力mg 与电场力qE 都是大小、方向始终不变的恒定的保守力(场力),故可以把mg 与qE 合成为一个合力()()22qE mg +,方向与竖直成mgqE =θtan 。
我们把带电小球看成是处于一个合力场中的物体,于是F 点是它在运动过程中的等效“最低点”。
这样,这个问题相当于只有重力作用下的竖直面上的圆周运动问题了,只是把解题过程中的g 替换成22cos '⎪⎭⎫ ⎝⎛+==m qE g g g θ,便可按常规进行计算了。
请同学们自己完成这个例题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用等效法巧解带电粒子在匀强电场中的运动一、等效法将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法。
中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)概念的全面类比? 为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下: ? 等效重力场重力场、电场叠加而成的复合场 等效重力重力、电场力的合力 ? 等效重力加速度等效重力与物体质量的比值 ? 等效“最低点”物体自由时能处于稳定平衡状态的位置 ? 等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 ? 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、题型归类(1)单摆类问题(振动的对称性)例1、如图2-1所示`,一条长为L 的细线上端固定在O点,下端系一个质量为m 的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α。
求:当悬线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零?运动特点:小球在受重力、电场力两个恒力与不做功的细线拉力作用下的运动,对应联想:在重力场只受重力与细线拉力作用下的运动的模型:单摆模型。
等效分析:对小球在B 点时所受恒力力分析(如图2-2),将重力与电场力等效为一个恒力,将其称为等效重力可得:αcos mgg m =',小球就做只受“重力”mg ′与绳拉力运动,可等效为单摆运动。
规律应用:如图2-3所示,根据单摆对称运动规律可得,B 点为振动的平衡位置,竖直位置对应小球速度为零是最大位移处,另一最大位移在小球释放位置,根据振动对称性即可得出,当悬线与竖直线的夹角满足αβ2=,小球从这一位置静止释放后至细线到竖直位置时,小球速度恰好为零。
针对训练:1、如图所示,在水平方向的匀强电场中的O 点,用长为l 的轻、软绝缘细线悬挂一质量为m 的带电小球,当小球位于B向(即OA 方向)成θ角.现将小球拉至细线与竖直方向成2θ角的C 静止将小球释放.若重力加速度为g 列判断中正确的是A .小球所受电场力的大小为mg tan θB .小球到B 点的速度最大图2-3图2-1C .小球可能能够到达A 点,且到A 点时的速度不为零D .小球运动到A 点时所受绳的拉力最大 答案:AB2、用长为l 的细线悬挂一质量为m ,带电荷量为+Q 的小球,将其置于水平方向向右且大小为E 的匀强电场中,如下图所示。
现将小球固定于悬点的正下方且OA l =的位置A 处,然后释放小球。
已知电场力大于重力,求悬线受到的最大拉力。
解析:小球释放后受恒力mg 、QE 和变力F T 的作用,在位置A 、B 之间做往复振动,电势能和重力势能、动能发生相互转化,则在点A 、B 之间必存在一个平衡位置(切向加速度为零),由运动的对称性可知,这个位置必然在点A 、B 中间,设为点C ,与竖直方向的夹角为θ,则tan /θ=QEmg ,等效重力加速度g g QE m g '(/)/cos =+=22θ。
设点C 为等效重力势能的零势能面,则l mv mg F mv l mg C T C / 21)cos 1( 22=-=-,θ, 3、如图2所示,一条长为L 的细线上端固定,下端拴一个质量为m 的带电小球,将它置于一方向水平向右,场强为正的匀强电场中,已知当细线离开竖直位置偏角α时,小球处于平衡状态。
图2(1)若使细线的偏角由α增大到ϕ,然后将小球由静止释放。
则ϕ应为多大,才能使细线到达竖直位置时小球的速度刚好为零?(2)若α角很小,那么(1)问中带电小球由静止释放在到达竖直位置需多少时间?解析:带电小球在空间同时受到重力和电场力的作用,这两个力都是恒力,故不妨将两个力合成,并称合力为“等效重力”,“等效重力”的大小为:αcos )()(22mg Eq mg =+,令'cos mg mg=α这里的αcos 'gg =可称为“等效重力加速度”,方向与竖直方向成α角,如图3所示。
这样一个“等效重力场”可代替原来的重力场和静电场。
图3(1)在“等效重力场”中,观察者认为从A 点由静止开始摆至B 点的速度为零。
根据重力场中单摆摆动的特点,可知αϕ2=。
(2)若α角很小,则在等效重力场中,单摆的摆动周期为gL g L T αππcos 2'2==,从A →B 的时间为单摆做简谐运动的半周期。
即gL T t απcos 2==。
4、在水平方向的匀强电场中,用长为3L 的轻质绝缘细线悬挂一质量为m 的带电小球,小球静止在A 处,悬线与竖直方向成300角,现将小球拉至B 点,使悬线水平,并由静止释放,求小球运动到最低点D 时的速度大小。
A 处时对球受力分析如右图: 且F=mgtg300=33mg, “等效”场力G ’=22)(F mg +=332mg 与T 反向 “等效”场加速度g ’=332g 从B 到C 小球在等效场力作用下做初速度为零的匀加速直线运动,S=3LV C =s g '2=2gL 所以V CX =V C sin600=gL 3V CY 在绳子拉力作用下,瞬时减小为零从C 到D 运用动能定理:W G +W F =21mV D 2--21mV CX 2V D =gL )132(+5、如图12,带正电的小球用细绳悬挂在两块无限大的平行板电容器间。
小球悬点O ,摆长为L ,摆球质量为m ,两板间距为d ,两板间加电压为U 。
今向正极板方向将摆球拉到水平位置B 然后无初速释放,小球在B 、A 间来回振动,OA 为竖直线。
求:(1)小球所带电量为多少?(2)小球最大速率为多少?(3)若要使小球能做完整的圆周运动,在B 点至少 需使小球具有多大的竖直向下的初速度?解析:⑴由题意可知小球运动的等效最低点为AB 弧的中点且电场力qE 水平向左、重力mg 竖直向下,合力的方向由O 指向AB 弧中点,即O 点左向下45° 则qE=mg ,E=U/d 得q=mgd/U⑵从上一问分析可知小球将在AB 弧中点达到最大速度V m,由B 静止运动到AB弧中点的过程,根据动能定理得212m mV=(1则V m⑶小球圆周运动的等效最高点为O 点右向上45°距离为L 处,设在B 点时具有竖直向下的速度为V B ,由动能定理得21122B mV -=()2L L +F+-OBA解得BV =6、(12西城二模)如图所示,长度为l 的轻绳上端固定在O 点,下端系一质量为m ,电荷量为+q 的小球。
整个装置处于水平向右,场强大小为qmg 43的匀强电场中。
(1)求小球在电场中受到的电场力大小F ;(2)当小球处于图中A 位置时,保持静止状态。
若剪断细绳,求剪断瞬间小球的加速度大小a ;(3)现把小球置于图中位置B 处,使OB 沿着水平方向,轻绳处于拉直状态。
小球从位置B 无初速度释放。
不计小球受到的空气阻力。
求小球通过最低点时的速度大小v 。
解析: (1)小球所受的电场力Eq F 43==?·················2分 mg Eq F 43==··················2分(2)根据平行四边形定则,小球受到的重力和电场力的的合力mg Eq F 45)()mg 22=+=(合·················2分根据牛顿第二定律ma F =合·················2分所以,小球的加速度g a 45=··············2分 (3)根据动能定理有:0212-=-mv Eql mgl ·············4分解得:22glv =·················2分(2)类平抛运动例1:水平放置带电的两平行金属板,相距d,质量为m 的微粒由板中间以某一初速平行于板的方向进入,若微粒不带电,因重力作用在离开电场时,向下偏转d/4,若微粒带正电,电量为q ,仍以相同的初速度进入电场,微粒恰好不再射出电场,则两板的电势差应为多少?并说明上下板间带电性? 解:当微粒不带电时,只受重力做平抛运动d/4=1/2gt 2,带电后,应根据极板电性不同分两种情况讨论 (1)若上极板带正电,下极板带负电(如图a )微粒水平方向仍作匀速直线运动时间为t ,竖直方向受重力和电场力均向下,竖直位移s=1/2(g+qU/md)t 2,要使 微粒不再射出电场,则s>d/2,解得U>mgd/q. (2)若上极板带负电,下极板带正电(如图b ) 分析方法上同,只是此时电场力向上,竖直位移 s=1/2(qU/md-g)t 2,要使微粒不再射出电场,则s>d/2, 解得U>3mgd/q.由于微粒不带电时能射出电场,故当重+(a) +(b)力大于电场力时,微粒一定能射出,满足条件。
(3)竖直平面内的圆周运动例1、如图3-1所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。
整个装置处于场强为E 、方向水平向右的匀强电场中。
现有一质量为m 的带正电,电量为Emgq 33=小球,要使小球能安全通过圆轨道,在O 点的初速度应为多大? 运动特点:小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受到重力、电场力,轨道作用力,且要求能安全通过圆轨道。