高三数学第二轮《数形结合》公开课教(学)案

合集下载

高三数学二轮复习专题辅导(1)数形结合精品教学案

高三数学二轮复习专题辅导(1)数形结合精品教学案

专题一】数形结合思想考情分析】在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。

从近三年新课标高考卷来看,涉及数形结合的题目略少,预测2020 年可能有所加强。

因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思维品质和数学技能的考查,是新课标高考明确的一个命题方向。

1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。

它可以使抽象的问题具体化,复杂的问题简单化。

“数缺形时少直观,形少数时难入微” ,利用数形结合的思想方法可以深刻揭示数学问题的本质。

2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查” ,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。

3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”,用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。

4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是“以形示数” ,而解析几何的方程、斜率、距离公式,向量的坐标表示则是“以数助形” ,还有导数更是数形形结合的产物,这些都为我们提供了“数形结合”的知识平台。

5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。

用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休” 。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数” 。

高中数学高考二轮复习数形结合思想教案

高中数学高考二轮复习数形结合思想教案

第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。

高三数学第二轮专题复习数形结合思想课堂资料 教案

高三数学第二轮专题复习数形结合思想课堂资料 教案

word 高三数学第二轮专题复习数形结合思想课堂资料一、基础知识整合中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何.所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种思想方法,包含“以形助数”和“以数解形”两个方面.一是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;二是借助于数的精确性和规X严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化,充分利用这种转化,寻找解题思路,可使问题化难为易、化繁为简,从而得到解决.华罗庚先生说得好:“数形本是相依倚,焉能分作两边飞;数缺形时少直觉,形缺数时难入微;数形结合百般好,隔裂分家万事休;几何代数统一体,永远联系莫分离。

数形结合思想是一种重要的解题思想,是高考命题中主要考查的一个内容.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如三角函数,向量等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y-+-=21422纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。

2018年高考数学二轮复习 考前 二 数形结合思想讲学案 理.doc

2018年高考数学二轮复习 考前 二 数形结合思想讲学案 理.doc

二、数形结合思想方法一 函数图象数形沟通法 模型解法函数图象数形沟通法,即通过函数图象来分析和解决函数问题的方法,对于高中数学函数贯穿始终,因此这种方法是最常用的沟通方法.破解此类题的关键点:①分析数理特征,一般解决问题时不能精确画出图象,只能通过图象的大概性质分析问题,因此需要确定能否用函数图象解决问题.②画出函数图象,画出对应的函数、转化的函数或构造函数的图象. ③数形转化,这个转化实际是借助函数图象将难以解决的数理关系明显化. ④得出结论,通过观察函数图象得出相应的结论.典例1 设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数.当x ∈[0,π]时,0≤f (x )≤1;当x ∈(0,π)且x ≠π2时,⎝⎛⎭⎪⎫x -π2f ′(x )>0.则函数y =f (x )-sin x 在[-3π,3π]上的零点个数为( ) A .4 B .5 C .6 D .8解析 ∵当x ∈[0,π]时,0≤f (x )≤1,f (x )是最小正周期为2π的偶函数, ∴当x ∈[-3π,3π]时,0≤f (x )≤1.∵当x ∈(0,π)且x ≠π2时,⎝⎛⎭⎪⎫x -π2f ′(x )>0,∴当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )为单调减函数;当x ∈⎣⎢⎡⎦⎥⎤π2,π时,f (x )为单调增函数, ∵当x ∈[0,π]时,0≤f (x )≤1,定义在R 上的函数f (x )是最小正周期为2π的偶函数,在同一坐标系中作出y =sin x 和y =f (x )的草图如图,由图知y =f (x )-sin x 在[-3π,3π]上的零点个数为6,故选C. 答案 C思维升华 由函数图象的变换能较快画出函数图象,应该掌握平移(上下左右平移)、翻折(关于特殊直线翻折)、对称(中心对称和轴对称)等基本转化法与函数解析式的关系. 跟踪演练1 已知函数f (x )是定义在R 上的偶函数,且f (-x -1)=f (x -1),当x ∈[-1,0]时,f (x )=-x 3,则关于x 的方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的所有实数解之和为( )A .-7B .-6C .-3D .-1答案 A解析 因为函数f (x )为偶函数,所以f (-x -1)=f (x +1)=f (x -1),所以函数f (x )的周期为2,如图,在同一平面直角坐标系内作出函数y =f (x )与y =|cos πx |的图象,由图知关于x 的方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的实数解有7个.不妨设7个解中x 1<x 2<x 3<x 4<x 5<x 6<x 7,则由图得x 1+x 2=-4,x 3+x 5=-2,x 4=-1,x 6+x 7=0,所以方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的所有实数解的和为-4-2-1+0=-7,故选A.方法二 几何意义数形沟通法 模型解法几何意义数形沟通法即在解决问题的过程中对题目中的一些代数式进行几何意义分析,将其转化为与几何结构相关的问题,通过解决几何问题达到解决代数问题的目的.此方法适用于难以直接解决的抽象问题,可利用图形使其直观化,再通过图形的性质快速解决问题.破解此类题的关键点:①分析特征,一般从图形结构、性质等方面分析代数式是否具有几何意义. ②进行转化,把要解决的代数问题转化为几何问题.③得出结论,将几何问题得出的结论回归到代数问题中,进而得出结论.典例2 如果实数x ,y 满足(x -2)2+y 2=3,则yx的最大值为( ) A.12 B.33 C.32D. 3 解析 方程(x -2)2+y 2=3的几何意义为坐标平面上的一个圆,圆心为M (2,0),半径为r =3(如图),而y x =y -0x -0则表示圆M 上的点A (x ,y )与坐标原点O (0,0)的连线的斜率.所以该问题可转化为动点A 在以M (2,0)为圆心,以3为半径的圆上移动,求直线OA 的斜率的最大值.由图可知当∠OAM 在第一象限,且直线OA 与圆M 相切时,OA 的斜率最大,此时OM =2,AM =3,OA ⊥AM ,则OA =OM 2-AM 2=1,tan ∠AOM =AMOA =3,故y x的最大值为3,故选D. 答案 D思维升华 解决此类问题需熟悉几何结构的代数形式,一般从构成几何图形的基本因素进行分析,主要有(1)比值——可考虑直线的斜率. (2)二元一次式——可考虑直线的截距. (3)根式分式——可考虑点到直线的距离. (4)根式——可考虑两点间的距离.跟踪演练2 设点P (x ,y )满足:301011x y x y x y ⎧⎪⎪⎨⎪⎪⎩+-,-+,,,≤≥≥≥则y x -x y 的取值范围是( )A.⎣⎢⎡⎭⎪⎫32,+∞B.⎣⎢⎡⎦⎥⎤-32,32C.⎣⎢⎡⎦⎥⎤-32,1 D .[-1,1]答案 B解析 作出不等式组301011x y x y x y ⎧⎪⎪⎨⎪⎪⎩+-,-+,,,≤≥≥≥所表示的可行域,如图阴影部分所示(包括边界),其中A (2,1),B (1,2),令t =y x,f (t )=t-1t,根据t 的几何意义可知,t 为可行域内的点与坐标原点连线的斜率,连接OA ,OB ,显然OA 的斜率12最小,OB 的斜率2最大,即12≤t ≤2.由于函数f (t )=t -1t 在⎣⎢⎡⎦⎥⎤12,2上单调递增,故-32≤f (t )≤32,即y x -x y 的取值范围是⎣⎢⎡⎦⎥⎤-32,32. 方法三 圆锥曲线数形沟通法 模型解法圆锥曲线数形沟通法是根据圆锥曲线中许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合思想,快速解决某些相应的问题.破解此类题的关键点:①画出图形,画出满足题设条件的圆锥曲线的图形,以及相应的线段、直线等.②数形求解,通过数形结合,利用圆锥曲线的定义、性质、直线与圆锥曲线的位置关系、圆与圆锥曲线的位置关系等进行分析与求解.③得出结论,结合题目条件进行分析,得出所要求解的结论.典例3 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点的距离之和取得最小值时,点P 的坐标为( )A.⎝ ⎛⎭⎪⎫14,-1B.⎝ ⎛⎭⎪⎫14,1 C .(1,2) D .(1,-2)解析 点P 到抛物线焦点的距离等于点P 到抛物线准线的距离,如图所示,设焦点为F ,过点P 作准线的垂线,垂足为S ,则|PF |+|PQ |=|PS |+|PQ |,故当S ,P ,Q 三点共线时取得最小值,此时P ,Q 的纵坐标都是-1,设点P 的横坐标为x 0,代入y 2=4x 得x 0=14,故点P的坐标为⎝ ⎛⎭⎪⎫14,-1,故选A.答案 A思维升华 破解圆锥曲线问题的关键是画出相应的图形,注意数和形的相互渗透,并从相关的图形中挖掘对应的信息进行研究.直线与圆锥曲线的位置关系的转化有两种,一种是通过数形结合建立相应的关系式,另一种是通过代数形式转化为二元二次方程组的解的问题进行讨论.跟踪演练3 已知抛物线的方程为x 2=8y ,F 是其焦点,点A (-2,4),在此抛物线上求一点P ,使△APF 的周长最小,此时点P 的坐标为________.答案 ⎝ ⎛⎭⎪⎫-2,12解析 因为(-2)2<8×4,所以点A (-2,4)在抛物线x 2=8y 的内部,如图所示,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B ,连接AQ ,由抛物线的定义可知,△APF 的周长为|PF |+|PA |+|AF |=|PQ |+|PA |+|AF |≥|AQ |+|AF |≥|AB |+|AF |,当且仅当P ,B ,A 三点共线时,△APF 的周长取得最小值,即|AB |+|AF |.因为A (-2,4),所以不妨设△APF 的周长最小时,点P 的坐标为(-2,y 0),代入x 2=8y ,得y 0=12,故使△APF 的周长最小的点P 的坐标为⎝ ⎛⎭⎪⎫-2,12.。

2019届高考数学二轮复习“数形结合”思想在高中数学中的应用教案(全国通用)

2019届高考数学二轮复习“数形结合”思想在高中数学中的应用教案(全国通用)

教案:数形结合思想在数学中的应用时间:2018年月日星期第节授课人:班级高班课题:数形结合思想在数学中的应用一、教学目标:1、知识目标:充分领悟数形结合思想的特点,并能灵活的应用数形结合思想解决数学问题。

2、能力目标:应用数形结合思想寻求合理简洁的解题思路,培养学生独立思考问题、灵活处理问题、快捷解决问题的能力。

3、情感目标:(1)在探究过程中,鼓励学生大胆猜测,大胆尝试,培养学生勇于创新、敢于实践的个性品质;(2)通过对问题的探究,理解事物间普遍联系与辩证统一观点,体验成功的喜悦。

二、教学重点:领悟数形结合的思想方法,培养学生灵活运用数形结合思想方法解决数学问题的能力。

三、教学难点:深入理解“数”与“形”之间相辅相成的关系,巧妙的通过“以形助数”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维。

四、教学方法:讲授法五、教学准备:教案、PPT课件六、教学过程(内容):教学环节教学内容学生活动设计意图(一)新课导入1、著名数学家华罗庚先生曾经这样说到:“数形本是两依倚,焉能分作两边飞。

数缺形时少直觉,形少数时难入微。

”这句话充分揭示了“数”与“形”的关系。

在解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。

2、数形结合思想是一种很重要的数学思想纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些数学问题,可起到事半功倍的效果。

学生通过数学家的诗句感悟数形结合思想,明晰该思想的重要性。

感悟数学思想和文化,渗透今天的教学重点(二)数形结合思想的具体应用(一)问题探究一当k为何值时,方程2220x x k+-+=(1)有两个不同的解;(2)有两个相同的解。

答案:(1)当3k<时,有两个不同的解;(2)当=3k时,有两个相同的解。

回顾:方程的根与函数图象的关系以及与函数零点的关系,过度到利用函数222y x x-=-+图象和直线y k=的交点来解决以上问题。

提问学生:如何画二次函数图象的简图?(二)问题探究二当k为何值时,方程2|22|x x k--+=有两个解?有三个解?有四个解?答案:(1)当03k k=>或时,有两个解;(2)当=3k时,有三个解;(3)当03k<<时,有四个解;利用判别式解决问题回顾已经学过的知识,解决问题学生画出二次函数图象,根据图象解决问题旧引新,加强知识的联系初步感知数形结合在解决与方程的根有关的问题中的作用进一步感知数形结合思想在解决问题中的作用(二)数形结合思想的具体应用(三)课堂练习(三)问题探究三函数()sin2sin,[0,2]f x x x xπ=+∈的图象与直线y k=有且仅有两个不同的交点,则k的取值范围是。

高三数学二轮复习 第二篇 数学思想 2.2 数形结合思想

高三数学二轮复习 第二篇 数学思想 2.2 数形结合思想
பைடு நூலகம்
A. 3 B.- 3 C. 3 D.- 3
3
3
3
【解析】选B.由于y= 1 x2 ,即x2+y2=1(y≥0),直线l 与x2+y2=1(y≥0)交于A,B两点,如图所示
S△AOB= 1·sin∠AOB≤ 1 ,且当∠AOB=90°时,S△AOB取得
2
2
最大值,此时AB= 2 ,点O到直线l的距离为 2 ,则
[1
与y=ax在区间
,1),
3
[
1,3] 3
内有
作函数f(x)= 图象如图,
ln x, 2ln
x [1,3],
x,
x
[
1
与y=ax在区间
,1),
3
[ 1,3] 3
内的
结合图象可知,
当直线y=ax与f(x)=lnx相切时, ln x 1 ,
xx
解得,x=e;此时a= 1 ;
e
(2)正确作出两个函数的图象是解决此类问题的关键, 数形结合应以快和准为原则,不要刻意去用数形结合.
【变式训练】(2016·洛阳一模)已知函数f(x)满足
f(x)=2f ( 1 ),当x∈[1,3]时,f(x)=lnx,若在区间 [1,3]
x
3
内,函数g(x)=f(x)-ax与x轴有三个不同的交点,则实数
第二讲 数形结合思想
【思想解读】 数形结合思想就是通过数与形的相互转化来解决数学 问题的思想.其应用包括以下两个方面: (1)“以形助数”,把某些抽象的数学问题直观化、生 动化,能够变抽象思维为形象思维. (2)“以数定形”,把直观图形数量化,使形更加精确.
热点1 利用数形结合思想研究零点、方程的根

高三数学公开课教案数形结合 函数 人教版

高三数学公开课教案数形结合 函数 人教版

高三数学公开课教案数形结合 函数长沙县第三中学教学目的:通过本节课的学习,使学生对如何寻找数学问题中内含的几何意义,充分利用几何图形的性质,直观、简捷地帮助解决数学问题有一定的认识和体会,对数形结合解题的思想方法有一定的了解,并能用以帮助解题。

情感与技能目标:培养学生辩证的世界观和不屈不挠的探索精神。

提高学生观察、分析问题能力和实践动手能力。

教学重点:“数形结合”解题的思想方法在解决与函数有关问题中的应用。

教学难点:“数”与“形”的转化及变量与不变量之间的关系的探索。

教学手段:多媒体辅助教学数学是研究现实世界的空间形式和数量关系的科学,数与形是数学研究的两个重要方面,在研究过程中,数形结合既是一个重要的数学思想又是一种常用的数学方法。

“数”与“形”是一对矛盾,它包括“以形助数”和“以数辅形”两个方面。

在高中阶段较多的是“以形助数”。

一般地说:“形”是具有形象,直观的特点,易于从整体上定性地分析问题,“由数想形”便于寻求思路,化难为易;“数”则具有严谨,准确的特点,能够严格论证和定量求解,“数形对照”可以弥补“形”难以精确的弊端。

“数无形时少直观,形无数时难人微",华罗庚的诗句精辟地指出了“数形结合"对数学研究和学习的重要性。

数形结合的思想简言之就是代数问题几何化,几何问题代数化,充分体现图形的直观性,代数推理的逻辑性.一练习:1.(04天津)定义在R 上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期为π,且当x ∈[0,2π]时,f(x)=sinx ,则f(53π)的值为( D )A. -12 B . 1233 解析:依据偶函数与周期函数的特征,可以画出y=f(x)的简图∴f(53π)=f(23π32.设函数f(x)= ,若f(x 0)>1,则x 0的取值范围是( D ) A. (-1,1) B.(-1,+∞)C.(-∞,-2)∪(0,+∞)D.(-∞,-1)∪(1,+∞) 3.( 05上海理16) 设定义域为为R 的函数|lg |1||()0x f x -⎧=⎨⎩1x ≠,则关于x 的方程f 2(x )+bf (x )+c = 0有7个不同的实数解的充要条件是 (C )(A) b <0且c >0; (B) b >0且c <0;(C) b <0且c =0; (D) b ≥0且c =0。

上海高三数学高考二轮复习教案思想专题之数形结合(3)含答案

上海高三数学高考二轮复习教案思想专题之数形结合(3)含答案

沪教版(上海)高中数学度高三数学二轮复习思想专题之数形结合思想③教学目标认识一些常见的数形结合题目的类型,并能熟练掌握用数形结合思想解决有关函数、方程、不等式、数列及解析几何问题【解读:数形结合题型往往更多的出现在选择、填空题中,要求学生掌握一些常见的数形结合的题型,并且掌握用数形结合的方法去解决这些有关函数、方程、不等式、数列及解析几何的问题】知识梳理1、数形结合思想:所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

2、数形结合思想常用来解决的一些问题有哪些?答:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

【解读:在讲解此块内容时,可以让学生自己回忆一些曾经做过的数形结合类的题目,并且询问学生是如何解决的,同时一起回顾在用数形结合思想中所要用到的一些数学公式和定理,巩固学生的数学基础知识;对于这部分内容学生一般是回答不完整的,对于学生没有想到的可以在讲解完本专题之后,再由老师和学生一起把它补充完整】典例精讲例1. (★★★) 已知函数()f x 是定义在(3,3)-上的奇函数,当03x <<时()f x 的图像如下图所示,那么不等式()cos 0f x x ⋅<的解集是( ).(3,)(0,1)(,3)22A ππ--.(,1)(0,1)(,3)22B ππ-- .(3,1)(0,1)(1,3)C --.(3,)(0,1)(1,3)2D π--分析:函数()f x 定义在(3,3)-上,并且是奇函数,根据奇函数图像性质可知()f x 在(3,0)-上的图像如图所示,若使()cos 0f x x ⋅<,只需()f x 与cos x 异号,即图像应分别分布在x 轴上下两侧,由图可知,有三个部分符合条件,即(,1)(0,1)(,3)22ππ--【这个问题充分考察了函数的性质与数形结合思想的完美结合,注意作图的正确性】例2. (★★★★)已知函数()f x 满足下面关系:(1)(1)(1);(2)f x f x +=-当[ 1.1]x ∈-时,2(),f x x =则方程()lg f x x =解的个数为( ).5A 个 .7B 个 .9C 个 .10D 个分析:判断方程的根的个数就是判断函数图像()y f x =与lg y x =的交点个数,画出两个函数的图像,由题意知()y f x =是以2为周期,值域为[0,1]的函数,又()lg f x x =,则(0,10]x ∈易知两图像有九个交点,故方程有九个实数根【求根的个数问题也是高考常考的一种题目类型,在讲解这个问题时,一定要帮助学生回顾常见的函数图像的画法,只有把函数图像画对了才能继续往下做】例3. (★★★★)当02x π<<时,函数21cos 28sin ()sin 2x xf x x ++=的最小值为( ).2A .23B .4C .3D分析:21cos 28sin 53cos 2()sin 2sin 2x x xy f x x x++-===,则y 为点(0,5)A 与点(sin 2,3cos3)B x x -两点连线的斜率,又点(sin 2,3cos3)B x x -的轨迹方程为sin 2(0)3cos 22x y απαα=-⎧<<⎨=⎩,即221(0)9y x x +=<,如图,当过点(0,5)A 的直线:5l y kx =+与椭圆221(0)9y x x +=<相切时,k 有最小值4【此题是一个典型的数形结合思想在解析几何问题中的应用,如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常用的有:(1)(,),(,)b na b m n a m-↔-两点连线的斜率; 22(2)()()(,),(,)a m b n a b m n -+-↔两点之间的距离;222(3),,a b c a b c +=↔为直角三角形的三边对于这类问题一定要帮助学生回顾这些公式,并掌握如何使用】例4. (★★★★)设方程112+=-k x ,试讨论k 取不同范围的值时其不同解的个数的情况.分析:我们可把这个问题转化为确定函数211y x =-与21y k =+图像交点个数的情况,因函数21y k =+表示平行于x 轴的所有直线,从图像可以直观看出 :①当1k <-时, 1y 与2y 没有交点,这时原方程无解;-1-10 X11②当1k =-时, 1y 与2y 有两个交点,原方程有两个不同的解;③当10k -<<时, 1y 与2y 有四个不同交点,原方程不同解的个数有四个;④当0k =时, 1y 与2y 有三个交点,原方程不同解的个数有三个; ⑤当0k >时1y 与2y 有两个交点,原方程不同解的个数有三个.【根的个数和参数的范围问题一直是考试喜欢考的问题之一,在讲解这题过程中要让学生体会到因为参数范围不同而产生的变化的过程】例5. (★★★)方程223,log 3xx x x +=+=的实根分别为12,x x ,则12x x +=分析:本题直接求解不好求,观察题目,联想原函数和反函数的图像性质进行数形结合,令12232,log ,3x y y x y x===-12,y y 互为反函数,其图像关于y x =对称,设1122(,3),(,3)A x x B x x --123x x ∴=-即123x x +=【本题利用了原函数与反函数的图像和性质,在讲解过程中要帮助学生复习与之相关的一些性质】 例6. (★★★★)设12125,2,13z z z z ==-=,求12z z 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华侨中学高三数学(理科)第二轮复习专题:数形结合思想教学地点:一中集美分校高三(4)班
授课教师:华侨中学王磊 2016.03.24
【思想方法概述】
数形结合的思想在每年的高考中都有所体现,它常用来研究方程根的情况,讨论函数的值域(最值)及求变量的取值围等.对这类容的选择题、填空题,数形结合特别有效.从2015年的高考题来看,数形结合的重点是研究“以形助数”.预测2016年高考中,仍然会沿用以往的命题思路,借助各种函数的图象和方程的曲线为载体,考查数形结合的思想方法,在考题形式上,不但有小题,还会有解答题,在考查的数量上,会有多个小题考查数形结合的思想方法.复习中应提高用数形结合思想解题的意识,画图不能太草,要善于用特殊数或特殊点来精确确定图形间的位置关系.
以形助数(数题形解)借助形的生动性和直观性来阐述数形之间的关系,
把形转化为数,即以形作为手段,数作为目的的解
决数学问题的数学思想.
数形结合思想通过“以
形助数,以数辅形”,使
复杂问题简单化,抽象问
题具体化,能够变抽象思
维为形象思维,有助于把
握数学问题的本质,它是
数学的规律性与灵活性
的有机结合.
以数辅形(形题数解)借助于数的精确性和规性及严密性来阐明形的某些属性,即以数作为手段,形作为目的的解决问题的数学思想.
1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.
2.运用数形结合思想分析解决问题时,要遵循三个原则:
(1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应.
(2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错.
(3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值围,特别是运用函数图象时应设法选择动直线与定二次曲线.3.数形结合思想在高考试题中主要有以下六个常考点
(1)集合的运算及Venn 图;
(2)函数及其图象;
(3)数列通项及求和公式的函数特征及函数图象;
(4)方程(多指二元方程)及方程的曲线;
(5)对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;
(6)对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用.
4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:
(1)准确画出函数图象,注意函数的定义域;
(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解;
(3)在解答题中数形结合思想是探究解题的思路时使用的,不可使用形的直观代替相关的计算和推理论证.
【例题1】. 【2015课标全国Ⅰ理15】若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩
,则y x 的最大值为 .
【变式】设点P (,)x y 为圆221x y +=上的动点.
(1) 求22(2)(1)x y +++的取值围 (2)求x y -的取值围; (3)求
12
y x ++的取值围
【规律方法】
如果参数、代数式的结构蕴含着明显的几何特征,一般考虑用数形结合的方法来解题,即所谓的几何法求解,比较常见的对应有:
(1)y =kx +b 中k 表示直线的斜率,b 表示直线在y 轴上的截距.
(2)b -n a -m
表示坐标平面上两点(a ,b),(m ,n)连线的斜率. (3)(a -m )2+(b -n )2
表示坐标平面上两点(a ,b),(m ,n)之间的距离.
只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.
【例题2】已知0 1.a <<则方程|||log |x a a x =的实根个数为
【变式】已知关于x 的方程m x x =+-542有四个不相等的实根,则实数m 的取值围为
【规律与总结】抽象的数学问题通过图象的直观性获得解题思路,以形辅数。

【例题3】(2015课标全国Ⅰ理10)已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若FQ PF 4=,则=QF ( ) A.
27 B. 3 C. 2
5 D. 2
【规律与总结】1、抛物线的定义;2、抛物线的标准方程;3、向量共线;4、数形结合
【变式】已知P 为抛物线y 2=4x 上的一个动点,Q 为圆x 2+(y -4)2
=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线的距离之和最小值是( )
A .5
B .8 C.17-1 D.5+2
【课时练习】 1.设函数⎪⎩⎪⎨⎧-=-2112)(x
x f x 00>≤x x ,若1)(0>x f ,则0x 的取值围是( )
(A )(1-,1) (B )(1-,∞+)
(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)
2.设命题甲:03<<x ,命题乙:||x -<14,则甲是乙成立的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 不充分也不必要条件
3.函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( )
A .a >0,b <0,c >0,d >0
B .a >0,b <0,c <0,d >0
C .a <0,b <0,c <0,d >0
D .a >0,b >0,c >0,d <0
4.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )
A .{x |-1<x ≤0}
B .{x |-1≤x ≤1}
C .{x |-1<x ≤1}
D .{x |-1<x ≤2}
5.【2015高考,理6】若变量x ,y 满足约束条件⎪⎩
⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为
( )
A .531 B. 6 C. 5
23 D. 4 6. 【2015高考新课标2,理11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )
A 5.2 C 32
7.(2016届高三·四校联考)已知y =f (x )为偶函数,当x ≥0时,f (x )=-x 2
+2x ,则满足f (f (a ))=12的实数a 的个数为( )
A .8
B .6
C .4
D .2 8.当x ∈(1,2)时,(x -1)2<log a x 恒成立,则a 的取值围为________.
9.已知x ,y 满足条件x 216+y 2
25
=1,求y -3x 的最大值与最小值.
10. 函数2222613y x x x x =-+-+___________.。

相关文档
最新文档