中考数学专题复习:弦切角
中考数学复习圆的补充定理

切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条 切线的夹角.即:AP=BP,OP平分∠APB。 切割线定理: 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例 中项。即:AP²=PB·PC
做题思路:(1)连结AB,根据弦切角定理可得出,∠PAB=∠E,根据 BE2=DE·EA.可得出△BDE与△EBA相似,可得出∠EBD=∠EAB。即可 得。 (2)根据切割线定理和D是PC的中点易得出B是PD的中点,再根据相交 弦定理即可。
5.如图,C为AB的中点,BCDE是以BC为一边的 正方形,以B为圆心,BD为半径的圆与AB及其延
长线相交于H、K。求证:AH·AK=2AC2.
做题思路:连结AD证明AD是圆B 的切长线上的一点,PA 和⊙O相切于A,若PA=15,PB=5. (1)求tan∠ABC的值; (2)弦AD使∠BAD=∠P,求AD的长.
专题练习
1.四边形ABCD的四个顶点都在⊙O上,且∠ A︰∠ B ︰ ∠C =2︰ 1︰4,则∠D=______°. 2.如图, AB是⊙O的直径,C、D是圆上的两点,连结AC、CD,作 射线AD,若∠BAC=20°,求∠CDE的度数.
3.如图,在⊙O中,P是弦AB上一点,OP⊥PC,PC交⊙O于C.求证: PC2=PA·PB 4.如图,已知PAB是⊙O的割线,PO=14cm,PA=4cm,AB= 16cm.求⊙O的半径.
圆的补充定理
补充定理:
1.相交弦定理 2.弦切角定理 3.切线长定理 4.切割线定理 5.平行弦定理 6.连心线性质定理 7.圆内接四边形定理
2019年中考数学知识点精选提高练习:弦切角定理(圆)(附解析答案)

2019年中考数学知识点过关培优训练:弦切角定理(圆)一.选择题1.如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D的度数是()A.50°B.55°C.60°D.65°2.如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?()A.97°B.104°C.116°D.142°3.点P是⊙O外一点,PA、PB分别切⊙O于点A、B,∠P=70°,点C是⊙O上的点(不与点A、B重合),则∠ACB等于()A.70°B.55°C.70°或110°D.55°或125°4.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()A.50°B.60°C.100°D.120°5.如图,AB是⊙O的直径,DE为⊙O的切线,切点为B,点C在⊙O上,若∠CBE=40°,则∠A的度数为()A.30°B.40°C.50°D.60°6.如图,直线AD与△ABC的外接圆相切于点A,若∠B=60°,则∠CAD等于()A.30°B.60°C.90°D.120°7.如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于()A.40°B.50°C.60°D.70°8.如图,四边形ABCD内接于⊙O,AB=BC.AT是⊙O的切线,∠BAT=55°,则∠D等于()A.110°B.115°C.120°D.125°9.如图,AB为⊙O的直径,C、D为⊙O上的点,直线MN切⊙O于C点,图中与∠BCN互余的角有()A.1个B.2个C.3个D.4个10.已知:如图,E是相交两圆⊙M和⊙N的一个交点,且ME⊥NE,AB为外公切线,切点分别为A,B 连接AE,BE,则∠AEB的度数为()A.145°B.140°C.135°D.130°二.填空题11.已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A 的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=度.12.如图,已知AB是⊙O的直径,PC切⊙O于点C,∠PCB=35°,则∠B等于度.13.如图PA切⊙O于点A,∠PAB=30°,则∠AOB=度,∠ACB=度.14.如图,PA、PB切⊙O于点A、B,AC是⊙O的直径,且∠BAC=35°,则∠P=度.15.如图,已知直线CD与⊙O相切于点C,AB为直径.若∠BCD=35°,则∠ABC的大小等于度.16.如图四边形ABCD内接于⊙O,AB为直径,PD切⊙O于D,与BA延长线交于P点,已知∠BCD=130°,则∠ADP=.17.已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD 与直线AB交于点P,则∠ADP的度数为.18.如图,PA、PB分别是⊙O的切线,A、B是切点,AC是⊙O的直径.已知∠APB=70°,则∠ACB 的度数为°.19.如图,已知AD为⊙O的切线,⊙O的直径是AB=2,弦AC=1,则∠CAD=度.20.如图,△ABC内接于圆⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,则∠AOB=度.三.解答题21.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,过A作AD⊥CD,D为垂足.(1)求证:∠DAC=∠BAC;(2)若AC=6,cos∠BAC=,求⊙O的直径.22.如图,AB为⊙O的直径,C为⊙O上一点,CD切⊙O于点C,且∠DAC=∠BAC.(1)试说明:AD⊥CD;(2)若AD=4,AB=6,求AC.23.如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E.求证:(1)AD=AE;(2)AB•AE=AC•DB.24.已知:如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,PA是⊙O的切线,A为切点,割线PBD过圆心,交⊙O于另一点D,连接CD.(1)求证:PA∥BC;(2)求⊙O的半径及CD的长.25.如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O的切线与AC的延长线交于点E.(1)求证:BC∥DE;(2)若AB=3,BD=2,求CE的长;(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).26.如图,△ABC内接于⊙O,AB的延长线与过C点的切线GC相交于点D,BE与AC相交于点F,且CB=CE.求证:(1)BE∥DG;(2)CB2﹣CF2=BF•FE.参考答案1.解:连接BC,∵DB、DE分别切⊙O于点B、C,∴BD=DC,∵∠ACE=25°,∴∠ABC=25°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DBC=∠DCB=90°﹣25°=65°,∴∠D=50°.故选:A.2.解:∵BD是圆O的直径,∴∠BAD=90°,又∵AC平分∠BAD,∴∠BAF=∠DAF=45°,∵直线ED为圆O的切线,∴∠ADE=∠ABD=19°,∴∠AFB=180°﹣∠BAF﹣∠ABD=180°﹣45°﹣19°=116°.故选:C.3.解:如图,∵PA、PB分别切⊙O于点A、B,∴∠OAP=∠O BP=90°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=55°,当点C在劣弧AB上,∵∠AOB=110°,∴弧ACB的度数为250°,∴∠ACB=125°.故选:D.4.解:∵∠A=70°,∠B=60°,∴∠C=50°.∵此圆与直线BC相切于C点,∴的度数=2∠C=100°.故选:C.5.解:∵AB是⊙O的直径,DE为⊙O的切线,∠CBE=40°,∴∠A=∠CBE=40°.故选:B.6.解:∵DA与△ABC的外接圆相切于点A,∴∠CAD=∠B=60°.(弦切角定理)故选:B.7.解:∵BD切⊙O于点B,∴∠DBC=∠A=40°,∵AB=AC,∴∠ABC=∠C,∴∠ABC=(180°﹣40°)÷2=70°.故选:D.8.解:如图,连接AC,由弦切角定理知∠ACB=∠BAT=55°,∵AB=BC,∴∠ACB=∠CAB=55°,∴∠B=180°﹣2∠ACB=70°,∴∠D=180°﹣∠B=110°.故选:A.9.解:∵直线MN切⊙O于C点,∴∠BCN=∠BAC,∠ACM=∠D=∠B,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BCN+∠ACM=90°,∠B+∠BCN=90°,∠D+∠BCN=90°.故选:C.10.解:连接AM,BN,∵∠BAE=∠AME,∠ABM=∠BNE,∴∠B AE+∠ABE=(∠AME+∠BNE),∵MA⊥AB,NB⊥A B,∴MA∥NB,∴∠AMN+∠BNM=180°.∵∠MEN=90°,∴∠EMN+∠ENM=90°,∴∠AME+∠BNE=180°﹣90°=90°,∴∠BAE+∠ABE=×90°=45°,∴∠AEB=180°﹣45°=135°.故选:C.二.填空题(共10小题)11.解:∵AB=2,OA=,∴cos∠BAO==,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA﹣∠BOC=30°.故答案为:30.12.解:∵PC切⊙O于点C,∠PCB=35°,∴∠A=∠PCB=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∴35°+∠B=90°,解得∠B=55°.故答案为:55.13.解:由弦切角定理知,∠C=∠BAP=30°;由圆周角定理知,∠AOB=2∠C=60°.14.解:连接OB;∵PA、PB都是⊙O的切线,且切点为A、B,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°;在△AOB中,OA=OB,∠AOB=180°﹣2∠BAC;∴∠P=2∠BAC=70°.15.解:∵AB为直径,∴∠ACB=90°,∵直线CD与⊙O相切,∴∠A=∠BCD,∵∠BCD=35°,∴∠A=35°,∴∠ABC=55°.故答案为:55°.16.解:连接BD,∵四边形ABCD内接于⊙O,∠BCD=130°,∴∠BAD=50°,∵AB为直径,∴∠ADB=90°,∴∠ABD=∠40°∵PD切⊙O于D,∴∠ADP=∠ABD=40°,故答案为:40°.17.解:连接BD,则∠ADB=90°,又∠BCD=130°,故∠DAB=50°,所以∠DBA=40°;又因为PD为切线,故∠PDA=∠ABD=40°,即∠PDA=40°.18.解:∵PA、PB分别是⊙O的切线,∴PA=PB;∵∠APB=70°,∴∠PBA=(180°﹣∠APB)=55°,∵PB切⊙O于B,∴∠ACB=∠PBA=55°.19.解:∵AB是圆的直径,∴∠C=90°;又AB=2,AC=1,∴∠B=30°,∵AD为⊙O的切线,∴∠CAD=∠B=30°.20.解:∵CT切⊙O于C∴∠BAC=∠BCT=40°;在△ABC中,∠BAC=40°,∠ABC=100°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣40°﹣100°=40°,∴∠AOB=2∠ACB=2×40°=80°.三.解答题(共6小题)21.证明:(1)连接BC,OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵直线CD与⊙O相切于点C,∴∠ACD=∠B,∠OCD=90°,∵AD⊥CD,∴∠CAD+∠ACD=90°,∴∠DAC=∠BAC;(2)∵cos∠BAC=,∴=,∵AC=6,∴AB=10,故⊙O的直径为10.22.(1)证明:连接OC;∵CD切⊙O于点C,∴OC⊥CD,∵OC=OA,∴∠BAC=∠OCA,∵∠DAC=∠BAC,∴∠DAC=∠OCA,∴OC∥AD,∴AD⊥CD;(2)解:连接BC,∵AB为⊙O的直径,∴∠ACB=90°,在△ADC与△ACB中,,∴△ADC∽△ACB,∴=,即AC2=AD•AB,∵AD=4,AB=6,∴AC==2.23.证明:(1)∵∠ADE=∠APD+∠PAD,∠AED=∠CPE+∠C,又∠APD=∠CPE,∠PAD=∠C.∴∠ADE=∠AED.∴AD=AE.(2)∵∠APB=∠CPA,∠PAB=∠C,∴△APB∽△CPA,得.∵∠APE=∠BPD,∠AED=∠ADE=∠PDB,∴△PBD∽△PEA,得.∴.∴AB•AE=AC•DB.24.(1)证明:∵PA是⊙O的切线,∴∠PAB=∠2.又∵AB=AC,∴∠1=∠2,∴∠PAB=∠1.∴PA∥BC.(2)解:连接OA交BC于点G,则OA⊥PA;由(1)可知,PA∥BC,∴OA⊥BC.∴G为BC的中点,∵BC=24,∴BG=12.又∵AB=13,∴AG=5.设⊙O的半径为R,则OG=OA﹣AG=R﹣5,在Rt△BOG中,∵OB2=BG2+OG2,∴R2=122+(R﹣5)2,∴R=16.9,OG=11.9;∵BD是⊙O的直径,∴DC⊥BC.又∵OG⊥BC,∴OG∥DC.∵点O是BD的中点,∴DC=2OG=23.8.25.(1)证明:连接CD;∵DE是圆O的切线,∴∠CDE=∠CBD.∵∠CBD=∠DAC,∴∠CDE=∠DAC.∵AD平分∠BAC,∴∠BAD=∠CAD.∴∠CDE=∠BAD.∵∠BAD=∠BCD,∴∠CDE=∠BCD.∴BC∥DE.(2)解:如图,连接CD;∵AD平分∠BAC,∴=.∴∠BCD=∠CBD.∴BD=CD=2.∵BC∥DE,∴∠E=∠ACB=∠ADB.又由(1)中已证得∠CDE=∠BAD,∴△ABD∽△DCE.∴AB:BD=CD:CE.∴CE=BD•CD÷AB=.(3)解:应该是∠BAC=2∠ACB.26.证明:(1)∵CB=CE,∴∠E=∠CBE.∵CG为⊙O切线,∴∠BCD=∠E.∴∠CBE=∠BCD.∴BE∥DG.(2)∵∠A=∠E,∴∠A=∠CBE.∵∠ACB=∠ACB,∴△CBF∽△CAB,.∴CB2=CF•AC=CF•(CF+AF)=CF2+CF•AF.即CB2﹣CF2=AF•CF.由相交弦定理,得AF•CF=BF•FE.∴CB2﹣CF2=BF•FE.。
(八)弦切角

中考总复习圆(八)弦切角1.如图7-136,在⊙O中,AC是弦,AD是切线,CB⊥AD,垂足为B,CB与圆相交于点E,如果AE平分∠BAC,则∠ACB=____2.如图7-137,⊙O的两条直径AB与CD,BT是过B点的切点,且弧BD=45°,则∠BAD=____;∠CBT=____3.如图7-138,MN切⊙O于点p,AB∥MN,PA交⊙O于点C,PB交⊙O于点D.求证:C、D、B、A四点共圆.4.如图7-139,AB是⊙O的弦,C是弧AB的中点,BD是切线,CD∥AB.求证:DC=DB.5.如图7-140,PA、PC分别切⊙O于点A、C,D为弧AC上任一点,连结CD交AP于点E,∠P=30°,则∠ADE =____ 6.如图7-141,CD为⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠DBE=62°,则∠A=____度.7.如图7-142,△ABC内接于⊙O,AB=AC,∠A=40°,CE切⊙O于点C,BE⊥AC,则∠E=_____ 度.8.如图7-143,AD是切线,点D是切点,BC是半圆O的直径,AB=BC=2,则AD=___ DC:DB=____ ;DB=____,DC=____,S△ABD=____.9.如图7-144,∠ACB=90°,MN切△ABC的外接圆于点C,AE⊥MN,BF⊥MN,垂足分别是点E、F,AC=3,BC=4,则四边形AEFB的面积等于____.10.如图7-145,PA、PB切⊙O于点A、B,CE⊥AD,垂足为点E,交BD于点C,且CE过圆心O,则图中与∠D相等的角共有( ).(A)2个(B)3个(C)4个(D)5个11.如图7-146,PA 切⊙O 于点A ,C 为弧AB 上任一点,∠PAB=42°,则∠C 的度数 为( ).(A)116° (B)132° (C)138° (D)159°12.如图7-147,割线PAB 过⊙O 的圆心,交⊙O 于A 、B 两点,PC 切⊙O 于C 点,且PC=BCCD ⊥PB ,垂足为D ,求CD :BC .13.如图7-148,BC 切⊙O 于C 点,DF ∥BC ,延长BD 交⊙O 于点A ,AC 交DF 于 点E .求证:BD:CE =BC:CF.14.如图7-149,已知△ABC 是⊙O 内接三角形,BM 、CN 是圆的切线,AD ∥CN ,AE//BM,求证:AD 2=BE •CD15.半圆O 的直径AB =2,C 是半圆上的一点,且弧AC :弧CB =1:2,过点B 、C 的切线交于点P ,PA 交⊙O 于点E ,求PE 的长.16.AB 是⊙O 的直径,延长AB 至点C ,使BC =21AB ,自点C 作CD 切⊙O 于点D ,连结AD .求证:△DAC 是等腰三角形.17.已知在⊙O 的内接四边形ABCD 中,∠A=73°,∠B=92°,且弧DC=弧BC ,过各顶点作⊙O 的切线,围成的四边形为PQMN ,求⊙O 外切四边形PQMN 各内角的度数.18.设⊙O l 与⊙O 2。
中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)知识点总结1. 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
几何语言:若弦CD AB ,交于点P ,则PD PC PB PA ⋅=⋅。
推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
几何语言:若AB 是直径,CD 垂直AB 于点P ,则PB PA PD PC ⋅==22。
2. 弦切角定理:(1)弦切角的定义:如图像∠ACP 这样,顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半。
等于这条弧所对的圆周角。
即∠PCA=∠PBC 。
3. 切线长定理:(1)切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。
4. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=PA•PB(切割线定理)。
推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB由上可知:PT2=PA•PB=PC•PD。
5. 三角形的内切圆与内心:内切圆与内心的概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
三角形的内心就是三角形三个内角角平分线的交点。
练习题1、(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π).【分析】根据题意,先作出相应的辅助线,然后求出内切圆的半径,再根据图形可知:阴影部分的面积=△ABC的面积﹣正方形CEOD的面积﹣⊙O面积的,代入数据计算即可.【解答】解:作OD⊥AC于点D,作OE⊥CB于点E,作OF⊥AB于点F,连接OA、OC、OB,如图,∵∠C=90°,OD=OE=OF,∴四边形CEOD是正方形,∵AC=4,BC=3,∠C=90°,∴AB===5,∵S△ABC=S△AOC+S△COB+S△BOA,∴=,解得OD=OE=OF=1,∴图中阴影部分的面积为:﹣1×1﹣π×12×=5﹣π,故答案为:5﹣π.2、(2022•泰州)如图,△ABC中,∠C=90°,AC=8,BC=6,O为内心,过点O的直线分别与AC、AB边相交于点D、E.若DE=CD+BE,则线段CD的长为.【分析】连接BO,CO,结合内心的概念及平行线的判定分析可得当DE=CD+BE时,DE∥BC,从而利用相似三角形的判定和性质分析计算.【解答】解:如图,过点O的直线分别与AC、AB边相交于点D、E,连接BO,CO,∵O为△ABC的内心,∴CO平分∠ACB,BO平分∠ABC,∴∠BCO=∠ACO,∠CBO=∠ABO,当CD=OD时,则∠OCD=∠COD,∴∠BCO=∠COD,∴BC∥DE,∴∠CBO=∠BOE,∴BE=OE,则DE=CD+BE,设CD=OD=x,BE=OE=y,在Rt△ABC中,AB==10,∴,即,解得,∴CD=2,过点O作D′E′⊥AB,作DE∥BC,∵点O为△ABC的内心,∴OD=OE′,在Rt△ODD′和Rt△OE′E中,,∴△ODD′≌△OE′E(ASA),∴OE=OD′,∴D′E′=DE=CD+BE=CD′+BE′=2+=,在△AD′E′和△ABC中,,∴△AD′E′∽△ABC,∴,∴,解得:AD′=,∴CD′=AC﹣AD′=,故答案为:2或.3、(2022•黔东南州)如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是cm2.(结果用含π的式子表示)【分析】根据角A的度数和内切圆的性质,得出圆心角DOE的度数即可得出阴影部分的面积.【解答】解:∵∠A=80°,⊙O是△ABC的内切圆,∴∠DOE=180°﹣()=180°﹣(180°﹣∠A)=130°,∴S扇形DOE==(cm2),故答案为:.4、(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.【分析】如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,然后利用内切圆和直角三角形的性质得到AC+BC=AB+6,(BC﹣AC)2=49,接着利用完全平方公式进行代数变形,最后解关于AB的一元二次方程解决问题.【解答】解:如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,∴OE=OD=3=,∴AC+BC﹣AB=6,∴AC+BC=AB+6,∴(AC+BC)2=(AB+6)2,∴BC2+AC2+2BC×AC=AB2+12AB+36,而BC2+AC2=AB2,∴2BC×AC=12AB+36①,∵小正方形的面积为49,∴(BC﹣AC)2=49,∴BC2+AC2﹣2BC×AC=49②,把①代入②中得AB2﹣12AB﹣85=0,∴(AB﹣17)(AB+5)=0,∴AB=17(负值舍去),∴大正方形的面积为289.故答案为:289.。
中考数学 考点系统复习 第六章 圆 微专题(七) 与切线有关的常考五大模型

模型二:角平分线模型
已知:如图,AB 是直径,AC⊥EC 于点 C,BE⊥EC 于点 E,EC 是⊙O 的切 线. 【常见结论与方法】①AD 平分∠BAC;②BD=DF,ED=DC;③△ADC∽△ ABD(AD2=AC·AB);④△FDC∽△DAC(DC2=CF·CA);⑤△BED∽△DCA(ED2 =BE·AC=14EC2);⑥常见辅助线:连接 OD,过点 O 作 OG⊥AC,构造矩形.
4.★如图,在⊙O 中,AB 为直径,过圆上一点 C 作切线 CD 交 AB 的延长 44 33
线于点 D.若∠BAC=30°,AD=4,则 CD 的长为3 3 .
模型五:双切线模型 已知:如图,PA,PC 与⊙O 分别相切于 A,C 两点. 【常见结论与方法】连接 OA,OC,OP,则有: ①∠PAO=∠PCO=90°; ②OP 平分∠APC;③PA=PC; ④△OPA≌△OPC.
∵DE=2,∴BD=4,BE=2 5.
∵∠C=∠C,∠EBD=∠EDC,∴△CDE∽△CBD,
∴CCED=DBCC=DBED=12,
设 CE=x,则 DC=2x,∴(2x)2=x(x+2 5),
25
25
∴x1=0(舍去),x2= 3 ,即线段 EC 的长五大模型
模型一:直角三角形模型 已知:如图,BC 是直径,AC⊥BC,DE 切⊙O 于点 D,交 AC 于点 E.
【常见结论与方法】①EA=EC=ED;②OE 綊12AB;③连接 CD,构造“双 垂”模型得 CD=ACA·B BC,CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.
1.如图,以 Rt△ABC 的直角边 AB 为直径作⊙O 与斜边 AC 交于点 D,E 为 BC 边的中点,连接 DE,OE.求证:DE 是⊙O 的切线.
中考数学知识点过关培优训练:弦切角定理(圆)(附解析答案)

5.中考数学知识点过关培优训练:弦切角定理(圆)•选择题BD 于 F 点.若/ ADE= 19°,则/ AFB 的度数为何?(点A 、B 重合),则/ ACB 等于( )如图为△ABC 和一圆的重迭情形, 此圆与直线BC 相切于C 点,且与AC 交于另一点D.若1. 如图,AB 是O O 的直径, DB DE 分别切O O 于点B 、C,若/ AC 巨25°,则/ D 的度数是2. B. 55° C. 60° D. 65°如图,BD 为圆0的直径, 直线 ED 为圆0的切线,A 、C 两点在圆上,AC 平分/ BAD 且交3. B. 104° C. 116 ° 点P 是O 0外一点,PA PB 分别切O 0于点A B,Z P = 70°, 占 八D. 142 °C 是O O 上的点(不与A. 70°B. 55°C. 70° 或 110°D. 55° 或 125° 4./ A = 70°,/ B= 60°, 则 的度数为何( B. 60° C. 100 ° D. 120 °如图,AB 是O O 的直径, DE 为O O 的切线,切点为 B,点C 在O O 上,若/ CBE= 40°, 则/A 的度数为(B. 40°C. 50°D. 60°A. 97° A. 30°7.如图,△ ABC 内接于O Q BD 切O O 于点 B, AB= AC 若/ CBD= 40°,则/ ABC 等于()&如图,四边形ABCD 内接于O Q AB= BCAT 是O Q 的切线,/ BAT= 55 °,则/ D 等于(•:)A. 30°B. 60°C. 90°D. 120 °B. 50°C. 60°D. 70°A. 110°B. 115°C. 120 °D. 125 °9.如图,AB 为O Q 的直径, C D 为O Q 上的点,直线 MN 切O Q 于V 点,图中与/ BCt 互余 A. 40A. 1个 C. 3个 D. 4个的角有(DB. 2个10.已知:如图,E 是相交两圆O M 和O N 的一个交点,且 ME L NE AB 为外公切线,切点分别为 A B 连接AE BE 则/ AEB 的度数为(C. 135 °D. 130 °二.填空题11.已知,如图,半径为 1 的O M 经过直角坐标系的原点 O,且与x 轴、y 轴分别交于点 A 、0), O M 的切线OC 与直线AB 交于点C.则/ AC Q度. PC 切O Q 于点C,Z PCB= 35°,则/ B 等于度. 13.如图 PA 切O O 于点 A , / PAB= 30°,则/ AQB= 度,/ ACB= 度.B, AC 是O Q 的直径,且/ BAC= 35°,则/ P =度. OB,点A 的坐标为(-,15•如图,已知直线CD与O O相切于点C, AB为直径•若/ BCD= 35°,则/ ABC的大小等于_______ 度.16•如图四边形ABC[内接于O O AB为直径,PD切O 0于D,与BA延长线交于P点,已知/ BCD= 130。
模型26 圆幂定理(解析版)-中考数学解题大招复习讲义

1.弦切角定理(1)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.(2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如图所示,直线PT切圆O于点C,BC、AC为圆O的弦,则有∠PCA=∠PBC(∠PCA为弦切角).2、相交弦定理【结论1】如图,⊙O中,弦AB、CD相交于点P,半径为r,则①AP·BP=CP·DP,②AP·BP=CP·DP=r2-OP2.3、切割线定理【结论2】如图,PBC是⊙O的一条割线,PA是⊙O的一条切线,切点为A,半径为r,则①PA2=PB·PC,②PA2=PB·PC=PO2-r24、割线定理【结论3】如图,PAB、PCD是⊙O的两条割线,半径为r,则①PA·PB=PC·PD②PA·PB=PC·PD=OP2-r2口诀:从两线交点处引出的共线线段的乘积相等例题精讲考点一:相交弦定理【例1】.已知:如图弦AB经过⊙O的半径OC的中点P,且AP=2,PB=3,则是⊙O的半径等于()A.B.C.D.解:延长CO交⊙O于D,设⊙O的半径是R,∵弦AB经过⊙O的半径OC的中点P,∴CP=R=OP,PD=R+R,由相交弦定理得:AP×BP=CP×DP,则2×3=R×(R+R),解得:R=2,故选:C.变式训练【变式1-1】.如图,⊙O的弦AB、CD相交于点E,若CE:BE=2:3,则AE:DE=2:3.解:∵⊙O的弦AB、CD相交于点E,∴AE•BE=CE•DE,∴AE:DE=CE:BE=2:3,故答案为:2:3.【变式1-2】.如图,在⊙O的内接四边形ABCD中,AC⊥BD,CA=CB,过点A作AC的垂线交CD的延长线于点E,连结BE.若cos∠ACB=,则的值为.解:设AC,BD交于点F,过点B作BG⊥EA,交EA的延长线于点G,如图,∵AC⊥BD,cos∠ACB=,∴cos∠ACB==,设CF=3k,则CB=5k,∴BF==4k.∵CA=CB,∴AC=5k,∴AF=AC﹣CF=2k.∵CF•AF=DF•BF,∴DF=k.∵AC⊥BD,AE⊥AC,∴DF∥AE,∴,∴,∴AE=k.∴CE==k.∵AC⊥BD,AE⊥AC,BG⊥EA,∴四边形AFBG为矩形,∴BG=AF=2k,AG=BF=4k,∴EG=AE+AG=k,∴BE==k,∴=,故答案为:.考点二:弦切角定理【例2】.如图,割线PAB过圆心O,PD切⊙O于D,C是上一点,∠PDA=20°,则∠C的度数是110度.解:连接BD,则∠BDA=90°,∵PD切⊙O于点D,∴∠ABD=∠PDA=20°,∴∠DAB=90°﹣∠ABD=90°﹣20°=70°;又∵四边形ADCB是圆内接四边形,∴∠C=180°﹣∠DAB=180°﹣70°=110°.变式训练【变式2-1】.如图,已知∠P=45°,角的一边与⊙O相切于A点,另一边交⊙O于B、C两点,⊙O的半径为,AC=,则AB的长度为()A.B.6C.D.5解:连接OA,OB,作OD⊥AC于D,CE⊥AP于E,∵OA=OB,∴∠AOD=∠AOC,AD=DC=,∴OD==2,∵PA切⊙O于A,∴∠CAE=∠B,∵∠B=∠AOC,∴∠CAE=∠AOD,∵∠AEC=∠ADO=90°,∴△ACE∽△OAD,∴==,∴==,∴CE=,AE=,∵∠P=45°,∴△PCE是等腰直角三角形,∴PE=CE=,PC=,∵PA=AE+PE,∴PA=,∵∠CAE=∠B,∠P=∠P,∴△PAC∽△PBA,∴AC:AB=PC:PA,∴2:AB=:,∴AB=6.故选:B.【变式2-2】.如图,BP是⊙O的切线,弦DC与过切点的直径AB交于点E,DC的延长线和切线交于点P,连接AD,BC.若DE=DA=,BC=2,则线段CP的长为.解:连接BD,如图,∵DE=DA,∴∠A=∠DEA,∵∠DEA=∠BEC,∠DCB=∠A,∴∠BEC=∠DCB.∴BE=BC=2.∵∠DEB=180°﹣∠BEC,∠BCP=180°﹣∠BCE,∴∠DEB=∠BCP,∵BP是⊙O的切线,∴∠BDE=∠PBC,∴△DEB∽△BCP,∴,∴,∴CP=.故答案为:.考点三:切割线定理【例3】.如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆与点C,已知PC=3,PB=1,则该半圆的半径为4.解:∵PC切半圆与点C,∴PC2=PA•PB,即PA=9,则AB=9﹣1=8,则圆的半径是4.故答案为4.变式训练【变式3-1】.如图,Rt△ABC中,∠C=90°,O为AB上一点,以O为圆心,OA为半径作圆O与BC相切于点D,分别交AC、AB于E、F,若CD=2CE=4,则⊙O的直径为()A.10B.C.5D.12解:连接OD,过O作AC的垂线,设垂足为G,∵∠C=90°,∴四边形ODCG是矩形,∵CD是切线,CEA是割线,∴CD2=CE•CA,∵CD=2CE=4,∴AC=8,∴AE=6,∴GE=3,∴OD=CG=5,∴⊙O的直径为10.故选:A.【变式3-2】.如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2.则BO的长是4.解:连接OC,如图,∵CD2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;设⊙O的半径为r,∵CD=CB,∴,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴,即,∴r=4(负根已经舍弃),∴OB=4,故答案为4.【变式3-3】.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若,求BD的长.(1)证明:连接OE,∵BE平分∠ABC交AC于点E,∴∠1=∠EBC,∵∠1=∠2,∴∠2=∠CBE,∴∠AEO=∠C=90°,∴AC是⊙O的切线,∵⊙O是△BDE的外接圆,∴AC是△BDE的外接圆的切线;(2)解:∵AE是圆O的切线,AB是圆的割线,根据切割线定理:AE2=AD×AB,∵,∴()2=2×(2+BD),解得:BD=4.∴BD的长是:4.考点四:割线定理【例4】.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3B.7.5C.5D.5.5解:∵PA=3,AB=PC=2,∴PB=5,∵PA•PB=PC•PD,∴PD=7.5,故选:B.变式训练【变式4-1】.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=4.解:如图,∵AP=4,AB=2,PC=CD,∴PB=AP+AB=6,PC=PD.又∵PA•PB=PC•PD,∴4×6=PD2,则PD=4.故答案是:4.【变式4-2】.已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F,则BE﹣BF的值为4.解:延长CD交⊙O于点G,设BE,DG的中点分别为点M,N,则易知AM=DN,∵BC=CD=10,由割线定理得,CB•CF=CD•CG,∵CB=CD,∴BF=DG,∴BE﹣BF=BE﹣DG=2(BM﹣DN)=2(BM﹣AM)=2AB=4.故答案为:4.1.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是()A.B.C.D.解:连接BD.AB是直径,则∠ADB=90°,∴∠CDB=∠BCM=60°.∴∠CDA=∠CDB+∠ADB=150°.∵∠CBA=180°﹣∠CDA=30°,∴tan∠ABC=tan30°=.故选:B.2.如图,从圆外一点P引圆的切线PA,点A为切点,割线PDB交⊙O于点D、B.已知PA=12,PD=8,则S△ABP:S△DAP=9:4.解:由切割线定理可得PA2=PD×PB,∵PA=12,PD=8∴PB=18.由弦切角和公共角易知△PAD∽△PBA.:S△PBA=PA2:PB2=4:9.∴S△P AD3.如图,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC交于D,连接BD,若BC=﹣1,则AC=2.解:∵AB=AC,∠C=72°,BC是⊙O的切线,∴∠CBD=∠BAC=36°,∴∠ABD=36°,∴∠BDC=∠BCD=72°,∴AD=BD=BC;又∵BC是切线,∴BC2=CD•AC,∴BC2=(AC﹣BC)•AC(设AC=x),则可得到:(x﹣)2=,解得:x1=2,x2=(x2<0不合题意,舍去).∴AC=2.4.如图,⊙O的直径AB=8,将弧BC沿弦BC折叠后与∠ABC的角平分线相切,则△ABC的面积为8.解:设弧BC沿弦BC折叠后的圆弧的圆心为O′,连接O′B,如图,∵将弧BC沿弦BC折叠后与∠ABC的角平分线相切,∴O′B⊥BD,∴∠O′BD=90°.设∠ABD=α,则∠BCD=∠ABD=α,∴∠ABC=2α.由折叠的性质得:∠ABC=∠O′BC=2α,∴∠O′BD=∠O′BC+∠DBC=3α=90°,∴α=30°.∵AB为⊙O的直径,∴∠ACB=90°,∴BC=AB•cos∠ABC=8×cos60°=4,AC=AB•sin∠ABC=8×=4.∴△ABC的面积为AC•BC=4×=8.故答案为:8.5.如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是.解:连接OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=,∴OA=,OF=BF=,∴DF=BD﹣BF=,∴OG=,GD=,解法一:在Rt△AGO中,AG==,∴GE=,∴DE=GE﹣GD=.解法二:在Rt△AGO中,AG==,∴AD=AG+GD=,∵AD×DE=BD×CD,∴DE==.故答案为:.6.如图,已知AC=AB,AD=5DB=4,∠A=2∠E.则CD•DE=56.解:如图,过点A作AF⊥BC于点F,交CD于点H;过点B作BG∥AH,交DE于点G;∵AB=AC,∴CF=BF,∠A=2∠HAD;而∠A=2∠E,∴∠HAD=∠E,∴A、H、B、E四点共圆,∴DH•DE=DA•DB=4×5=20;∵BG∥AH,且CF=BF,∴△AHD∽△BGD,CH=HG;∴,设HD=5λ,则DG=4λ,∴CD=CH+HD=14λ,∴DH=,∴•DE=20,∴CD•DE=56.故答案为56.7.如图:BE切⊙O于点B,CE交⊙O于C,D两点,且交直径于AB于点P,OH⊥CD于H,OH=5,连接BC、OD,且BC=BE,∠C=40°,劣弧BD的长是.解:连接AD,BD∵BE=BC∴∠E=∠C=40°,∠BOD=80°,∠OBD=∠ODB=(180°﹣∠BOD)÷2=50°∵BE是切线∴∠DBE=∠C=40°∴∠BDE=180°﹣∠E﹣∠DBE=100°∴∠HDO=180°﹣∠ODB﹣∠BDE=30°∵OH⊥CD∴OD==10,即圆的半径是10∴弧BD的度数是80度弧BD==.8.如图,在平面直角坐标系中,⊙O经过点A(4,3),点B与点C在y轴上,点B与原点O重合,且AB=AC,AC与⊙O交于点D,延长AO与⊙O交于点E,连接CE、DE与x轴分别交于点G、F,则tan∠DFO=,tan∠A=.解:设圆O与y轴交于点H,K,过点A作AM⊥OC于点M,过点D作DN⊥OC于点N,如图,∵A(4,3),∴AM=4,MO=3,∴AO==5.∵AB=AC,点B与原点O重合,∴AB=AC=5.∴AE=2AO=10.∵AE为⊙O的直径,∴ED⊥AD.∵AB=AC,AM⊥OC,∴OC=2OM=6.∴CH=CO﹣OH=6﹣5=1,∴CK=CH+HK=1+10=11.∵CD•CA=CH•CK,∴CD==,∴AD=AC﹣CD=5﹣=.∴DE==.∴tan∠DAE===.∵DH⊥OC,FO⊥OC,∴DH∥OF.∴∠DFO=∠NDF.∵ED⊥AD,∴∠NDF+∠CDN=90°.∵DN⊥OC,∴∠CDN+∠NCD=90°.∴∠NDF=∠NCD.∴∠DFC=∠NCD.∴tan∠DFC=tan∠NCD=.故答案为:;.9.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,CD是⊙O的切线,C为切点,且CD=CB,连接AD,与⊙O交于点E.(1)求证AD=AB;(2)若AE=5,BC=6,求⊙O的半径.(1)证明:∵AB=AC,∴∠B=∠ACB,∵CD是⊙O的切线,C为切点,∴∠ACD=∠B,∴∠ACD=∠ACB,∵BC=BD,AC=AC,∴△ACB≌△ACD(SAS),∴AB=AD;(2)连接OB,OC,CE,连接AO并延长交BC于点F,∵△ACB≌△ACD,∴∠CAB=∠CAD,∴=,∴BC=CE,∵BC=CD=6,∴CE=CD=6,∴∠D=∠CED,∵AB=AC,AB=AD,∴AD=AC,∴∠ACD=∠D,∴∠CED=∠ACD,∴△DEC∽△DCA,∴=,∴=,∴DE=4或DE=﹣9(舍去),∴AD=AE+DE=9,∴AB=AC=AD=9,∵AB=AC,OB=OC,∴AF是BC的垂直平分线,∴AF⊥BC,BF=CF=BC=3,∴AF===6,设⊙O的半径为r,在Rt△OFC中,OF2+CF2=OC2,∴(6﹣r)2+32=r2,∴r=,∴⊙O的半径为.10.如图,△ABC是⊙O的内接三角形,CD是⊙O的直径,AB⊥CD于点E,过点A作⊙O 的切线交CD的延长线于点F,连接FB.(1)求证:FB是⊙O的切线.(2)若AC=4,tan∠ACD=,求⊙O的半径.(1)证明:连接OA,OB,∵FA是⊙O的切线,∴OA⊥FA,∴∠FAO=90°,∵直径CD⊥AB,∴CF垂直平分AB,∴AF=BF,∴∠FBE=∠FAE,∵OA=OB,∴∠OBE=∠OAE,∴∠OBE+∠FBE=∠FAE+∠OAE=∠FAO=90°,∴半径OB⊥FB,∴FB是⊙O的切线(2)解:∵tan∠ACD==,∴令AD=x,则CD=2x,∵△ADC是直角三角形,∴AC===x=4,∴x=4,∴AD=4,CD=8,∵AD2=DE•CE,∴42=8DE,∴DE=2,∴CD=DE+CE=2+8=10,∴⊙O的半径长是5.11.如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE 交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.(1)证明:∵四边形ABCD是正方形,∴AD=BC,∴.∴∠DBA=∠G.∵∠EFB=∠BFG,∴△EFB∽△BFG,∴,∴FB2=FE•FG;(2)解:连接OE,如图,∵AB=AD=6,∠A=90°,∴BD==6.∴OB=BD=3.∵点E为AB的中点,∴OE⊥AB,∵四边形ABCD是正方形,∴BC⊥AB,∠DBA=45°,AB=BC,∴OE∥BC,OE=BE=AB.∴.∴,∴,∴BF=2;∵点E为AB的中点,∴AE=BE=3,∴EC==3.∵AE•BE=EG•EC,∴EG=.12.如图,⊙O的割线PBA交⊙O于A、B,PE切⊙O于E,∠APE的平分线和AE、BE 分别交于C、D,PE=4,PB=4,∠AEB=60°.(1)求证:△PDE∽△PCA;(2)试求以PA、PB的长为根的一元二次方程;(3)求⊙O的面积.(答案保留π)(1)证明:由弦切角定理得∠PEB=∠EAB,∵PC是∠APE的平分线,∴∠CPE=∠CPA,∴△PDE∽△PCA;(2)解:由切割线定理得PE2=PA•PB,∵PE=4,PB=4,∴PA=12,∴PA+PB=16,PA•PB=48,∴所求方程为:x2﹣16x+48=0;(3)解:连接BO并延长交⊙O于F,连接AF,则BF是⊙O的直径,∴∠BAF=90°,∴∠AEB=∠F=60°在Rt△ABF中,sin60°=====,∴BF=.∴⊙O的面积为:π()2=π(面积单位).13.如图,圆O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上,且FC=FE.(1)求证:CF是圆O的切线;(2)若,BE=2,求圆O的半径和DE•EC的值.证明:(1)∵AC是直径,点D是的中点,∴∠ABC=90°,∠ACD=∠BCD.∵FC=FE,∴∠FCE=∠FEC.∵∠ABC=90°,∴∠CEF+∠BCE=90°.∴∠ECF+∠ACD=90°,即∠ACF=90°.∴AC⊥CF.又∵点C在圆O上,∴CF是圆O的切线;(2)连接AD.∵AC是直径,点D是的中点,∴∠ADC =∠ABC =90°,∠ACD =∠BCD .∴△BEC ∽△DEA .∴DE •EC =AE •BE ,在Rt △ACF 和Rt △BCF 中,∵==,设CF =3k ,则AF =5k .∴BF =k ,AC ==4k .∵FC =FE =3k ,BE =FE ﹣BF ,∴3k ﹣k =2.∴k =.∴AC =.∴圆O 的半径=AC =.∵AE =AF ﹣FE =5k ﹣3k =2k =,∴AE ×BE =×2=.∴DE •EC =.14.如图,AB 为⊙O 的直径,点P 在AB 的延长线上,点C 在⊙O 上,且PC 2=PB •PA .(1)求证:PC 是⊙O 的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.(1)证明:连接OC,如图1所示:∵PC2=PB•PA,即=,∵∠P=∠P,∴△PBC∽△PCA,∴∠PCB=∠PAC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵OC=OB,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB•PA,∴PA===40,∴AB=PA﹣PB=30,∵△PBC∽△PCA,∴==2,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=6,即BC=6,∵点D是的中点,AB为⊙O的直径,∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB=90°,∴DE∥BC,∴∠DFO=∠ABC,∴△DOF∽△ACB,∴==,∴OF=OD=,即AF=,∵EF∥BC,∴==,∴EF=BC=.15.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.16.已知△ABC是⊙O的内接三角形,∠BAC的平分线与⊙O相交于点D,连接DB.(1)如图①,设∠ABC的平分线与AD相交于点I,求证:BD=DI;(2)如图②,过点D作直线DE∥BC,求证:DE是⊙O的切线;(3)如图③,设弦BD,AC延长后交⊙O外一点F,过F作AD的平行线交BC的延长线于点G,过G作⊙O的切线GH(切点为H),求证:FG=HG.证明:(1)如图①,∵AD平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,∵∠CAD=∠CBD,∴∠CBD=∠BAD,∵∠BID=∠BAD+∠ABI,∠DBI=∠CBD+∠CBI,∴∠BID=∠DBI,∴BD=DI;(2)如图②,连接OD,∵∠CAD=∠BAD,∴=,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴DE是⊙O的切线;(3)如图,作直径交⊙O于M,连接CM,BH,CH,∴∠MCH=90°,∴∠M+∠CHM=90°,∵∠B=∠M,∴∠B+∠CHM=90°,∵GH是⊙O的切线,∴∠OHG=∠CHG+∠CHM=90°,∴∠CHG=∠B,如图③,连接BH,CH,∵GH是⊙O的切线,∴∠CHG=∠HBG,∵∠CGH=∠BGH,∴△HCG∽△BHG,∴=,∴GH2=BG•CG,∵AD∥GF,∴∠AFG=∠CAD,∵∠CAD=∠FBG,∴∠FBG=∠AFG,∵∠CGF=∠BGF,∴△CGF∽△FGB,∴=,∴FG2=BG•CG,∴FG=HG.17.【提出问题】小聪同学类比所学的“圆心角“与“圆周角”的概念,将顶点在圆内(顶点不在圆心)的角命名为圆内角.如图1中,∠AEC,∠BED就是圆内角,所对的分别是、,那么圆内角的度数与所对弧的度数之间有什么关系呢?【解决问题】小聪想到了将圆内角转化为学过的两种角,即圆周角、圆心角,再进一步解决问题:===的度数的度数)(1)如图1,在⊙O中,弦AB、CD相交于点E,若弧的度数是65°,弧的度数是40°,则∠AED的度数是127.5°.【类比探究】顶点在圆外且两边与圆相交的角,命名为圆外角.(2)如图3,在⊙O中,弦AB,CD的延长线相交于点E,试探索圆外角∠E的度数与它所夹的两段弧、的度数之间的关系.【灵活运用】(3)如图4,平面直角坐标系内,点A(,1)在⊙O上,⊙O与y轴正半轴交于点B,点C,点D是线段OB上的两个动点,满足AC=AD.AC,AD的延长线分别交⊙O 于点E、F.延长FE交y轴于点G,试探究∠FGO的度数是否变化.若不变,请求出它的度数;若变化,请说明理由.解:(1)∵∠AEC的度数=(的度数+的度数),∴∠AEC=(65°+40°)=52.5°,∴∠AED=180°﹣∠AEC=180°﹣52.5°=127.5°,故答案为:127.5°;(2)连接OA,OB,OC,OD,BC,∵∠E=∠ABC﹣∠BCE=∠AOC﹣∠BOD=(的度数﹣的度数),∴∠E=(的度数﹣的度数);(3)∠FGO的度数不变,连接OA,作AH⊥x轴于H,∵AC=AD,∴∠ACD=∠ADC,∴(的度数+的度数=(的度数+的度数),∴的度数+的度数=的度数+的度数,∴的度数﹣的度数=的度数﹣的度数,由(2)知,∠FGO=(的度数﹣的度数)=(的度数﹣的度数),∵点A(,1),∴OH=,AH=1,∴tan∠AOH=,∴∠AOH=30°,∴∠AON=120°,∠AOB=60°,∴∠FGO=(120°﹣60°)=30°,∴∠FGO的度数不变,为30°.。
2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)

2023年中考数学复习---圆综合知识点总结与专项练习题(含答案解析)知识点总结1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
2.垂径定理的推论:推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。
3.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。
4.圆周角定理:5.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
6.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。
②性质:I:圆内接四边形的对角互补。
II:圆内接四边形的任意一个外角等于它的内对角。
7.三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆。
圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。
8.切线的性质:①圆的切线垂直于经过切点的半径。
②经过圆心且垂直于切线的直线必经过切点。
③经过切点且垂直于切线的直线必经过圆心。
运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题。
9. 切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。
在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦切角
.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。
.弦切角定理:弦切角等于其所夹的弧所对的圆周角。
与圆有关的比例线段
圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数| |(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。
1.如图1,正方形ABCD的边长为1,以BC为直径。
在正方形内作半圆O,
过A作半圆切线,切点为F,交CD于E,求DE:AE的值。
2.⊙O中的两条弦AB与CD相交于E,若AE=6cm,
BE=2cm,CD=7cm,那么CE=_________cm。
3.已知PA是圆的切线,PCB是圆的割线,
则________。
4.如图3,P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O
于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则
圆心O到AB的距离是___________cm。
5.如图4,AB为⊙O的直径,过B点作⊙O的切线BC,OC交⊙O于
点E,AE的延长线交BC于点D,(1)求证:;
(2)若AB=BC=2厘米,求CE、CD的长。
6.如图5,AB为⊙O的直径,弦CD∥AB,AE切⊙O于A,交CD
的延长线于E。
求证:
7.如图6,PA、PC切⊙O于A、C,PDB为割线。
求证:AD·BC=CD·AB
8.如图8,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的
一段弧。
点E是边AD上的任意一点(点E与点A、D不重合),过E作所在
圆的切线,交边DC于点F,G为切点。
当∠DEF=45°时,求证点G为线段EF的中点;
9.如图2,△ABC中,AC=2cm,周长为8cm,F、K、N是△ABC与内切圆的
切点,DE切⊙O于点M,且DE∥AC,求DE的长。
10.如图3,已知P为⊙O的直径AB延长线上一点,PC切⊙O于C,
CD⊥AB于D,求证:CB平分∠DCP。
11.如图4,已知AD为⊙O的直径,AB是⊙O的切线,过B的割线BMN
交AD的延长线于C,且BM=MN=NC,若AB,求⊙O的半径。
12.如下图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过
C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=________.
13.一个圆的两弦相交,一条弦被分为12 cm和18 cm两段,另一
弦被分为3∶8,则另一弦的长为________.
14.已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与
圆O交于点B,PB=1,则圆O的半径R的长为________.
15.已知如下图,⊙O和⊙O′相交于A、B两点,过A作两圆的切线
分别交两圆于C、D.若BC=2,BD=4,则AB的长为________.
15.如下图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O
交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(1)证明:A,P,O,M四点共圆;
(2)求∠OAM+∠APM的大小.
16.如右图,梯形ABCD内接于⊙O,
AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.
(1)求证:AB2=AE·BC.
(2)已知BC=8,CD=5,AF=6,求EF的长.
17.如右图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CD⊥AB于D点,则CD=________.
18.如下图,圆O和圆O′相交于A、B两点,AC是圆O′的切线,AD是圆O的切线,若BC=2,AB=4,则BD=________.
19.如右图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,则圆O的面积等于________.
四点共圆
四点共圆的性质及判定:
判定定理1:共斜边的两个直角三角形,则四个顶点共圆,且直角三角形的斜边
为圆的直径.
判定定理2:共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆. 判定定理3:对于凸四边形ABCD ,对角互补⇔四点共圆
判定定理4:相交弦定理的逆定理:对于凸四边形ABCD 其对角线AC 、BD 交于P ,
PD BP PC AP ⋅=⋅⇔四点共圆 判定定理5:割线定理:对于凸四边形ABCD 其边的延长线AB 、CD 交于P ,
PD PC PB PA ⋅=⋅⇔四点共圆 托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和. 即:若四边形ABCD 内接于圆,则有BD AC BC AD CD AB ⋅=⋅+⋅. 1.如图1,⊙1o ,⊙2o ,⊙3o … 都经过点A 和B.点P 是线段AB 延长线上 任意一点,且PC ,PD ,PE …分别与⊙1o ,⊙2o ,⊙3o …相切于 点C,D,E,…。
求证:C,D,E …在同一个圆上。
2.如图所示,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AB 的垂线,交AC 的延长线于点E ,交AD 的延长线于点F ,过G 作⊙O 的切线,切点为H .
求证:(1)C ,D ,F ,E 四点共圆;(2)GF GE GH ⋅=2
.
3如图,D ,E 分别是AB ,AC 边上的点,且不与顶点重合,已
知m AE =,n AC =,AD ,AB 为方程0142
=+-mn x x 的两根.
(1)证明:C ,B ,D ,E 四点共圆;
(2)若︒=∠90A ,4=m ,6=n ,求C ,B ,D ,E 四点所在圆的半径.
4.如图,AB 为圆O 的直径,CD 为垂直于AB 的一条弦,垂足为E , 弦BM 与CD 交于点F .(1)证明:A 、E 、F 、M 四点共圆; (2)证明:2
2
AB BM BF AC =⋅+.
5.如图,在平行四边形ABCD 中,BAD ∠为钝角,且BC AE ⊥,CD AF ⊥. (1)求证:A 、E 、C 、F 四点共圆;
(2
)设线段BD 与(1)中的圆交于M 、N .求证:ND BM =.
B
F
B
E
D
A
B。