ARCGIS10.0 空间分析方法与GIS典型应用例证
ArcGIS空间分析介绍与应用实例

地理信息系统(GIS)的一个主要优势在于 能够对GIS数据进行空间运算以派生新的信 息。这些工具构成了所有空间建模和地理处 理的基础。在三种主要的GIS数据类型—— 栅格,矢量及不规则三角网中,栅格数据结 构为空间分析提供了最强的建模环境及空间 运算。 空间分析是GIS的核心与灵魂,是 GIS区别于一般的信息系统、CAD或者电子地 图系统的主要标志之一。 空间分析,配合 空间数据的属性信息,能提供强大、丰富的 空间数据查询功能。
洪水淹没缓冲区分析示意图
洪水淹没缓冲区分析 根据上图的缓冲区分析可见,自堰塞湖至绵阳段,河道附近1公里以内的区域都是淹 没风险较大的区域,需要进行撤离;河道附近2-3公里的区域都是淹没风险区域,这些危 险区域,可根据实际情况进行撤离。危险区域包括北川县城、通口镇、江油部分地区、 绵阳市的油仙区、涪城区和三台县等。
基于GIS的Leabharlann 水淹没缓冲区分析模型洪水淹没过程是一个很复杂的过程,受多种因素的影响,在诸多的影响因素中洪水特性 和受淹区的地形地貌是影响洪水淹没的主要因素。由于我们所研究区域内的地形比较 复杂,利用传统的方法获取研究区域内的DEM数据并进行洪水淹没分析是很难做到的。 而地理信息系统(GIS)不仅具有数据的采集、管理、处理、分析和输出等基本功能, 还能通过利用空间分析技术、模型分析技术、网络技术、数据库和数据集成技术、二 次开发环境等演绎出丰富多彩的系统应用功能[4]。因此可以说地理信息系统(GIS) 具有强大的空间分析功能,可以快速有效的进行洪水淹没分析。
•
模型假设
j
泄流河道泄流情况图
空间缓冲区分析是指根据分析对象的点、线、 面实体,自动建立它们周围一定距离 的带状区,用以识别这些实体或主体対邻近 对象的辐射范围或影响度。以便为某项分析 或决策提供依据[3]。它是地理信息系统重 要的和基本的空间操作能力之一。现实中的 任何问题都是在各种各样的多种因素的影响 下形成的,因而在对现实的问题进行分析时, 我们要找出问题的主导影响因素,将研究的 问题抽象化,建立模型,这样才便于对问题 进一步的分析。 由图可知,唐家山堰塞湖坝址下游的泄洪河 道崎岖,河床粗糙,落差较大,且地质复杂。 因而唐家山堰塞湖的洪水在泄流过程中的运 动过程较为复杂,它的影响因素也较为复杂, 为便于对泄洪河道的缓冲区进行分析,我们 假设:不考虑洪水在河槽中弯曲流动等损失 的能量
GIS空间分析的应用

GIS空间分析的应用GIS(地理信息系统)空间分析是利用地理信息技术和空间分析方法进行地理数据处理和解释的过程。
它将地理数据与地理空间分析方法相结合,可以帮助我们更好地了解地理现象和解决地理问题。
以下是几个GIS空间分析的应用示例。
1.土地利用规划:GIS空间分析可以用于城市规划部门进行土地利用规划。
通过分析土地的不同属性和地理位置,可以确定适合建设住宅、商业区、工业区等区域,以及环境保护区。
它还可以预测土地利用变化趋势,帮助规划部门做出合理的决策。
2.灾害风险评估:GIS空间分析可以用于评估地区的灾害风险,如洪水、山火、地震等。
通过分析地形、水文、气象等数据,并结合历史灾害数据,可以确定潜在的风险区域,并制定应对措施。
这可以帮助政府部门和救援机构更好地做出预警和应对灾害的决策。
3.交通网络规划:GIS空间分析可以用于交通网络规划,帮助优化道路网、公共交通系统和物流运输网络。
通过分析交通流量、道路状况、人口分布等数据,可以确定最佳交通路径,减少交通拥堵和运输成本。
这对于城市交通局和物流公司来说,可以提高交通效率和节约资源。
4.环境保护和资源管理:GIS空间分析可以用于环境保护和自然资源管理。
通过分析土壤类型、植被分布、水源位置等数据,可以确定环境敏感区域和野生动植物栖息地。
这可以帮助环保部门和自然保护组织制定保护计划,并监测资源利用情况。
5.市场分析和商业决策:GIS空间分析可以用于市场分析和商业决策。
通过分析人口密度、消费行为、竞争对手位置等数据,可以确定最佳的商业定位和市场细分。
这可以帮助企业决策者更好地了解潜在客户和市场需求,制定市场营销策略。
总之,GIS空间分析是一种强大的地理信息处理工具,可以在各个领域中发挥重要作用。
它能够通过整合、分析和解释地理数据,帮助我们更好地了解地理现象,预测未来趋势,并做出合理的决策。
无论是城市规划、自然资源管理还是市场分析,GIS空间分析都可以为我们提供更准确和全面的地理信息支持。
如何使用ArcGIS进行地理空间数据分析

如何使用ArcGIS进行地理空间数据分析Chapter 1:ArcGIS基础知识ArcGIS是由美国环球信息系统公司(Esri)开发的一套地理信息系统(GIS)软件。
它提供了一系列工具和功能来处理地理空间数据,并进行数据分析。
在开始使用ArcGIS进行地理空间数据分析之前,我们首先需要了解基本的ArcGIS知识。
1.1 ArcGIS组成部分ArcGIS由ArcMap、ArcCatalog和ArcToolbox三个主要组件组成。
- ArcMap:用于创建、编辑和分析地图,可以展示地理空间数据的可视化结果。
- ArcCatalog:用于管理地理空间数据,包括浏览、搜索、导入、导出和组织等操作。
- ArcToolbox:提供了各种工具和模型,用于进行地理空间数据的分析和处理。
1.2 数据格式ArcGIS支持多种地理空间数据格式,包括矢量数据(如点、线、面)、栅格数据(如DEM、遥感影像)和表格数据。
在进行地理空间数据分析时,我们需要确保数据格式的正确性和一致性。
1.3 ArcGIS工作空间在ArcGIS中,工作空间是指存储地理空间数据和分析结果的文件夹。
通过创建和管理工作空间,我们可以更方便地进行地理空间数据的管理和分析。
Chapter 2:地理空间数据分析流程使用ArcGIS进行地理空间数据分析的一般流程包括数据准备、数据导入、数据预处理、数据分析和结果输出等步骤。
2.1 数据准备对于地理空间数据分析,首先需要明确研究的目标和涉及的地理数据。
根据目标选择合适的数据源,并进行数据采集和整理。
2.2 数据导入通过ArcCatalog将数据导入ArcGIS,并按照需要创建要素类(Feature Class)、栅格数据集(Raster Dataset)和数据表(Table)等数据集合。
2.3 数据预处理在进行地理空间数据分析之前,通常需要对数据进行预处理。
可以通过数据编辑、数据投影、数据剪裁、数据拓扑检查等操作来清洗和优化数据。
ArcGIS10中有关空间统计分析的数学公式原理及工具操作汇总资料(170多页)

“空间统计”工具箱概述ArcGIS 10此空间统计工具箱包含用于分析空间分布、模式、过程和关系的统计工具。
尽管空间统计和非空间统计(传统统计方法)在概念和目标方面可能存在某些相似性,但空间统计具有独特性,因为它们是专门为处理地理数据而开发的。
与传统的非空间统计分析方法不同,空间统计方法是将空间(邻域、区域、连通性和/或其他空间关系)直接融入到数学中。
可以使用“空间统计”工具箱中的工具对空间分布的显著特征进行汇总(例如,确定平均中心或总体方向趋势)、识别具有统计显著性的空间聚类(热点/冷点)或空间异常值、评估聚类或离散的总体模式以及建立空间关系模型。
此外,对于使用 Python 编写的工具提供了源代码,以便于您学习、修改、扩展和/或与他人共享这些工具或其他分析工具。
注意:只要分析中涉及距离(对于空间统计总是如此),就应使用投影坐标系(而不是基于度、分、秒的地理坐标系)对数据进行投影。
工具集描述分析模式这些工具可用于评估要素(或与要素关联的值)是形成一个聚类空间模式、离散空间模式还是随机空间模式。
聚类分布制图这些工具可用于识别具有统计显著性的热点、冷点或空间异常值。
度量地理分布这些工具可以解决以下问题:中心在哪里?形状和方向如何?这些要素的离散程度如何?空间关系建模这些工具可利用回归分析来建立数据关系模型,也可以构建空间权重矩阵。
渲染这些工具可用于渲染分析结果。
工具这些实用工具可执行多种杂项功能:计算面积、评估最小距离、导出变量和几何、转换空间权重文件和采集重合点。
“空间统计”工具集其他资源:•Mitchell, Andy.《ESRI GIS 分析手册(第 2 卷)》。
ESRI 出版社,2005。
•空间统计简介,免费的ESRI 虚拟校园 Web 研讨会。
•回归分析基本知识,免费的ESRI 虚拟校园 Web 研讨会。
•ArcUser Online文章:犯罪、健康、房地产、回归分析。
•教程:GIS 教程 II、热点分析、回归分析。
ARCGIS空间分析操作步骤详解

ARCGIS空间分析基本操作一、实验目的1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。
2. 掌握矢量数据与栅格数据间的相互转换、栅格重分类(Raster Reclassify)、栅格计算-查询符合条件的栅格(Raster Calculator)、面积制表(Tabulate Area)、分区统计(Zonal Statistic)、缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、栅格单元统计(Cell Statistic)、邻域统计(Neighborhood)等空间分析基本操作和用途。
3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。
二、实验准备预备知识:空间数据及其表达空间数据(也称地理数据)是地理信息系统的一个主要组成部分。
空间数据是指以地球表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。
它是GIS所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。
在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。
有两种基本方法来表示空间数据:一是栅格表达; 一是矢量表达。
两种数据格式间可以进行转换。
空间分析空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。
空间分析是地理信息系统的主要特征。
空间分析能力(特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。
空间分析赖以进行的基础是地理空间数据库。
空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。
空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。
空间分析步骤根据要进行的空间分析类型的不同,空间分析的步骤会有所不同。
通常,所有的空间分析都涉及以下的基本步骤,具体在某个分析中,可以作相应的变化。
ArcGIS10空间分析教程

Spatial Analyst TutorialTable of ContentsAbout the ArcGIS Spatial Analyst Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . 3 Exercise 1: Preparing for analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Exercise 2: Accessing Spatial Analyst and Data Exploration . . . . . . . . . . . . . . . . . 11 Exercise 3: Finding a site for a new school . . . . . . . . . . . . . . . . . . . . . . . . 19 Exercise 4: Finding an alternate access route . . . . . . . . . . . . . . . . . . . . . . . 47About the ArcGIS Spatial Analyst TutorialUsing the Spatial Analyst tools available with ESRI ArcGIS, you can perform spatial analysis on your data. You can provide answers to simple spatial questions such as How steep is it at this location? and What direction is this location facing? You can also find answers to more complex spatial questions such as Where is the best location for a new facility? and What is the least costly path from A to B? The comprehensive set of Spatial Analyst tools within ArcGIS allows you to explore and analyze your spatial data and enables you to find solutions to your spatial problems. You can run tools from the Spatial Analyst toolbox or the Python Window, accessible via any ArcGIS Desktop application. You can also create your own custom tools (models or scripts) to run a sequence of tools at one time.A quick tour of Spatial AnalystTutorial ScenarioThe town of Stowe, Vermont, USA, has experienced a substantial increase in population. Demographic data suggests this increase has occurred because of families with children moving to the region, taking advantage of the many recreational facilities located nearby. It has been decided that a new school must be built to take the strain off the existing schools, and as a town planner, you have been assigned the task of finding the potential site.This tutorial will show you how to use many of the available tools and will give you a solid basis from which you can start to think about how to solve your own specific spatial problems.It is assumed that you have installed ArcGIS Desktop (ArcView, ArcEditor, or ArcInfo) and the ArcGIS Spatial Analyst extension before you begin this tutorial. If you need more information about extensions, see Using Extensions in ArcGIS.The data required is included on the ArcGIS Desktop CD. After running the ArcGIS setup, on the Additional Installation Components dialog box, check to install the ArcGIS Tutorial Data. On the ArcGIS Tutorial Data Setup wizard, check to install the Spatial Analyst data (the default installation path isC:\arcgis\ArcTutor\SpatialAnalyst). The datasets were provided courtesy of the state of Vermont for use in this tutorial. The tutorial scenario is fictitious, and the original data has been adapted for the tutorial.Dataset DescriptionElevation Raster dataset representing the elevation of the areaLanduse Raster dataset representing the land-use types over the areaRoads Feature class representing the linear road network for the town of StoweRec_sites Feature class representing point locations of recreation sitesSchools Feature class representing point locations of existing schoolsDestination Feature class representing the destination point used when finding the best route for a new roadThis tutorial is divided into exercises and is designed to allow you to explore the Spatial Analyst functionality in ArcGIS at your own pace.•In Exercise 1, you'll prepare for analysis. You'll copy the tutorial data locally and create a geodatabase to hold your results.•In Exercise 2, you'll learn the location of the Spatial Analyst tools, create a hillshade output, and explore your data.•In Exercise 3, you'll create a suitability map to help you find the best location for a new school. You'll derive datasets of distance and slope, reclassify datasets to a common scale, then weight those that are more important to consider and combine them to find the most suitable locations. You'll thenlocate the optimal site using the selection tools within ArcMap.•In Exercise 4, you'll find the least costly route for an alternate access road to the new school site.You will need approximately 90 minutes of focused time to complete the tutorial. Alternatively, you can perform the exercises in sequence one at a time, saving your results along the way when recommended.Exercise 1: Preparing for analysisIn this exercise, you will prepare for analysis by first copying the tutorial data locally, then creating a geodatabase for your anizing your dataBefore working with Spatial Analyst tools, you will organize your tutorial data.Locating tutorial dataSteps:1.Navigate to the location in your file browser where you installed the tutorial data, forexample, if you installed ArcGIS on your C:\ drive, go to C:\arcgis\ArcTutor.2.Right-click the Spatial Analyst folder and select Copy .3.Browse to your working directory, for example, your C:\ drive.4.Right-click C:\ (or an alternative drive) and select Paste .Complexity:BeginnerData Requirement:ArcGIS Tutorial Data SetupStarting ArcMapSteps:1.Start ArcMap by either double-clicking a shortcut installed on your desktop or clicking Start>All Programs>ArcGIS>ArcMap.2.Click New Maps in the ArcMap - Getting Started window if it is not already highlighted.3.Click the Open button.4.Click the Connect to folder button in the Select the map's geodatabase window.5.Browse to and click the working copy of the Spatial Analyst folder just created.6.Click OK.7.Click the New File Geodatabase button. the new file geodatabase Scratch.9.Click Add.10.Click OK.Setting your workspaceBoth your current and scratch workspaces are set to your Scratch.gdb geodatabase. For this workflow, access data from the Stowe.gdb, which is in the Spatial Analyst folder and contains your data; write your data, by default, to your Scratch.gdb.Steps:1.Click the menu Geoprocessing>Environments.2.Click Workspace to expand the environment settings related to workspaces.3.For Current Workspace, navigate to your Stowe.gdb in your Spatial Analyst folder.4.Click Add.5.Click OK.Your scratch workspace is already set to your Scratch.gdb geodatabase.Adding data to your ArcMap sessionSteps:1.Click Stowe.gdb in the ArcCatalog tree window.2.Select all the datasets while holding the SHIFT key, then release the SHIFT key and drag anddrop the data into the ArcMap table of contents.3.Right-click Layers and select Turn All Layers On.You should see the four feature classes and two rasters in the table of contents. Saving your map documentSteps:1.On the Standard toolbar, click the Save button.2.Browse to the working copy of the Spatial Analyst folder.3.For File name, enter Site Analysis.mxd.4.Click Save.SummaryYou have prepared a workspace in which the datasets created by following the tutorial workflow will be created. You can now proceed to Exercise 2.Exercise 2: Accessing Spatial Analyst and Data ExplorationYou will learn how to turn on the Spatial Analyst extension, access the Spatial Analyst toolbar, and search for geoprocessing tools. You will create a hillshade output to display transparently with your other layers, make a histogram of your land-use layer, and select elements on your map. Thisexercise will take approximately 15 minutes to complete.Checking out a Spatial Analyst licenseSteps:1.Click the Customize >Extensionsmenu.2.Check the Spatial Analyst check box.3.Click Close.Add the Spatial Analyst ToolbarThe Spatial Analyst toolbar contains a Create Contourtool and a Histogram button .Steps:Complexity:BeginnerData Requirement:ArcGIS Tutorial Data SetupClick Customize>Toolbars>Spatial Analyst on the main menu.The Spatial Analyst toolbar is added to your ArcMap session.Creating a hillshadeA hillshade is a shaded relief raster created by using an elevation raster and setting an illumination source (typically the sun) at a user-specified azimuth (the angular direction of the illumination source, in positive degrees from 0 to 360) and altitude (the angle of the illumination source above the horizon). The visual effect of a hillshade can be dramatic when it is displayed under other layers with transparency set in your ArcMap display. You'll run the Hillshade tool so you can view and explore the output from this tool with the rest of your input data later in this exercise.Steps:1.Open the Hillshade tool.Note:These substeps show how to use the Search window to locatethe Hillshade tool.a.Click Search.b.Click Tools.c.Type Hillshade.d.Click the Search button, or click enter.e.Click the Hillshade(Spatial Analyst) tool from the SpatialAnalyst toolbox not the 3D Analyst toolbox.2.Select elevation from the drop-down list for the Input raster.3.Leave the default for the Output raster,Azimuth, and Altitude parameters.4.Accept the default and leave Model shadows unchecked, so the local illumination of thesurface will be calculated whether or not a cell falls in the shadow of another cell.5.Type a value of0.3048for the Z factor.feet. Since there are 0.3048 meters in one foot, multiplying the z-values by a factor of 0.3048will convert them to meters.Dive-in:If your x-, y-, and z-values are all in the same unit of measure (forexample, if they are all in meters), you can accept the default Zfactor of 1, so the z-units are not converted. Setting anappropriate z-factor is critical for good results if your input surfaceis stored in a geographic coordinate system (for example, the x,yunits are a spherical measurement, such as decimal degrees ordecimal seconds). The z-factor can also be used for exaggerationof the terrain.Click OK to run the tool.Displaying and exploring dataYou will now explore the display capabilities of ArcMap by changing the symbology of one of the layers and applying transparency so you can see the hillshade output you have created underneath your other layers in the display.Steps:1.In the table of contents, click and drag the hillshade result below the landuse layer.2.Uncheck the elevation layer in the table of contents.3.Right-click landuse in the table of contents and click Properties.4.Click the Symbology tab.All land-use categories are currently drawn in random colors with the Unique Values renderer, based on the Value Field. You will change the Value Field setting to be more meaningful and change the symbology to show a more appropriate color for each land-use type on the map.5.Click the Value Field drop-down arrow and click LANDUSE. This is a string field in the landuseattribute table that describes each land-use type.6.Double-click each symbol and choose a suitable color to represent each land-use type (forexample, agriculture is orange; built up areas, red; forest, green; water, blue; and wetlands, purple).7.Click Apply.The changes you make are reflected in the table of contents and in the map display.8.Click the Display tab.9.Change the Transparency from0% to30%.10.Click OK.The hillshade layer can now be seen underneath the landuse layer, giving a vivid impressionof the terrain.Land use and hillshade mapSelect features on the mapExamining the attribute table gives you an idea of the number of cells of each attribute in the dataset.Steps:1.Right-click the landuse layer in the table of contents and click Open Attribute Table.The COUNT field identifies the number of cells in the dataset of each value. Notice that Forest(value of 6) has the largest count, followed by Agriculture (value of 5), then Water (value of 2).Click the row representing Wetlands (value of 7).This selected set, all areas where the land-use type is Wetlands, is highlighted on the map.3.Click the Unselect all the currently selected records button in the menu of the Tablewindow.4.Click the attribute table for landuse layer and the Table window.Identifying features on the mapSteps:1.Click the Identify tool on the Tools toolbar and click any location on your map.2.Click the Identify from drop-down arrow on the Identify dialog box and click<All layers>.3.Click a rec_site point to identify the features in this particular location.Note:Your display will not be zoomed in this much; this is only to showthe location of the recreation site to click.Close the Identify window.Examining a histogramSteps:1.On the Spatial Analyst toolbar, click the Layer drop-down arrow and click landuse.2.Click the Histogram button.The histogram displays the number of cells of each type of land use.3.Close the Histogram of landuse window.Saving the map documentAs the last step in this exercise, you'll save the changes to your map document. You'll use this map document in the next exercise.Steps:1.On the Standard toolbar, click the Save button.SummaryIn this exercise, you explored the tutorial data and learned how to access and run Spatial Analyst tools. In the next exercise, you will build a model by adding tools from the Spatial Analyst Tools toolbox to ModelBuilder to run a sequence of tools that will locate the areas that are suitable for building a new school.You can proceed to exercise 3or stop and complete the tutorial at a later time. If you do not proceed to exercise 3 now, do not delete your working copy of the tutorial data.In this exercise, you will build a suitability model that finds suitable locationsfor a new school. The steps to produce such a suitability model are outlinedbelow.Your input datasets in this exercise are landuse, elevation, rec_sites, andschools. You will derive slope, distance to recreation sites, and distance to existing schools, then reclassify these derived datasets to a common scale from 1 to 10. You'll weight them and the landuse dataset according to a percentage of influence and combine them to produce a map displaying suitable locations for the new school. You'll then select the optimal site for the new school from the alternatives.This exercise will take approximately 45 minutes to complete. Start this exercise with your Site Analysis map document, created in exercise 1, open.Creating a new toolboxYou'll first create a new toolbox to hold the models you will create in this exercise and the next exercise.Steps:1.Create a new toolbox in your Spatial Analyst folder. Name the toolbox Site AnalysisTools .Tip:For more information on creating a toolbox, go to Creating acustom toolbox.You will create a model to perform Spatial Analyst tasks. A model is built by stringing tools together in ModelBuilder. Once your model is created, you can easily experiment with parameter values, use different input data, run the model over and over again, and share it with others. To find out more about ModelBuilder, go to What is ModelBuilder.In this exercise, you will create a model to find a suitable location for a new school.Steps:1.Right-click the Site Analysis Tools toolbox and click New>Model.Complexity:BeginnerData Requirement:ArcGIS Tutorial Data SetupAn empty ModelBuilder session will open. Renaming the modelSteps:1.On the model's main menu, click Model>Model Properties.2.Click the General tab.3.Type FindSchool in the Name text box and Find location for school in the Labeltext box.The name is used in scripting and at the Python Window. The label is the display name for the model.4.Check the Store relative path names (instead of absolute paths)check box.Checking this box sets all source paths referenced by the tool as relative to the location ofthe toolbox.Spatial Analyst TutorialBefore you start to perform analysis on your data, you should set any relevant environment settings. For more information on how to set environments and the hierarchy between analysis environments, go to The analysis environment of Spatial Analyst.Because your environment settings apply to each process of this model only, you'll set environment settings for the model.Steps:1.Click the Environments tab.2.Expand Processing Extent and check Extent.3.Expand Raster Analysis and check Cell Size.Tip:The Current Workspace and the Scratch Workspace arealready set, as these environment settings are inherited fromthe map document.Click Values.5.Expand Processing Extent. Set the Extent by clicking the drop-down arrow and selectingSame as Layer elevation.6.Expand Raster Analysis. Set the Cell Size by clicking the drop-down arrow and selectingSame as Layer elevation.The cell size of your elevation layer will be applied to all subsequent raster outputs. Yourelevation dataset has the largest cell size (30 meters).Caution:Setting a smaller cell size than your largest input will not mean youhave more detailed information in subsequent raster results; youwill just have more cells of the same value, which may affect yourdisplay and calculation speeds. Although the software does notClick OK on the Environment Settings window.8.Click OK on the Model Properties window.9.On the toolbar, click the Save button.Tip:The model's properties are updated. If at any point you want toclose the model and carry on later, right-click the model in theArcToolbox window and click Edit to continue with the tutorial.You are ready to start to process your project data to locate suitable areas for the new school. You'll derive the following from your project data:•Derive Slope from the elevation dataset.•Derive Distance from recreation sites from the rec_sites dataset.•Derive Distance from existing schools from the schools dataset.This first section of your model will look like the following:Steps:1.From your table of contents, drag the layers elevation, rec_sites, and schools onto yourmodel.2.Click and drag the Slope tool from the Spatial Analyst Surface toolset onto your model andplace it in line with your elevation data.An element that references the Slope tool is created on the display window.3.Locate the Euclidean Distance tool in the Spatial Analyst Tools toolbox Distance toolset. Clickand drag the Euclidean Distance tool onto your model and place it in line with rec_sites.4.Repeat the previous step, but this time place the Euclidean Distance tool in line with schools.Notice that each time the same tool is added to a model, the name of the tool element isappended with a number. The second time Euclidean Distance was added to your model, thelabel consisted of the tool name followed by (2). You can change these labels if you desire, butthis is unnecessary for this example.5.Click the Add Connection tool.e the Add Connection tool to connect to the elevation dataset to the Slope tool. To do this,click elevation, then click the Slope tool.7.Repeat the previous step, this time connecting rec_sites to the Euclidean Distance tool andschools to the Euclidean Distance (2)tool.Note:The process (consisting of the input data, tool, and output dataelements ) is now filled with a solid color, meaning it is ready torun. If you were to run the model now, it would run using thedefault parameters for each tool.On the model toolbar, click the Select tool, because you no longer need the Add Connection tool.9.Click the Auto Layout button, then click the Full View button to apply the current diagramproperties to the elements and place them within the display window.10.On the toolbar, click the Save button.Deriving Slope from elevationSince the area is mountainous, you need to find areas of relatively flat land on which to build, so you will take into consideration the slope of the land.Steps:1.Right-click the Slope tool and click Open, or double-click the Slope tool.2.Leave the Input raster and the Output measurement as the default values.3.Accept the default location for the value of the Output raster parameter, but typeslope_out for the name.A meaningful output name,slope_out, has been provided to help locate this data later inexercise 3.4.For the Z factor, type0.3048to convert the z-values to the same unit of measure as thex,y units (from feet to meters).5.Click OK.6.Right-click the output variable from the Slope tool and click Rename.7.Type Slope output and click OK.Caution:Renaming an element label does not alter the name of theoutput on disk. A layer will be added to the Table of Contentscalled Slope Output which references data on disk calledSlope_out.To find locations close to recreation sites, you must first calculate the Euclidean (straight-line) distance from recreation sites.Steps:1.Hover over the Euclidean Distance tool connected to rec_sites. You can easily see all thedefault parameters set for this tool. There is no need to adjust any of these parameters.You accepted the default for the Maximum distance, thus leaving this parameter empty.Therefore, the edge of the output raster is used as the maximum distance. The Output cellsize is taken from the environment setting previously set to that of your elevation data. Inthis exercise, the Output direction raster is not required.2.Rename the output variable from the Euclidean Distance tool to Distance torecreation sites.Deriving distance from schoolsTo find locations away from existing schools, you must first calculate the Euclidean (straight-line) distance from schools.Steps:1.Hover over the Euclidean Distance (2)tool connected to schools. You can easily see all thedefault parameters set for this tool. There is no need to adjust any of these parameters.2.Rename the output variable from the Euclidean Distance (2)tool to Distance toschools.Run Model to Derive DatasetsSteps:1.Right-click each of the output variables (Slope output,Distance to recreation sites, andDistance to schools) and click Add To Display.With the Add To Display property on, the data referenced by the variable will be added tothe display each time the model is run.2.Click the Run button on the model toolbar to execute the three tools—Slope,EuclideanDistance, and Euclidean Distance (2)—in your model.Notice that as the tool runs, its progress is documented on the progress dialog box, and thetool that references the tool is highlighted in red. When the tools have finished running, thetool and its output become shaded, indicating that the output has been created on disk.3.If the progress dialog box is present, check the Close this dialog when completedsuccessfully check box , then click Close.4.Examine the layers added to your ArcMap display.On the Slope Output layer, steep slopes are displayed in red and less steep slopes in green in the output layer. On the Distance to recreation sites layer, distances increase the farther you are from a recreation site. On the Distance to schools layer, distances increase the farther you are from a school.Slope output map Distance from recreation sites map Distance from schools mapReclassifying datasetsDeriving datasets, such as slope, is the first step when building a suitability model. Each cell in your study area now has a value for each input criteria (slope, land use, distance to recreation sites, and distance to schools). You need to combine the derived datasets so you can create your suitability map that will identify the potential locations for the new school. However, it is not possible to combine them in their present form—for example, combining a cell value in which slope equals 15 degrees with a cell value for land use that equals 7 (forest)—and get a meaningful answer that you can compare to other locations. To combine the datasets, they first need to be set to a common measurement scale, such as 1 to 10. That common measurement scale is what determines how suitable a particular location—each cell—is for building a new school. Higher values indicate more suitable locations for the school.Using the Weighted Overlay tool, you can weight the values of each dataset, then combine them. However, the inputs for the Weighted Overlay tool must contain discrete, integer values. Landuse data is already categorized into discrete values; for example, forest equals a value of 7, so you can simply add this dataset directly into the Weighted Overlay tool and assign each cell a new value on the common measurement scale of 1 to 10 (you'll do this later in the tutorial). The values in the datasets you derived in previous steps are all floating-point, continuous datasets, categorized into ranges, and they must first be reclassified so that each range of values is assigned one discrete integer value. Potentially, the value given to each range can be any number, provided you note the range that the value corresponds to. This is because you can weight these values within the Weighted Overlay tool—the next step after reclassifying the derived datasets. However, it is easier to weight the cell values for derived datasets while reclassifying. In the Weighted Overlay tool, you can accept the default and leave the scale values the same as the input values.You will reclassify each derived dataset to a common measurement scale, giving each range a discrete integer value between 1 and 10. Higher values will be given to attributes within each dataset that are more suitable for locating the school.This section of your model will look like the following:Steps:1.Locate the Reclassify tool in the Spatial Analyst Tools toolbox Reclass toolset. Click and dragthe Reclassify tool onto ModelBuilder in line with Slope Output. Add another Reclassify tool in line with Distance to recreation sites and another in line with Distance to schools.2.Click the Add Connection tool. Use the connect tool to connect:a.Slope Output to the Reclassify toolb.Distance to recreation sites to the Reclassify (2)toolc.Distance to schools to the Reclassify(3)tool3.On the model toolbar, click the Select tool.4.Click the Auto Layout button, then click the Full View button.Reclassifying slopeIt is preferable that the new school site be located on relatively flat ground. You'll reclassify the slope output, slicing the values into equal intervals. You'll assign a value of 10 to the most suitable range of slopes (those with the lowest angle of slope) and 1 to the least suitable range of slopes (those with the steepest angle of slope) and rank the values in between linearly.Steps:1.Open the Reclassify tool connected to the Slope Output variable.2.Accept the default for the Reclass field parameter so the Value field will be used.3.Click Classify.4.Click the Method drop-down arrow and click Equal Interval.5.Click the Classes drop-down arrow and click10.6.Click OK.7.Click Reverse New Values.Reversing the values applies higher new values to the values representing less steep slope,since these areas are more suitable for building.8.Accept the default for the Output raster parameter.9.Click OK.10.Rename the output variable from the Reclassify tool to Reclassed slope .Spatial Analyst TutorialThe school should be located as close as possible to a recreational facility. You will reclassify the distance to recreation sites output, assigning the number 10 to ranges of values that represent areas closest to recreation sites (the most suitable locations), assigning the number 1 to ranges of values that represent areas far from recreation sites (the least suitable locations), and ranking the values linearly in between.Steps:1.Open the Reclassify tool connected to the Distance to recreation sites variable.2.Accept the default for the Reclass field parameter so the Value field will be used.3.Click Classify.4.Set the Method to Equal Interval and the number of Classes to10.5.Click OK.6.Click Reverse New Values.Clicking Reverse New Values makes it so that distances close to recreational facilitiesreceive a higher new value, since these areas are more desirable.7.Accept the default path and name for the Output raster parameter.8.Click OK.9.Rename the output variable from the Reclassify (2)tool to Reclassed distance torecreation sites.Tip:To resize the output variable element,Reclassed distance torecreation sites, click the element and move the mouse pointerover one of the blue handles surrounding the element, then clickand drag to resize the element so all text can be seen.。
GIS空间分析技术在城市交通规划中应用案例

GIS空间分析技术在城市交通规划中应用案例【文章开头】城市交通规划是指为了提高城市交通效率、减少交通拥堵、优化交通网络布局等目标,通过制定策略和规划方案,来指导城市交通发展的过程。
而GIS(地理信息系统)空间分析技术作为一种综合利用地理数据、处理空间关系的工具,日益成为城市交通规划中的重要工具。
本文将以案例方式,介绍GIS空间分析技术在城市交通规划中的应用。
【文章正文】案例一:交通流量分析在城市交通规划中,了解城市各个路段的交通流量情况至关重要,因为这直接影响到交通拥堵的程度以及制定有效的交通规划措施。
GIS空间分析技术可以根据交通流量调查数据,运用缓冲区分析、网络分析等方法,对交通流量进行可视化呈现和分析。
以某城市为例,通过采集交通流量数据,可以将这些数据导入GIS软件中并进行空间分析。
首先,利用缓冲区分析可以将路段的交通流量在地图上以不同颜色的圆圈表示,从而直观地显示不同路段的交通流量大小。
其次,利用网络分析技术可以计算出各个路段之间的最短路径和通行时间,从而帮助交通规划者了解交通流向和路径分布,为制定合理的交通规划提供依据。
案例二:交通网络优化城市交通网络的布局和交通路线的设计直接影响城市交通的效率和便利性。
利用GIS空间分析技术,交通规划者可以对城市交通网络进行优化设计。
首先,通过收集城市交通基础数据,如道路网络、公交线路和交通流量等,将这些数据导入GIS软件中,并进行网络分析。
网络分析可以帮助交通规划者快速识别出存在交通瓶颈的区域,并提供改善方案。
其次,通过空间分析工具可以模拟和评估交通规划方案的效果。
例如,通过建立新的道路、调整公交线路等措施,可以利用GIS空间分析技术预测出这些交通改变对整体交通网络的影响,从而评估不同方案的可行性。
案例三:城市公交站点布局优化优化城市公交站点的布局对于提高公共交通服务质量和效率至关重要。
GIS空间分析技术可以辅助交通规划者确定最佳的公交站点位置,提高公交线路的覆盖率和接驳效率。
GIS空间分析的功能和广泛应用

一、GIS空间分析的功能前面已经介绍过GIS,大家已经知道空间分析就是对分析空间数据有关技术的统称。
所以我们根据作用的数据性质不同,可以经空间分析分为:1、空间图形数据的拓扑运算;2、非空间属性数据运算;3、空间和非空间数据的联合运算。
空间分析赖以进行的基础是仰仗于地理空间数据库,其运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段,最终的目的是解决人们所涉及到地理空间的实际问题,提取和传输地理空间信息,特别是隐含信息,以辅助决策。
GIS中可以实现空间分析的基本功能,包括空间查询与量算,叠加分析、缓冲区分析、网络分析等,并描述了相关的算法,以及其中的计算公式。
1、叠加分析叠加分析至少要使用到同一区域,具有相同坐标系统的两个图层。
所谓叠加分析,就是将包含感兴趣的空间要素对象的多个数据层进行叠加,产生一个新要素图层。
该图层综合了原来多层实体要素所具有的属性特征。
叠加分析的目标是分析在空间位置上有一定关联的空间对象的空间特征和专题属性之间的相互关系。
多层数据的叠加分析,不仅仅产生了新的空间对象的空间特征和专题属性之间的相互关系,能够发现多层数据间的相互差异、联系和变换等特征。
根据GIS数据结构的不同,将GIS叠加分析分为基于矢量数据的叠加分析和基于栅格数据的叠加分析。
在GIS的矢量数据结构中,地理孔吉对象由点、线、面等要素来表示,所以基于矢量数据的叠加分析又可以分为点与多边形的叠加分析、线与多边形的叠加分析和多边形间的叠加分析三大类。
点与多边形的叠加,就是研究某一矢量数据层中的点要素位于另外一个矢量数据层中的哪个多边形内,这呀就可以根据点与多边形的空间关系,确定给点要素添加哪些属性特征。
线与多边形叠加,就是研究矢量数据层中的线要素与其他数据层中的多边形要素之间的关系,进而判定线要素与多边形的相离、相交、包含等空间关心。
多边形的叠加,就是要研究两个或多个多边形矢量数据层的叠加操作,生成一个新的多边形数据层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的1、掌握ArcGIS缓冲区分析、叠置分析、网络分析方法。
2、熟悉ArcGIS的空间统计、栅格计算方法。
3、综合利用矢量数据空间分析中的缓冲区分析和叠置分析解决实际问题。
4、学会用ArcGIS9 进行各种类型的最短路径分析,了解内在的运算机理。
5、熟练掌握利用ArcGIS上述空间分析功能分析和结果类似学校选址的实际应用问题的基本流程和操作过程。
二、主要实验器材(软硬件、实验数据等)计算机硬件:lenovoideapadY460N计算机软件:ArcGIS10.0软件实验数据:《ArcGIS地理信息系统空间分析实验教程》随书光盘的第七章、第八章等三、实验内容与要求1、空间缓冲区分析。
(1)为点状、线状、面状要素建立缓冲区。
1)打开菜单“自定义”下的“自定义模式”,在对话框中选择“命令”,在“类别”中选择“工具”,在右边的框中选择“缓冲向导”(如图 1 所示),拖动其放置到工具栏上的空处。
图1提出“缓冲向导”2)利用选择工具选择要进行分析的点状要素,然后点击,在“缓冲向导”对话框设置缓冲区信息,如图2及图3所示。
图2 线状缓冲区信息设置1图3线状缓冲区信息设置23)利用选择工具选择要进行分析的线状要素,然后点击,在“缓冲向导”对话框设置缓冲区信息。
4)利用选择工具选择要进行分析的面状要素,然后点击,在“缓冲向导”对话框设置缓冲区信息,如图4所示。
图4 面状缓冲区信息设置2、学校选址。
要求:(1) 新学校选址需注意如下几点:1)新学校应位于地势较平坦处;2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域;3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好;4)新学校应避开现有学校,合理分布。
(2) 各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势位置因素各占0.125。
(3) 实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完成。
(4) 最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。
具体操作:(1)打开加载地图文档对话框,选择E:\Chp8\Ex1\school.mxd。
(2)从DEM 数据提取坡度数据集:打开工具箱→“Spatial Analyst 工具”→“表面分析”→“坡度”工具;在打开对话框中设置,如图5所示;生成坡度图,如图6所示。
图5 “坡度”对话框设置图6 坡度图(3)从娱乐场所数据“Rec_sites”提取娱乐场所欧氏距离数据集:打开工具箱→“Spatial Analyst 工具”→“距离分析”→“欧氏距离”工具;在打开对话框中设置,如图7所示;生成欧氏距离数据集,如图8所示。
图7 “欧氏距离”对话框设置图8 娱乐场所欧氏距离图(4)从现有学校位置数据“School”提取学校欧氏距离数据集,方法如上,生成学校直线距离数据集,如图9所示。
图9 学校欧氏距离图(5)重分类数据集。
1)重分类坡度数据集:采用等间距分级分为10 级(如图10);在平坦的地方适宜性好,赋以较小的适宜性值,陡峭的地区赋比较大的值(如图11);得到坡度适宜性数据图,如图12所示。
图10采用等间距分级分为10 级图11 适宜性设置图12 重分类坡度图2)重分类娱乐场所欧氏距离数据集:新学校距离娱乐场所比较近适宜性好,采用等间距分级分为10 级,距离娱乐场所最近适宜性最高,赋值1,距离最远的地方赋值10。
得到娱乐场所适宜性图如图13。
图13 重分类娱乐场所图3)重分类现有学校欧氏距离数据集:考虑到新学校距离现有学校比较远时适宜性好,采用分级分为10 级,距离学校最远的单元赋值1,距离最近的单元赋值10。
得到重分类学校距离图14。
图14 重分类学校距离图4) 重分类土地利用数据集:在考察土地利用数据时,容易发现各种土地利用类型对学校适宜性也存在一定的影响。
重分类时,勾选“将缺失值更改为NoData ”,删除旧值为4、7、9的新值(如图15);然后根据用地类型给各种类型赋值,,深色部分为比较适宜区,浅色部分表示适宜性比较差,白色表示该处不允许建学校,如图16。
图15 重分类设置图16 土地类型重分类(6) 适宜区分析。
打开“Spatial Analyst 工具”→“地图代数”→“栅格计算器”,对各个重分类后数据集的合并计算,最终适宜性数据集的加权计算公式为:reclass_rec (娱乐场所)* 0.5 + reclass_sch (现有学校)* 0.25 + reclass_la(土地利用 missing datapublicTranstionalAgricultureVegetableCity centerforestBarren land数据)* 0.125 +reclass_slop1(坡度数据)* 0.125得到最终适宜性数据集(图17),适宜性较高区域(深色部分)为推荐学校选址区域。
图17 适宜性学校选址 3、 市区择房。
要求:(1) 所寻求的市区是噪声要小,距离商业中心要近,要和各大名牌高中离的近以便小孩上学,离名胜古迹较近环境优雅。
综合上述条件,给定一个定量的限定如下: ● 离主要市区交通要道200米之外,交通要道的车流量大,噪音产生的主要源于此(ST 为道路类型中的主要市区交通要道);● 距大型商业中心的影响,以商业中心的大小来确定影响区域,具体是以其属性字段YUZHI ;● 距名牌高中在750米之内,以便小孩上学便捷;● 距名胜古迹500米之内。
(2) 将满足上述条件的其中一个条件的取值为 1,不满足的取值为 0,即如果满足距主要市区交通要道 200 米之类,取值为 1,反之为 0;其他亦是如此,最后将其累加得到分级。
即满足三个条件的累加得到 3,满足 2 个条件的得到 2,最后将全部分成 4 级。
操作:(1) 建立主干道噪音缓冲区。
1) 选择交通网络图层(network.shp ),打开图层的属性表,点击“表选项”,在菜单中选择 “按属性选择”,在“按属性选择”对话框中,左边选择“TYPE ”,双击将其添加到对话框下面 SQL 算式表中,点中间“=”,再单击 “获取唯一值”将 TYPE 的全部属性值加入上面的列表框中,然后选择“ST ”属性值,双击添加到 SQL 算式表中(如图18),将市区的主要道路选择出来。
娱乐场所现有学校图18 “按属性选择”对话框设置2)点击缓冲区按钮对选择的主干道进行缓冲区的建立,首先在缓冲区对象图层选择交通网络图层(network),然后选中“仅使用所选要素”;3)确定尺寸单位,选择第一种缓冲区建立方法,指定缓冲区半径为 200 米;4)由于不是分别考虑一个图层的各个不同的要素的目的,所以我们在这里选择的是第一种边界设定类型,然后指定好缓冲区文件的存放路径和文件名后,单击“完成”,完成主干道噪音污染缓冲区的建立,如图19。
图19 主干道噪音缓冲区(2)建立商业中心影响范围缓冲区。
1)建立大型商业中心的影响范围。
首先点击缓冲区按钮,在缓冲区对象图层选择商业中心分布图层(network);2)确定尺寸单位,选择第一种缓冲区建立方法,以其属性字段 YUZHI 为缓冲区半径;3)选择的是第一种边界设定类型,指定好缓冲区文件的存放路径和文件名;完成商业中心影响范围缓冲区的建立,如图20。
图20 商业中心影响范围缓冲区(3)建立名牌高中的影响范围。
1)点击缓冲区按钮,在缓冲区对象图层选择名牌高中分布图层(school);2)确定尺寸单位米,选择第一种缓冲区建立方法,指定 750 米作为半径;3)选择的是第一种边界设定类型,然后指定好缓冲区文件的存放路径和文件名后,完成名牌高中的覆盖范围缓冲区的建立,如图21。
图21 名牌高中的影响范围(4)名胜古迹的影响范围建立。
1)点击缓冲区按钮,在缓冲区对象图层选择名胜古迹分布图层(famous place);2)确定尺寸单位,选择第一种缓冲区建立方法,指定 500 米作为缓冲区半径;3)选择的是第一种边界设定类型,指定好缓冲区文件的存放路径和文件名,完成名胜古迹的覆盖范围缓冲区的建立,如图22。
图22 名胜古迹的影响范围(5)进行叠置分析将满足上述四个要求的区域求出。
1)将商业中心影响范围、名牌高中的影响范围和名胜古迹的影响范围进行叠置分析的交集操作,可以将同时满足三个条件的区域计算出。
打开工具箱,选择“分析工具”→“叠加分析”→“相交”工具,打开交集操作对话框,将商业中心的缓冲区、名牌高中的缓冲区和名胜古迹的缓冲区分别添加进来,设定输出文件名并选择全部字段,输出类型和输入类型一样,获得同时满足三个条件的交集区域,如下图所示。
图23 满足三个条件的区域2)利用主干道噪音缓冲区对获得的三个区域的交集进行图层擦除操作,获得同时满足四个条件的区域,打开工具箱,选择“分析工具”→“叠加分析”→“擦除”工具,设置“擦除”对话框(如图24),获得同时满足四个条件的交集区域的获得,即购房者的最佳选择区域,如图25。
图24“擦除”对话框的设置图25 购房者的最佳选择区域(6)为了便于购房者的选择有更大的余地,更直观地,综合上述四个因子,对整个市区进行分等定级,分级标准是:●满足其中四个条件为第一等级;●满足其中三个条件为第二等级;●满足其中两个条件为第三等级;●满足其中一个条件为第四等级;●完全不满足条件的为第五等级。
1)分别打开商业中心,名牌高中和名胜古迹影响范围的缓冲区图层的属性列表,添加一个market,school和famous 字段,并全部赋值为1,)将主干道噪音缓冲区图层的属性列表中添加voice 字段,全部赋值为-1,这里取-1 的原因是所取的噪音缓冲区之外的才是所要获得的区域。
2)打开工具箱,选择“分析工具”→“叠加分析”→“联合”工具,在“联合”对话框设置,在四个缓冲区逐个添加进去,同时设定输出图层的地址和文件名将全部字段连接,得到四个区域的叠加合并图,如下所示:图26 四个缓冲区的叠加图3)打开生成的联合文件图层属性列表,添加一个短整型字段class,然后保留FID,Shape*,class,market,voice,school和famous 字段,然后在“编辑器”工具栏下来菜单中选择“开始编辑”,然后在属性列表中的class 字段上单击右键,选择“字段计算器”,在“字段计算器”对话框设置,使得class=market+voice+school+famous,即将其进行分等定级(如图27),就将四个因子进行了一个简单的综合,同时也可以根据最后的区域的class的属性值将全部的研究的区域进行了等级的划分:第一等级:数值为3;第二等级:数值为2;第三等级:数值为1;第四等级:数值为0;第五等级:数值为-1。