平行四边形单元 期末复习检测试题
人教版八年级初二数学下学期平行四边形单元 期末复习测试综合卷检测试题

一、选择题1.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG 12=BC ;⑤四边形EFGH 的周长等于2AB .其中正确的个数是( )A .1B .2C .3D .42.如图,边长为1的正方形EFGH 在边长为4的正方形ABCD 所在平面上移动,始终保持EF//AB ,CK=1.线段KG 的中点为M ,DH 的中点为N ,则线段MN 的长为 ( ).A .26B .17C .17D .26 3.如图,在矩形ABCD 中,25,4,BC AB O ==为边AB 的中点,P 为矩形ABCD 外一动点,且90APC ∠=,则线段OP 的最大值为( )A .53+B .35C .452-D .2314.如图,P 为ABCD 内一点,过点P 分别作AB ,AD 的平行线,交 ABCD 的四边于E 、F 、G 、H 四点,若BHPE 面积为6,GPFD 面积为4,则APC △的面积为( )A .23B .32C .1D .25.如图,一张长方形纸片的长4=AD ,宽1AB =,点E 在边AD 上,点F 在边BC 上,将四边形ABFE 沿着EF 折叠后,点B 落在边AD 的中点G 处,则EG 等于( )A .3B .23C .178D .546.如图,正方形ABCD (四边相等、四内角相等)中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE =FC =4,BE =DF =3,则EF 的平方为( )A .2B .125C .3D .47.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定8.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有( )个.A .1B .2C .3D .49.如图,矩形ABCD 和矩形CEFG ,AB =1,BC =CG =2,CE =4,点P 在边GF 上,点Q 在边CE 上,且PF =CQ ,连结AC 和PQ ,M ,N 分别是AC ,PQ 的中点,则MN 的长为( )A .3B .6C 37D 17 10.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.12.在平行四边形ABCD 中,30,23,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.15.如图,在矩形ABCD 中,AB =2,AD =3,E 为BC 边上一动点,作EF ⊥AE ,且EF =AE .连接DF ,AF .当DF ⊥EF 时,△ADF 的面积为_____.16.如图,正方形ABCD 的边长为6,点E 、F 分别在边AD 、BC 上.将该纸片沿EF 折叠,使点A 的对应点G 落在边DC 上,折痕EF 与AG 交于点Q ,点K 为GH 的中点,则随着折痕EF 位置的变化,△GQK 周长的最小值为____.17.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .18.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________19.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.20.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,三、解答题21.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.22.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .23.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.24.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.25.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.27.在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,(1)如图1,求证:△AMC≌△AND;(2)如图1,若DF=3,求AE的长;(3)如图2,将△CDF绕点D顺时针旋转α(090α<<),点C,F的对应点分别为1C、1F,连接1AF、1BC,点G是1BC的中点,连接AG,试探索1AGAF是否为定值,若是定值,则求出该值;若不是,请说明理由.28.如图,ABCD中,60ABC∠=︒,连结BD,E是BC边上一点,连结AE交BD 于点F.(1)如图1,连结AC,若6AB AE==,:5:2BC CE=,求ACE△的面积;(2)如图2,延长AE至点G,连结AG、DG,点H在BD上,且BF DH=,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD AG +=. 29.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.30.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD 可得四边形EFGH 是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,∴EF=12CD ,FG=12AB ,GH=12CD ,HE=12AB , ∵AB=CD ,∴EF=FG=GH=HE ,∴四边形EFGH 是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长= EF=FG=GH=HE =2AB,故⑤正确,没有条件可证明EG=12BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.2.D解析:D【解析】【分析】因为题目没有确定正方形EFGH的位置,所以我们可以将正方形EFGH的位置特殊化,使点H与点A重合,重新画出图形,这样有利于我们解题,过点M作MO⊥ED于O,则可得出OM是梯形FEDC的中位线,从而可求出ON、OM,然后在Rt△MON中利用勾股定理可求出MN.【详解】如图,将正方形EFGH的位置特殊化,使点H与点A重合,过点M作MO⊥ED与O,则MO是梯形FEDC的中位线,∴EO=OD=52,MO=12(EF+CD)=52,∵点N、M分别是AD、FC的中点,∴AN=ND=2,∴ON=OD-ND=52-2=12,在Rt△MON中,MN2=MO2+ON2,即MN=225126 222⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭,故选D.【点睛】本题考查了梯形的中位线定理、正方形的性质及勾股定理的知识,属于综合性题目,对待这样既有动态因素又不确定位置的题目,一定要将位置特殊化,这样不影响结果且解题过程简单,要学会在以后的解题中利用这种思想.3.B解析:B【分析】连接AC ,取AC 的中点E ,根据矩形的性质求出AC ,OE ,再根据直角三角形斜边上的中线等于斜边的一半可得12PE AC =,然后根据三角形的任意两边之和大于第三边可得O 、E 、P 三点共线时OP 最大.【详解】解:如图,连接AC ,取AC 的中点E ,∵矩形ABCD 中,25, 4BC AB ==,O 为AB 的中点, 2216,52AC AB BC OE BC ∴=+=== ∵AP ⊥CP , 116322PE AC ∴==⨯=, 由三角形的三边关系得,O 、E 、P 三点共线时OP 最大,此时 53OP =最大故选:B .【点睛】本题考查了矩形的性质、三角形的三边关系、勾股定理、中位线定理.能正确构造辅助线,并根据三角形三边关系确定OP 最大值是解题关键.4.C解析:C【分析】根据平行四边形的性质得到四个平行四边形,且S △ AEP =S △ AGP ,S △PHC =S △ PFC ,S △ABC = S △ADC , 利用面积比较的关系即可求出答案.【详解】由题意知:四边形BHPE 、四边形AEPG 、四边形HCFP 、四边形GPFD 均为平行四边形,∴S △ AEP =S △ AGP ,S △PHC =S △ PFC ,S △ABC = S △ADC ,又S △ABC =S △AEP +S 四边形BHPE +S △PHC -S △APC ①,S △ADC =S △AGP +S 四边形GPFD +S △PFC +S △APC ②,②-①得,0=S 四边形BHPE -S 四边形GPFD +2S △APC ,即2S △APC =6-4=2,S △APC =1.故选:C.【点睛】此题考查平行四边形的性质,平行四边形一条对角线将平行四边形的面积平分.5.D解析:D【分析】连接BE ,根据折叠的性质证明△ABE ≌△A GE ',得到BE=EG ,根据点G 是AD 的中点,AD=4得到AE=2-EG=2-BE ,再根据勾股定理即可求出BE 得到EG.【详解】连接BE ,由折叠得:AE A E '=,A A '∠=∠=90°,AB A G '=,∴△ABE ≌△A GE ',∴BE=EG,∵点G 是AD 的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE ,在Rt △ABE 中,222BE AE AB =+,∴ 222(2)1BE BE =-+,∴EG=5BE 4=, 故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE ,由此利用勾股定理解题.6.A解析:A根据AB=5,AE=4,BE=3,可以确定△ABE为直角三角形,延长BE构建出直角三角形,在利用勾股定理求出EF的平方即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,如图,延长BE交CF于点G,∵AB=5,AE=4,BE=3,∴AE2+BE2=AB2,∴△ABE是直角三角形,同理可得△DFC是直角三角形,∵AE=FC=4,BE=DF=3,AB=CD=5,∴△ABE≌△CDF,∴∠BAE=∠DCF,∵∠ABC=∠AEB=902,∴∠CBG=∠BAE,同理可得,∠BCG=∠CDF=∠ABE,△ABE≌△BCG,∴CG=BE=3,BG=AE=4,∴EG=4-3=1,GF=4-3=1,∴EF2=EG2+GF2=1+1=2故选择:A【点睛】此题考查三角形的判定,勾股定理的运用,根据已知条件构建直角三角形求值是解题的关键.7.B解析:B【分析】连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,∠ACB=90°∴∠CEH=∠ECK=90° ,CE=BC∵∠BKH=90°,∴四边形CEHK是矩形,∴ CE=HK又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°∴∠HBK=∠BAC∴△BHK≌△ABC(AAS)∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°∴∠CBJ=∠KHL∴△BCJ≌△HKL(ASA)∴S△BCJ=S△HKL,∴S1=S△BHK=S△ABC,∵四边形ACFG是正方形,四边形ABHI是正方形,∴AB=AI,AC=AG,∠G=∠ACB=90°∴△ABC≌△AIG(SAS)∴S△ABC=S△AIG=S2,即S1=S2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.8.C解析:C【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出最大值BF=4,然后写出BF的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【详解】解:①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);②∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);③点H与点A重合时,此时BF最小,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,点G与点D重合时,此时BF最大,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得,2242+=5+22MF ME综上所述,结论正确的有①③④共3个,故选C.【点睛】本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.9.C解析:C【分析】连接CF,交PQ于R,延长AD交EF于H,连接AF,则四边形ABEH是矩形,求出FH=1,AF=2237+=AH FH,由ASA证得△RFP≌△RCQ,得出RP=RQ,则点R与点M重合,得出MN是△CAF的中位线,即可得出结果.【详解】解:连接CF,交PQ于R,延长AD交EF于H,连接AF,如图所示:则四边形ABEH是矩形,∴HE=AB=1,AH=BE=BC+CE=2+4=6,∵四边形CEFG是矩形,∴FG∥CE,EF=CG=2,∴∠RFP=∠RCQ,∠RPF=∠RQC,FH=EF﹣HE=2﹣1=1,在Rt△AHF中,由勾股定理得:AF=22226137+=+=AH FH,在△RFP和△RCQ中,RFP RCQ PF CQRPF RQC ∠=⎧⎪=⎨⎪∠=⎩,∴△RFP≌△RCQ(ASA),∴RP=RQ,∴点R与点M重合,∵点N是AC的中点,∴MN是△CAF的中位线,∴MN=11373722=⨯=AF,故选:C.【点睛】本题考查了矩形的判定与性质、平行线的性质、勾股定理、全等三角形的判定与性质、三角形中位线定理等知识;作辅助线构建全等三角形是解题的关键.10.A解析:A【分析】根据正方形的性质,以及中点的性质可得△FGN≌△HAN,即证①;利用角度之间的等量关系的转换可以判断②;根据△AKH∽△MKF,进而利用相似三角形的性质即可判断③;设AN=12AG=x,则AH=2x,FM=6x,根据△AKH∽△MKF得出2163AH xMF x==,再利用三角形的面积公式求出△AFN 的面积,再利用DHKM ADM AKH S SS =-即可求出四边形DHKM的面积,作比即可判断④.【详解】 ∵四边形EFGB 是正方形,CE=2EB ,四边形ABCD 是正方形∴G 为AB 中点,∠FGN=∠HAN=90°,AD=AB即FG=AG=GB=12AB 又H 是AD 的中点 AH=12AD ∴FG=HA又∠FNG=∠HNA∴△FGN ≌△HAN ,故①正确;∵∠DAM+∠GAM=90°又∠NFG+∠FNG=90°即∠FNG=∠GAM∵∠FNG+∠NFG+90°=180°∠AMD+∠DAM+90°=180°∠FNG=∠GAM=∠AMD∴DAM NFG ∠=∠,故②正确;由图可得:MF=FG+MG=3EB△AKH ∽△MKF ∴13KH AH KF MF == ∴KF=3KH又∵NH=NF 且FH=KF+KH=4KH=NH+NF∴NH=NF=2KH∴KH=KN∴FN=2NK ,故③正确;∵AN=GN 且AN+GN=AG∴可设AN=12AG=x ,则AH=2x ,FM=6x 由题意可得:△AKH ∽△MKF 且相似比为:2163AH x MF x == ∴△AKH 以AH 为底边的高为:11242x x ⨯= ∴212AFN S AN FG x =⨯⨯=112225DHKM ADM AKH S S S AD DM AH x =-=⨯⨯-⨯⨯ 211172422222x x x x x =⨯⨯-⨯⨯= ∴2:7AFN DHKM S S =,故④正确; 故答案选择A .【点睛】本题考查了矩形、全等三角形的判定与性质以及相似三角形的判定与性质,难度较大,需要熟练掌握相关基础知识.二、填空题11.43或4【解析】分析:当△A′EF 为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB 的长;②当∠A'FE=90°时,如图2,证明△ABC 是等腰直角三角形,可得AB=AC=4.详解:当△A′EF 为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,.∵△A′BC 与△ABC 关于BC 所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB ,∵点D ,E 分别为AC ,BC 的中点,∴D 、E 是△ABC 的中位线,∴DE ∥AB ,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF ,∴AC ∥A'E ,∴∠ACB=∠A'EC ,∴∠A'CB=∠A'EC ,∴A'C=A'E=4,Rt △A'CB 中,∵E 是斜边BC 的中点,∴BC=2A'E=8,由勾股定理得:AB 2=BC 2-AC 2,∴AB=2284=43-;②当∠A'FE=90°时,如图2,.∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC 与△ABC 关于BC 所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC 是等腰直角三角形,∴AB=AC=4;.综上所述,AB 的长为34;故答案为3 4.点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.12.4323【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E , 在Rt ADE △中,30A ∠=︒,23AD = 132DE AD ∴==33AE AD ==, 在Rt BDE △中,2BD =,22222(3)1BE BD DE ∴=-=-,如图1,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=, 如图2,2AB =, ∴平行四边形ABCD 的面积2323AB DE ==⨯=,如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =-,30A ∠=︒,3BE x =, 在Rt BDE △中,2BD =, 22232()(23)x x ∴=+-, 3x ∴=,23x =(不合题意舍去),1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=,如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==,故答案为:323【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键.13.24【分析】由菱形的性质可得OD=OB,∠COD=90°,由直角三角形的斜边中线等于斜边的一半,可得OH=12BD=OB,可得∠OHB=∠OBH,由余角的性质可得∠DHO=∠DCO,即可求解.【详解】【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∠DAB=∠DCB=48°,∵DH⊥AB,∴OH=12BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=12∠DCB=24°,故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH是BD的一半,和∠DHO=∠DCO是解决本题的关键.14.①②③④【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,可得出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=,从而得到AE=AD,然后利用“角角边”证明△ABE 和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【详解】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=.∵AD=,∴AE=AD.在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.15.3﹣2【分析】 作辅助线,构建全等三角形和矩形,利用面积法可得AE 的长,根据勾股定理可得BE 的长,设AE =x ,证明△ABE ≌△EQF (AAS ),得FQ =BE,最后根据三角形面积公式可得结论.【详解】解:如图,过D 作DH ⊥AE 于H ,过E 作EM ⊥AD 于M ,连接DE ,∵EF⊥AE,DF⊥EF,∴∠DHE=∠HEF=∠DFE=90°,∴四边形DHEF是矩形,∴DH=EF=AE,∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠AME=90°,∴四边形ABEM是矩形,∴EM=AB=2,设AE=x,则S△ADE=11AD EM AE DH 22⋅=⋅,∴3×2=x2,∴x6,∵x>0,∴x6,即AE6,由勾股定理得:BE22(6)2-2,过F作PQ∥CD,交AD的延长线于P,交BC的延长线于Q,∴∠Q=∠ECD=∠B=90°,∠P=∠ADC=90°,∵∠BAE+∠AEB=∠AEF=∠AEB+∠FEQ=90°,∴∠FEQ=∠BAE,∵AE=EF,∠B=∠Q=90°,∴△ABE≌△EQF(AAS),∴FQ=BE2,∴PF=22,∴S△ADF=1AD PF2⋅=13(22)2⨯⨯=3﹣322.【点睛】此题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理,有难度,正确作辅助线构建全等三角形是关键,并用方程的思想解决问题.16.3+35.【分析】取AB的中点M,连接DQ,QM,DM.证明QM=QK,QG=DQ,求出DQ+QM的最小值即可解决问题.【详解】取AB的中点M,连接DQ,QM,DM.∵四边形ABCD是正方形,∴AD=AB=6,∠DAM=∠ADG=90°,∵AM=BM=3,∴DM2222+=+5,63AB AM∵GK=HK,AB,GH关于EF对称,∴QM=QK,∵∠ADG=90°,AQ=QG,∴DQ=AQ=QG,∵△QGK的周长=GK+QG+QJ=3+DQ+QM.又∵DQ+QM≥DM,∴DQ+QM≥5∴△QGK的周长的最小值为5,故答案为5【点睛】本题考查了折叠的性质、正方形的性质、勾股定理、最值问题,解题的关键是取AB的中点M,确定QG+QK=QD+QM,属于中考常考题型.17.5【分析】作BE⊥AD于E,BF⊥CD于F,则四边形BEDF是矩形,证明△ABE≌△CBF(AAS),得出BE=BF,△ABE的面积=△CBF的面积,则四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,求出10,即可求得BD的长.【详解】解:作BE⊥AD交DA延长线于E,BF⊥CD于F,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴10(cm),∴25.故答案为:5【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.18.①②④⑤【分析】根据∠B=90°,AB=BE ,△ABE 绕点A 逆时针旋转45°,得到△AHD ,可得△ABE ≅△AHD ,并且△ABE 和△AHD 都是等腰直角三角形,可证AD//BC ,根据DC ⊥BC ,可得∠HDE=∠CDE ,根据三角形的内角和可得∠HDE=∠CDE ,即DE 平分∠HDC ,所以①正确;利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD 是矩形,有∠ADC=90°,∠HDC=45°,由①有DE 平分∠HDC ,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH ,利用 AE=AD 易证∠OHE=∠HEO=67.5°,则有OE=OH ,OD=OE ,所以②正确;利用AAS 证明ΔDHE ≅ΔDCE ,则有DH=DC ,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,∠DFH=112.5°,则△DHF 不是直角三角形,并DH≠HF ,即有:CD≠HF ,所以③错误; 根据△ABE 是等腰直角三角形,JH ⊥JE ,∵J 是BC 的中点,H 是BF 的中点,得到2JH=CF ,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;【详解】∵Rt△ABE中,∠B=90°,AB=BE,∴∠BAE=∠BEA=45°,又∵将△ABE绕点A逆时针旋转45°,得到△AHD,∴△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,∴∠EAD=45°,AE=AD ,∠AHD=90°,∴∠ADE=∠AED,∴∠BAD=∠BAE+∠EAD=45°+45°=90°,∴AD//BC,∴∠ADE=∠DEC,∴∠AED=∠DEC,又∵DC⊥BC,∴∠DCE=∠DHE=90°∴由三角形的内角和可得∠HDE=∠CDE,即:DE平分∠HDC,所以①正确;∵∠DAB=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴∠ADC=90°,∴∠HDC=45°,由①有DE平分∠HDC,∴∠HDO=12∠HDC=12×45°=22.5°,∵∠BAE=45°,AB=AH,∴∠OHE=∠AHB= 12(180°−∠BAE)=12×(180°−45°)=67.5°,∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH,在△AED中,AE=AD,∴∠AED=12(180°−∠EAD)=12×(180°−45°)=67.5°,∴∠OHE=∠HEO=67.5°,∴OE=OH,∴OD=OE,所以②正确;在△DHE和△DCE中,DHE DCE HDE CDE DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔDHE ≅ΔDCE(AAS),∴DH=DC ,∠HDE=∠CDE=12×45°=22.5°, ∵OD=OH ,∴∠DHF=22.5°,∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF 不是直角三角形,并DH≠HF ,即有:CD≠HF ,所以③不正确;如图,过H 作HJ ⊥BC 于J ,并延长HJ 交AD 于点I ,∵△ABE 是等腰直角三角形,JH ⊥JE ,∴JH=JE ,又∵J 是BC 的中点,H 是BF 的中点,∴2JH=CF ,2JC=BC ,JC=JE+CE ,∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC ,即有:BC−CF=2CE ,所以④正确;∵AD//BC ,∴IJ ⊥AD ,又∵△AHD 是等腰直角三角形,∴I 是AD 的中点,∵四边形ABCD 是矩形,HJ ⊥BC ,∴J 是BC 的中点,∴H 是BF 的中点,所以⑤正确;综上所述,正确的有①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键. 19.15.5【分析】先根据折叠的性质可得,AE DE EAD EDA =∠=∠,再根据垂直的定义、直角三角形的性质可得B BDE ∠=∠,又根据等腰三角形的性质可得BE DE =,从而可得6DE AE BE ===,同理可得出5DF AF CF ===,然后根据三角形中位线定理可得1 4.52EF BC ==,最后根据三角形的周长公式即可得. 【详解】由折叠的性质得:,AE DE EAD EDA =∠=∠AD 是BC 边上的高,即AD BC ⊥90B EAD ∴∠+∠=︒,90BDE EDA ∠+∠=︒B BDE ∴∠=∠BE DE ∴=1112622DE AE BE AB ∴====⨯= 同理可得:1110522DF AF CF AC ====⨯= 又,AE BE AF CF ==∴点E 是AB 的中点,点F 是AC 的中点EF ∴是ABC 的中位线119 4.522EF BC ∴==⨯= 则DEF 的周长为65 4.515.5DE DF EF ++=++=故答案为:15.5.【点睛】本题考查了折叠的性质、等腰三角形的性质、三角形中位线定理、直角三角形的性质等知识点,利用折叠的性质和等腰三角形的性质得出BE DE =是解题关键.20.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB == ∴222213125P N P Q NQ ''=-=-=同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18. 故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.三、解答题21.(1)112;(2)112或4;(3)四边形PBQD 不能成为菱形 【分析】(1)由∠B=90°,AP ∥BQ ,由矩形的判定可知当AP=BQ 时,四边形ABQP 成为矩形; (2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ 是平行四边形,求得t 的值;(3)由PD ∥BQ ,当PD=BQ=BP 时,四边形PBQD 能成为菱形,先由PD=BQ 求出运动时间t 的值,再代入求BP ,发现BP≠PD ,判断此时四边形PBQD 不能成为菱形;设Q 点的速度改变为vcm/s 时,四边形PBQD 在时刻t 为菱形,根据PD=BQ=BP 列出关于v 、t 的方程组,解方程组即可求出点Q 的速度.【详解】(1)如图1,∵∠B=90°,AP ∥BQ ,∴当AP=BQ 时,四边形ABQP 成为矩形,此时有t=22﹣3t ,解得t=112. ∴当t=112时,四边形ABQP 成为矩形; 故答案为112; (2)如图1,当t=112时,四边形ABQP 成为矩形, 如图2,当PD=CQ 时,四边形CDPQ 是平行四边形,则16﹣t=3t ,解得:t=4, ∴当t=112或4时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形; 故答案为112或4; (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD=BQ=BP 时,四边形PBQD 能成为菱形.由PD=BQ ,得16﹣t=22﹣3t ,解得:t=3,当t=3时,PD=BQ=13,,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为vcm/s 时,能够使四边形PBQD 在时刻ts 为菱形,由题意,得162216t vtt -=-⎧⎪⎨-=⎪⎩62t v =⎧⎨=⎩. 故点Q 的速度为2cm/s 时,能够使四边形PBQD 在某一时刻为菱形.。
八年级初二数学第二学期平行四边形单元 期末复习专项训练学能测试

八年级初二数学第二学期平行四边形单元 期末复习专项训练学能测试一、选择题1.如图,ABCD □中,4,60AB BC A ==∠=︒,连接BD ,将BCD 绕点B 旋转,当BD (即BD ')与AD 交于一点E ,BC (即BC ')与CD 交于一点F 时,给出以下结论:①AE DF =;②60BEF ∠=︒;③DEB DFB ∠=∠;④DEF 的周长的最小值是423+.其中正确的是( )A .①②③B .①②④C .②③④D .①③④2.如图,把正方形ABCD 沿对边中点所在的直线对折后展开,折痕为,MN 再过点B 折叠纸片,使点A 格在MN 上的点F 处,折痕为,BE 若AB 长为2,则EN 的长为(( )A .233-B .322-C .2D .2 3.如图,在ABC 中,BD ,CE 是ABC 的中线,BD 与CE 相交于点O ,点FG ,分别是,BO CO 的中点,连接AO ,若要使得四边形DEFG 是正方形,则需要满足条件( )A .AO BC =B .AB AC ⊥ C .AB AC =且AB AC ⊥D .AO BC =且AO BC ⊥4.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14 AO AE=;④4CE FG=;其中正确的是( )A.①②③B.①②④C.①③④D.②③④5.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF =4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3 B.4 C.6 D.86.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①∠EFH=45°;②△AHD≌△EHF;③∠AEF+∠HAD=45°;④若BEEC=2,则1113=BEHAHESS.其中结论正确的是()A.①②③B.①②④C.②③④D.①②③④7.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若60COB∠=,FO FC=,则下列结论:①FB OC⊥,OM CM=;②EOB CMB≅;③四边形EBFD是菱形;④:3:2MB OE=.其中正确结论的个数是()A.1B.2C.3D.48.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.53cm B.55cm C.46cm D.45cm9.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=185.其中正确结论的个数是( )A.1 B.2 C.3 D.410.如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB延AE折叠刀AF,延长EF交DC于G,连接AG,现在有如下结论:①∠EAG=45°;②GC=CF;③FC∥AG;④S△GFC=14.4;其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题11.如图,正方形ABCD的对角线相交于点O,对角线长为1cm,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是_____.12.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.13.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.14.如图,在矩形ABCD 中,AB =2,AD =3,E 为BC 边上一动点,作EF ⊥AE ,且EF =AE .连接DF ,AF .当DF ⊥EF 时,△ADF 的面积为_____.15.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________16.如图,在正方形ABCD 中,AC=62,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.17.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.18.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.19.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.22.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.23.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由.24.如图,在平行四边形ABCD 中,AB ⊥AC ,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC ,AD 于点E ,F ,连接BF .(1)如图1,在旋转的过程中,求证:OE =OF ;(2)如图2,当旋转至90°时,判断四边形ABEF 的形状,并证明你的结论; (3)若AB =1,BC 5BF =DF ,求旋转角度α的大小.25.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上.(1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形.(2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.26.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.27.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.28.(问题情境)在△ABC 中,AB=AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE=CF .图① 图② 图③证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE=CF .(不要证明)(变式探究)当点P 在CB 延长线上时,其余条件不变(如图3).试探索PD 、PE 、CF 之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD=8,CF=3,求PG+PH的值;(迁移拓展)在直角坐标系中.直线l1:y=443x-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.29.在直角梯形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm。
人教版八年级初二数学下学期平行四边形单元 期末复习专题强化试卷检测试卷

人教版八年级初二数学下学期平行四边形单元期末复习专题强化试卷检测试卷一、选择题1.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形连接AC交EF 于G,下列结论: ①BE=DF,②∠DAF=15°,③AC⊥EF,④BE+DF=EF,⑤EC=FG;其中正确结论有( )个A.2 B.3 C.4 D.52.点E是正方形ABCD对角线AC上,且EC=2AE,Rt△FEG的两条直角边EF、EG分别交BC、DC于M、N两点,若正方形ABCD的边长为a,则四边形EMCN的面积()A.23a2B.14a2C.59a2D.49a23.如图所示,E为正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于点F,那么∠AFC的度数为()A.112.5°B.125°C.135°D.150°4.如图,在长方形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连结PE、PF、PG、PH,则△PEF和△PGH的面积和为()A.5 B.6C .7D .85.正方形ABCD ,正方形CEFG 如图放置,点B 、C 、E 在同一条直线上,点P 在BC 边上,PA =PF ,且∠APF =90°,连接AF 交CD 于点M .有下列结论:①EC =BP ;②AP =AM :③∠BAP =∠GFP ;④AB 2+CE 2=12AF 2;⑤S 正方形ABCD +S 正方形CGFE =2S △APF ,其中正确的是( )A .①②③B .①③④C .①②④⑤D .①③④⑤6.如图,在平行四边形ABCD 中,272BC AB B CE AB =∠=︒⊥,,于E F ,为AD 的中点,则AEF ∠的大小是( )A .54︒B .60︒C .66︒D .72︒7.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆B .点B 到直线AE 的距离为2C .EB ED ⊥ D .16AFD AFB S S ∆∆+=8.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 9.如图,在ABCD 中,AD=2AB ,CE AB ⊥,垂足E 在线段AB 上,F 、G 分别是AD 、CE 的中点,连接FG ,EF 、CD 的延长线交于点H ,则下列结论:①12DCF BCD ∠=∠;②EF CF =:③2BEC CEF S S =;④3DFE AEF ∠=∠.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个10.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3 ,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( )A .3B .3C .2D .23二、填空题11.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.13.如图,正方形ABCD的对角线相交于点O,对角线长为1cm,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是_____.的平分线交DC于点E,若P,Q分别是AD和AE上14.如图,正方形ABCD中,DAC的动点,则DQ+PQ能取得最小值4时,此正方形的边长为______________.15.如图,长方形纸片ABCD中,AB=6 cm,BC=8 cm点E是BC边上一点,连接AE并将△AEB沿AE折叠, 得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为___________cm.16.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(23,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),则EP十BP的最小值为__________.17.菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC ,CE ,则△ACE 的面积为___________.18.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.19.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.22.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由.23.已知,在△ABC 中,∠BAC =90°,∠ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BC 与CF 的位置关系是 ,BC 、CF 、CD 三条线段之间的数量关系为 ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请猜想BC 与CF 的位置关系BC ,CD ,CF 三条线段之间的数量关系并证明;(3)如图3,当点D 在线段BC 的反向延长线上时,点A ,F 分别在直线BC 的两侧,其他条件不变.若正方形ADEF 的对角线AE ,DF 相交于点O ,OC =132,DB =5,则△ABC 的面积为 .(直接写出答案)24.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.25.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.26.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.27.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .∠的度数;(1)求EAF(2)如图2,连接FC交BD于M,交AD于P,试证明:BD BG DG AF DM=+=+.228.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD 的平分线,则线段AB,AD,DC之间的等量关系为;(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.29.如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.=(1)求证:AG AE⊥于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于(2)过点F作FP AEH,.求证:NH=FM30.已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP.将△AEF绕点A逆时针旋转.(1)如图①,当△AEF 的顶点E 、F 恰好分别落在边AB 、AD 时,则线段AP 与线段BF 的位置关系为,数量关系为 .(2)当△AEF 绕点A 逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立.(3)若AB=3,AE=1,则线段AP 的取值范围为 .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知条件易证△ABE ≌△ADF ,根据全等三角形的性质即可判定①②;由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,即可判定③;设EC=FC=x ,由勾股定理和三角函数计算后即可判定④⑤.【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形,∴AE=EF=AF ,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD⎧⎨⎩== , Rt △ABE ≌Rt △ADF (HL ),∴BE=DF (故①正确).∠BAE=∠DAF ,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故③正确).设EC=FC=x ,由勾股定理,得:,2EF CG FG x ===, ∴EC ≠FG (⑤错误)在Rt △AEG 中,sin 60sin 602sin 60AG AE EF CG ︒︒︒===⨯=,AC ∴=,AB ∴=,22x x BE x +-∴=-=,BE DF x ∴+=-≠,(故④错误),综上所述,正确的结论为①②③,共3个,故选B .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题的关键.2.D解析:D【解析】【分析】根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L ,只要证明ENK ELM ∆≅∆,则可计算EKCL ENCM S S =四边形. 【详解】解:根据题意过E 作EK 垂直于直线CD ,垂足为K ,再过E 作EL 垂直于直线BC ,垂足为L.四边形ABCD 为正方形∴EL=EK,EK CD EL BC ⊥⊥∴90ELM EKN ︒∠=∠=90BCD ︒∠=90KEL ︒∴∠= FEG 为直角三角形90KEM LEM KEM NEK ︒∴∠+∠=∠+∠=LEM NEK ∴∠=∠ENK ELM ∴∆≅∆2224()39EKCL ENCM S Sa a ∴===四边形 故选D.【点睛】本题主要考查正方形的性质,关键在于根据题意做辅助线. 3.A解析:A【解析】【分析】根据等边对等角的性质可得∠E=∠CAE ,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据 三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵CE=AC ,∴∠E=∠CAE ,∵AC 是正方形ABCD 的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=12×45°=22.5°, 在△CEF 中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.故答案为:A .【点睛】本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.4.C解析:C【分析】连接EG、FH,根据题意可知△AEF与△CGH全等,故EF=GH,同理EG=FH,再证四边形EGHF为平行四边形,所以△PEF和△PGH的面积和是平行四边形的面积一半,平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小的直角三角形的面积即可求得.【详解】连接EG、FH,如图所示,在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB-BE=4-1=3,CH=CD-DH=3,∴AE=CH,在△AEF和△CGH中,AE=CH,∠A=∠C=90°,AF=CG,∴△AEF≌△CGH,∴EF=GH,同理可得△BGE≌△DFH,∴EG=FH,∴四边形EGHF为平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=12⨯平行四边形EGHF的面积,求得平行四边形EGHF的面积=4⨯6--12⨯2⨯3-12⨯1⨯(6-2)-12⨯2⨯3-12⨯1⨯(6-2)=14,∴△PEF和△PGH的面积和=1142⨯=7.【点睛】此题主要考察矩形的综合利用. 5.D解析:D【分析】①由同角的余角相等可证出△EPF≌△BAP,由此即可得出EF=BP,再根据正方形的性质即可得出①成立;②没有满足证明AP=AM的条件;③根据平行线的性质可得出∠GFP=∠EPF,再由∠EPF=∠BAP即可得出③成立;④在Rt△ABP中,利用勾股定理即可得出④成立;⑤结合④即可得出⑤成立.综上即可得出结论.【详解】①∵∠EPF+∠APB=90°,∠APB+∠BAP=90°,∴∠EPF=∠BAP.在△EPF和△BAP中,有EPF BAPFEP PBA PA PF∠∠⎧⎪∠∠⎨⎪⎩===,∴△EPF≌△BAP(AAS),∴EF=BP,∵四边形CEFG为正方形,∴EC=EF=BP,即①成立;②无法证出AP=AM;③∵FG∥EC,∴∠GFP=∠EPF,又∵∠EPF=∠BAP,∴∠BAP=∠GFP,即③成立;④由①可知EC=BP,在Rt△ABP中,AB2+BP2=AP2,∵PA=PF,且∠APF=90°,∴△APF为等腰直角三角形,∴AF2=AP2+EP2=2AP2,∴AB2+BP2=AB2+CE2=AP2=12AF2,即④成立;⑤由④可知:AB2+CE2=AP2,∴S正方形ABCD+S正方形CGFE=2S△APF,即⑤成立.故成立的结论有①③④⑤.故选D.【点睛】本题考查了正方形的性质、全等三角形的判定及性质、平行线的性质以及勾股定理,解题的关键是逐条分析五条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,通过证明三角形全等以及利用勾股定理等来验证题中各结论是否成立是关键.6.A解析:A【分析】过F作AB的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的度数,由此得解.【详解】解:过F作FG∥AB交BC于G,连接EG,∵在平行四边形ABCD中,AB∥CD,AD∥BC,∴FG∥AB∥CD,∵FG∥AB,AD∥BC,∴四边形ABGF是平行四边形,∴AF=BG,又∵F为AD中点∴G是BC的中点;∵BC=2AB,F为AD的中点,∴BG=AB=FG=AF,∵在Rt△BEC中,EG是斜边上的中线,∴BG=GE=FG=12 BC;∴∠BEG=∠B=72°,∴∠AEG=∠AEF+∠FEG=180°﹣∠BEG=108°,∵AE∥FG,∴∠EFG=∠AEF,∵GE=FG,∴∠EFG=∠FEG,∴∠AEF=∠FEG=12∠AEG=54°,故选:A.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出辅助线是解决问题的关键.7.B解析:B【分析】A、首先利用已知条件根据边角边可以证明△APD≌△AEB;B、利用全等三角形的性质和对顶角相等即可解答;C、由(1)可得∠BEF=90°,故BE不垂直于AE过点B作BP⊥AE延长线于P,由①得∠AEB=135°所以∠PEB=45°,所以△EPB是等腰Rt△,于是得到结论;D 、根据勾股定理和三角形的面积公式解答即可.【详解】解:在正方形ABCD 中,AB =AD ,∵AF ⊥AE ,∴∠BAE +∠BAF =90°,又∵∠DAF +∠BAF =∠BAD =90°,∴∠BAE =∠DAF ,在△AFD 和△AEB 中,AE AF BAE DAF AB AD =⎧⎪∠∠⎨⎪=⎩=∴△AFD ≌△AEB (SAS ),故A 正确;∵AE =AF ,AF ⊥AE ,∴△AEF 是等腰直角三角形,∴∠AEF =∠AFE =45°,∴∠AEB =∠AFD =180°−45°=135°,∴∠BEF =135°−45°=90°,∴EB ⊥ED ,故C 正确;∵AE =AF 2,∴FE 2AE =2,在Rt △FBE 中,BE 221046FB FE -=-=∴S △APD +S △APB =S △APE +S △BPE , =11222622⨯ 16=D 正确;过点B 作BP ⊥AE 交AE 的延长线于P ,∵∠BEP =180°−135°=45°,∴△BEP 是等腰直角三角形,∴BP =2632=, 即点B 到直线AE 3,故B 错误,故选:B .本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.8.D解析:D【分析】由题意得出条件证明△ABC≌△DAF,根据对应角相等可推出②正确;由F是AB中点根据边长转换可以推出④正确;先推出△ECF≌△DFA得出对应边相等推出ADFE为平行四边形且有组临边不等得出①错误;再由以上全等即可得出④正确.【详解】∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠BAC=30°,知∴∠FAD=∠ABC=90°,AC=2BC,∵F为AC的中点道,∴AC=2AF,∴BC=AF,∴△ABC≌△DAF,∴FD=AC,∴∠ADF=∠BAC=30°,∴DF⊥AB,故②正确,∵EF⊥AC,∠ACB=90°,∴FG∥BC,∵F是AB的中点,∴GF=12 BC,∵BC=12AC,AC=CE,∴GF=14CE,故④说法正确;∵AE=CE,CF=AF,∴∠EFC=90°,∠CEF=30°,∵∠FAD=∠CAB+∠BAD=90°,∴∠EFC=∠DAF,∵DF⊥AB,∴∠ADF=30°,∴∠CEF=∠ADF,∴△ECF≌△DFA(AAS),∵FD=AC ,∴四边形属ADFE 为平行四边形,∵AD≠DF ,∴四边形ADFE 不是菱形;故①说法不正确;∴AO=12AF , ∴AO=12AC , ∵AE=AC ,则AE=4AO ,故③说法正确,故选D .【点睛】本体主要考查平行四边形的判定,等边三角形,三角形全等的判定,关键在于熟练掌握基础知识,根据图形结合知识点进行推导.9.C解析:C【分析】由点F 是AD 的中点,结合ABCD 的性质,得FD=CD ,即可判断①;先证∆AEF ≅∆DHF ,再证∆ECH 是直角三角形,即可判断②;由EF=HF ,得2HEC CEF S S =,由CE AB ⊥,CE ⊥CD ,结合三角形的面积公式,即可判断③;设∠AEF=x ,则∠H=x ,根据直角三角形的性质,得∠FCH=∠H=x ,由FD=CD ,∠DFC=∠FCH=x ,由FG ∥CD ∥AB ,得∠AEF=∠EFG=x ,由EF=CF ,∠EFG=∠CFG=x ,进而得到3DFE AEF ∠=∠,即可判断④.【详解】∵点F 是AD 的中点,∴2FD=AD , ∵在ABCD 中,AD=2AB ,∴FD=AB=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠BCF ,∴∠DCF=∠BCF ,即:12DCF BCD ∠=∠, ∴①正确;∵AB ∥CD ,∴∠A=∠FDH ,∠AEF=∠H ,又∵AF=DF ,∴∆AEF ≅∆DHF (AAS ),∴EF=HF ,∵CE AB ⊥,∴CE ⊥CD ,即:∆ECH 是直角三角形,∴EF CF ==12EH , ∴②正确;∵EF=HF ,∴2HEC CEF S S =∵CE AB ⊥,CE ⊥CD ,垂足E 在线段AB 上,∴BE CH <,∴BEC HCE SS <, ∴2BEC CEFS S <, ∴③错误;设∠AEF=x ,则∠H=x ,∵在Rt ∆ECH 中,CF=FH=EF ,∴∠FCH=∠H=x ,∵FD=CD ,∴∠DFC=∠FCH=x ,∵点F ,G 分别是EH ,EC 的中点,∴FG ∥CD ∥AB ,∴∠AEF=∠EFG=x ,∵EF=CF ,∴∠EFG=∠CFG=x ,∴∠DFE=∠DFC+∠EFG+∠CFG=3x ,∴3DFE AEF ∠=∠.∴④正确.故选C .【点睛】本题主要考查平行四边形和直角三角形的性质定理的综合,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.10.B解析:B【解析】试题分析:由三角函数易得BE ,AE 长,根据翻折和对边平行可得△AEC 1和△CEC 1为等边三角形,那么就得到EC 长,相加即可.解:连接CC 1.在Rt△ABE中,∠BAE=30°,AB3∴BE=AB×tan30°=1,AE=2,∠AEB1=∠AEB=60°,∵四边形ABCD是矩形∴AD∥BC,∴∠C1AE=∠AEB=60°,∴△AEC1为等边三角形,同理△CC1E也为等边三角形,∴EC=EC1=AE=2,∴BC=BE+EC=3,故选B.二、填空题11.222【分析】由题意根据三角形的中位线的性质得到EF=12PD,得到C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP,当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;并作D关于AB的对称点D′,连接CD′交AB于P,进而分析即可得到结论.【详解】解:∵E为CD中点,F为CP中点,∴EF=12 PD,∴C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP∴当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;如图,作D关于AB的对称点T,连接CT,则PD=PT,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴22224442 CT CD DT=+=+=,∵△CDP的周长=CD+DP+PC=CD+PT+PC,∵PT+PC≥CT,∴PT+PC≥42,∴PT+PC的最小值为42,∴△PDC的最小值为4+42,∴C△CEF=12C△CDP=222+.故答案为:222+.【点睛】本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.12.42【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC 和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:42【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.13.218cm 【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论. 【详解】 解:如图:∵正方形ABCD 的对角线相交于点O ,∴△AEO 与△CFO 关于O 点成中心对称,∴△AEO ≌CFO ,∴S △AEO =S △CFO ,∴S △AOD =S △DEO +S △CFO ,∵对角线长为1cm ,∴S 正方形ABCD =1112⨯⨯=12cm 2, ∴S △AOD =18cm 2, ∴阴影部分的面积为18cm 2.故答案为:18cm 2. 【点睛】 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO ≌CFO 是关键.14.42【分析】作P 点关于线段AE 的对称点P ',根据轴对称将DQ PQ +转换成DP ',然后当DP AC '⊥的时候DP '是最小的,得到DP '长,最后求出正方形边长DC .【详解】∵AE 是DAC ∠的角平分线,∴P 点关于线段AE 的对称点一定在线段AC 上,记为P '由轴对称可以得到PQ P Q '=,∴DQ PQ DQ P Q DP ''+=+=,如图,当DP AC '⊥的时候DP '是最小的,也就是DQ PQ +取最小值4,∴4DP '=,由正方形的性质P '是AC 的中点,且DP P C ''=,在Rt DCP '中,2222443242DC DP P C ''=+=+==.故答案是:42.【点睛】本题考查轴对称的最短路径问题,解题的关键是能够分析出DQ PQ +取最小值的状态,并将它转换成DP '去求解.15.3或6【详解】①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=12×90°=45°, ∴△ABE 是等腰直角三角形,∴BE=AB=6cm ;②∠EB′C=90°时,如图2, 由翻折的性质∠AB′E=∠B=90°,∴A 、B′、C 在同一直线上,AB′=AB ,BE=B′E ,由勾股定理得,=,∴B′C=10-6=4cm ,设BE=B′E=x ,则EC=8-x ,在Rt △B′EC 中,B′E 2+B′C 2=EC 2,即x 2+42=(8-x )2,解得x=3,即BE=3cm ,综上所述,BE 的长为3或6cm .故答案为3或6.16【分析】先根据菱形的性质可得OC 垂直平分BD ,从而可得=DP BP ,再根据两点之间线段最短可得EP BP +的最小值为DE ,然后利用等边三角形的判定与性质求出点D 的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B ,OB ∴=四边形ABCD 是菱形,OC ∴垂直平分BD ,OB OD ==点P 是对角线OC 上的点,DP BP ∴=,EP BP EP DP ∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形, DA OB ⊥,12OA OB ∴==3AD ===,D ∴,又(0,1)E-,22(30)(31)19DE∴=-++=,即EP BP+的最小值为19,故答案为:19.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP+的最小值为DE是解题关键.17.9或31).【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA交DC于点F,∵菱形ABCD的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC是等边三角形,∴∠BAC=60°,当EA⊥BA时,△ABE是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE的面积为:12AE×CF=12×6×3=9;②如图2,过点A作AF⊥EC于点F,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE,AF=CF=22AC=32∵AB=BE=6,∴AE=2∴2236AE AF-=∴EC=EF+FC=3632则△ACE的面积为:12EC×AF=1(3632)329(31)2⨯⨯=.故答案为:9或31).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.18.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=183CD=,AG=DH=8,∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′2213512,∴B'H=GH×GB'=18-12=6,在Rt△B'HD中,由勾股定理得:B′D226810+=综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.19.120 13【分析】设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,根据等腰三角形的性质和勾股定理可求AO和OH长,若MN最小,则MO最小即可,而O点到AC的最短距离为OH 长,所以MN最小值是2OH.【详解】解:设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,∵四边形MCNB是平行四边形,∴O为BC中点,MN=2MO.∵AB=AC=13,BC=10,∴AO⊥BC.在Rt△AOC中,利用勾股定理可得AO2222135AC CO-=-12.利用面积法:AO×CO=AC×OH,即12×5=13×OH,解得OH=60 13.当MO最小时,则MN就最小,O点到AC的最短距离为OH长,所以当M点与H点重合时,MO最小值为OH长是60 13.所以此时MN最小值为2OH=120 13.故答案为:120 13.【点睛】本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静.20.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.三、解答题21.(1)见解析;(2)24;(3)5AI .【分析】(1)证∠BDA=∠CEA=90°,∠CAE=∠ABD,由AAS证明△ABD≌△CAE即可;(2)连接CE,交AF于O,由菱形的性质得∠COA=∠ADB=90°,同(1)得△ABD≌△CAO(AAS),得OC=AD=3,OA=BD=4,由三角形面积公式求出S△AOC=6,即可得出答案;(3)过E作EM⊥HI的延长线于M,过点G作GN⊥HI于N,同(1)得△ACH≌△EAM (AAS),△ABH≌△GAN(AAS),得EM=AH=GN,证△EMI≌△GNI(AAS),得EI=GI,证∠EAG=90°,由勾股定理求出EG=10,再由直角三角形的性质即可得出答案.【详解】(1)证明:∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =12OA •OC =12×4×3=6, ∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示: ∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE =∠BAG =90°,AC =AE =8,AB =AG =6,同(1)得:△ACH ≌△EAM (AAS ),△ABH ≌△GAN (AAS ),∴EM =AH =GN ,在△EMI 和△GNI 中,EIM GIH EMI GNI EM GN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点,∵∠CAE =∠BAG =∠BAC =90°,∴∠EAG =90°,在Rt △EAG 中, EG10,∵I 是EG 的中点,∴AI =12EG =12×10=5.【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、三角形面积等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.22.(1)AE t =;122AD t =-;DF t =;(2)证明见解析;(3)3t =;理由见解析.【分析】(1)根据题意用含t 的式子表示AE 、CD ,结合图形表示出AD ,根据直角三角形的性质表示出DF ;(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.【详解】解:(1)由题意得,AE t =,2CD t =,则122AD AC CD t =-=-,∵DF BC ⊥,30C ∠=︒,∴12DF CD t == (2)∵90ABC ∠=︒,DF BC ⊥,∴AB DF , ∵AE t =,DF t =,∴AE DF =,∴四边形AEFD 是平行四边形;(3)当3t =时,四边形EBFD 是矩形,理由如下:∵90ABC ∠=︒,30C ∠=︒, ∴162BC AC cm ==, ∵BE DF ∥,∴BE DF =时,四边形EBFD 是平行四边形,即6t t -=,解得,3t =,∵90ABC ∠=︒,∴四边形EBFD 是矩形,∴3t =时,四边形EBFD 是矩形.【点睛】本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.23.(1)BC ⊥CF ,CF +CD =BC ;(2)CF ⊥BC ,CF ﹣CD =BC ,证明详见解析;(3)494. 【分析】(1)△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ,从而证得CF =BD ,据此即可证得;(2)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD =CF ,即可得到CF ﹣CD =BC ;(3)先证明△BAD ≌△CAF ,进而得出△FCD 是直角三角形,根据直角三角形斜边上中线的性质即可得到DF 的长,再求出CD ,BC 即可解决问题.【详解】(1)如图1中,∵∠BAC =90°,∠ABC =45°,∴∠ACB =∠ABC =45°,∴AB =AC ,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAD =90°﹣∠DAC ,∠CAF =90°﹣∠DAC ,∴∠BAD =∠CAF ,∵在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴BD =CF ,∠ABD =∠ACF =45°,∴∠FCB =∠ACF +∠ACB =90°,即CF ⊥BC ,∵BD +CD =BC ,∴CF +CD =BC ;故答案为:CF ⊥BC ,CF +CD =BC .(2)结论:CF ⊥BC ,CF ﹣CD =BC .理由:如图2中,∵∠BAC =90°,∠ABC =45°,∴∠ACB =∠ABC =45°,∴AB =AC ,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAD =90°+∠DAC ,∠CAF =90°+∠DAC ,∴∠BAD =∠CAF ,∵在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴BD =CF ,∠ABD =∠ACF =45°,∴∠FCB =∠ACF +∠ACB =90°,即CF ⊥BC ,∴BC +CD =CF ,∴CF ﹣CD =BC ;(3)如图3中,∵∠BAC =90°,∠ABC =45°,∴∠ACB =∠ABC =45°,∴AB =AC ,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAD =90°﹣∠BAF ,∠CAF =90°﹣∠BAF ,∴∠BAD =∠CAF ,∵在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴∠ACF =∠ABD ,BD =CF =5,∵∠ABC =45°,∴∠ABD =135°,∴∠ACF =∠ABD =135°,∴∠FCD =135°﹣45°=90°,∴△FCD 是直角三角形.∵OD =OF ,∴DF =2OC =13,∴Rt △CDF 中,CD =2222135DF CF -=-=12,∴BC =DC ﹣BD =12﹣5=7,∴AB =AC =722, ∴S △ABC 17272492224=⨯⨯=. 【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,正方形的性质以及全等三角形的判定与性质,判断出△BAD ≌△CAF 是解本题的关键.24.(1)①证明见详解;②45PAQ ∠=︒,见解析;(2)5.【分析】(1)①只要证明//PB AC 即可解决问题;②如图2中,连接QC ,作DT DQ ⊥交QC 的延长线于T ,利用全等三角形的性质解决问题即可;(2)如图3中,延长EH 交BC 于点G ,设AE=x ,由题意易得AB=BC=CF=EG=3x ,然后可得CG=2x ,HG=3x-3,CH=3x-1,利用勾股定理求解即可.【详解】(1)①证明:四边形ABCD 是正方形,∴//B DP C ,45DAC ∠=︒,∴135PAC ∠=︒。
八年级初二数学第二学期平行四边形单元 期末复习检测

八年级初二数学第二学期平行四边形单元 期末复习检测一、选择题1.如图,正方形ABCD 的对角线相交于O 点,BE 平分∠ABO 交AO 于E 点,CF ⊥BE 于F 点,交BO 于G 点,连接EG 、OF ,下列四个结论:①CE=CB ;②AE=2OE ;③OF=12CG ,其中正确的结论只有( )A .①②③B .②③C .①③D .①②2.如图,在菱形ABCD 中,点F 为边AB 的中点,DF 与对角线AC 交于点G ,过点G 作GE AD ⊥于点E ,若2AB =,且12∠=∠,则下列结论不正确的是( )A .DF AB ⊥ B .2CG GA =C .CG DF GE =+D .31BFGC S =-四边形3.如图,锐角△ABC 中,AD 是高,E,F 分别是AB,AC 中点,EF 交AD 于G,已知GF=1,AC= 6,△DEG 的周长为10,则△ABC 的周长为( )A .27-32B .28-32C .28-42D .29-524.如图,正方形ABCD 中,4AB =,点E 在BC 边上,点F 在CD 边上,连接AE 、EF 、AF ,下列说法:①若E 为BC 中点,1CF =,则90AEF ∠=︒;②若E 为BC 中点,90AEF ∠=︒,则1CF =;③若90AEF ∠=︒,1CF =,则点E 为BC 中点,正确的有( )个A .0B .1C .2D .35.如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点.设AM 的长为x ,则x 的取值范围是( )A .4≥x >2.4B .4≥x≥2.4C .4>x >2.4D .4>x≥2.46.矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B′处,当△CEB′为直角三角形时,BE 的长为( )A .3B .32C .2或3D .3或327.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF =4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .6D .88.如图的△ABC 中,AB>AC>BC,且D 为BC 上一点.现打算在AB 上找一点P ,在AC 上找一点Q,使得△APQ 与以P 、D 、Q 为顶点的三角形全等,以下是甲、乙两人的作法: 甲:连接AD,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求; 乙:过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求;对于甲、乙两人的作法,下列判断何者正确( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误乙正确9.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .222-B .222+C .252-D .22+10.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形,③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤ 二、填空题11.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是直线AB 、AC 上的动点,∠EDF =90°,M 、N 分别是EF 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.12.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.13.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________14.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.15.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.16.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.17.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________18.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.19.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.23.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.24.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由.25.如图1,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接AE ,CE .(1)求证:AE =CE ;(2)如图2,点P 是边CD 上的一点,且PE ⊥BD 于E ,连接BP ,O 为BP 的中点,连接EO .若∠PBC =30°,求∠POE 的度数;(3)在(2)的条件下,若OE =2,求CE 的长.26.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.27.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).28.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.29.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.30.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
人教版平行四边形单元 期末复习质量专项训练试题

一、选择题1.在菱形ABCD 中,60ADC ∠=︒,点E 为AB 边的中点,点P 与点A 关于DE 对称,连接DP 、BP 、CP ,下列结论:①DP CD =;②222AP BP CD +=;③75DCP ∠=︒;④150CPA ∠=︒,其中正确的是( )A .①②B .①②③C .①②④D .①②③④2.如图,正方形ABCD 中,4AB =,点E 在BC 边上,点F 在CD 边上,连接AE 、EF 、AF ,下列说法:①若E 为BC 中点,1CF =,则90AEF ∠=︒;②若E 为BC 中点,90AEF ∠=︒,则1CF =;③若90AEF ∠=︒,1CF =,则点E 为BC 中点,正确的有( )个A .0B .1C .2D .33.如图,在长方形ABCD 中,AD=6,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和为( )A .5B .6C .7D .8 4.如图所示,正方形ABCD 中,E 为BC 边上一点,连接AE ,作AE 的垂直平分线交AB 于G ,交CD 于F ,若2DF =,4BG =,则AE 的长为( )A .47B .310C .10D .12 5.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( ) ①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A .①⑥B .①②④⑥C .①②③④D .①②④⑤⑥6.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A .3B .1C .32D .237.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BD 于点F.若AB =3,BC =4,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.48.如图,在菱形ABCD 中,若E 为对角线AC 上一点,且CE CD =,连接DE ,若5,8AB AC ==,则DE AD=( )A .104B .105C .35D .459.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,则t 的值为( )A .34B .43C .32D .5310.如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且12BD CD =.点E ,F 分别在边,AB AC 上,且90,EDF M ︒∠=为边EF 的中点,连接CM 交DF 于点N .若//DF AB ,则CM 的长为( )A 233B 334C 536D 3二、填空题11.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.12.如图,四边形ABCD是菱形,∠DAB=48°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.13.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(23,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),则EP十BP的最小值为__________.14.如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.15.如图,在平面直角坐标系中,直线112y x=+与x轴、y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD,则D点坐标是_______;在y轴上有一个动点M,当MDC△的周长值最小时,则这个最小值是_______.16.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.17.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时, ①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..22.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.23.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.24.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).25.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.26.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.27.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点E 是AC 的一点,连接EB ,过点A 做AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .(1)猜想:如图(1)线段OE 与线段OF 的数量关系为 ;(2)拓展:如图(2),若点E 在AC 的延长线上,AM ⊥BE 于点M ,AM 、DB 的延长线相交于点F ,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.28.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围. (3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)29.在直角梯形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm。
初中数学八年级下册(人教版)期末单元训练:平行四边形

初中数学八年级下册(人教版)期末单元训练:平行四边形一、选择题(本大题共10道小题)1. 在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( )A.1:2:3:4B.3:4:4:3C.3:3:4:4D.3:4:3:42. 平行四边形的两邻角的角平分线相交所成的角为( )A.锐角B.直角C.钝角D.不能确定3. 平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤4. 如图, ABCD中,AE平分∠DAB,∠B=100°,则∠DAE等于( )A.100°B.80°C.60°D.40°5. 如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC的长是( )A.4B.8C.43D.836. 如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为( )A.6B.5C.4D.37. 在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是( )A.5B.7C.9D.118. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是( )A.3B.4C.5D.69. 如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )A.1B.2C.3D.410. 如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.2二、填空题(本大题共8道小题)11. 如图,在平行四边形ABCD中,∠A=58°,BC=1.5cm ,则∠B= ,AD= .12. 在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.13. 如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为.14. 已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .15. 如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.16. 如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60o,且DE=1,则边BC的长为 .17. 如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.18. 如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n个正方形的面积是 .三、解答题(本大题共6道小题)19. 在四边形ABCD中,AB∥CD,∠A=∠C,求证:四边形ABCD是平行四边形.20. 如图所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF 的关系,并说明理由.21. 如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.22. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=213,当四边形BEDF为矩形时,求线段AE的长.23. 如图,在▱ABCD中,点E为边CD上的一点,将△ADE沿AE折叠至△AGE处,AG与CE交于点F.若∠B=52°,∠DAE=20°,求∠FEG的大小.(平行四边形对角线互相平分的性质)24. 如图,已知四边形ABCD是平行四边形,并且∠A=∠D.(1)求证:四边形ABCD为矩形;(2)点E是AB边的中点,F为AD边上一点,∠1=2∠2,若CE=4,CF=5,求DF的长.。
八年级初二数学第二学期平行四边形单元 期末复习测试综合卷检测试卷

八年级初二数学第二学期平行四边形单元期末复习测试综合卷检测试卷一、选择题1.如图,在正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于点G,连接AG、HG.下列结论:①CE⊥DF;②AG=DG;③∠CHG=∠DAG.其中,正确的结论有()A.0个B.1个C.2个D.3个2.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为18cm,AC的长6cm,则AD的长为()A.13cm B.12cm C.5cm D.8cm3.如图,在菱形ABCD中,AC与BD相交于点O,AB=4,BD=43,E为AB的中点,点P为线段AC上的动点,则EP+BP的最小值为()A.4 B.25C.27D.84.如图,锐角△ABC中,AD是高,E,F分别是AB,AC中点,EF交AD于G,已知GF=1,AC= 6,△DEG的周长为10,则△ABC的周长为()A.2B.2C.2D.25.如图,是由两个正方形组成的长方形花坛ABCD,小明从顶点A沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312m ,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m6.如图,在菱形ABCD 中,AB =5cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB .CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1c m/s ,点F 的速度为2c m/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A .34B .43C .32D .537.如图,在ABC 中,BD ,CE 是ABC 的中线,BD 与CE 相交于点O ,点F G ,分别是,BO CO 的中点,连接AO ,若要使得四边形DEFG 是正方形,则需要满足条件( )A .AO BC =B .AB AC ⊥ C .AB AC =且AB AC ⊥D .AO BC =且AO BC ⊥8.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PD =2,下列结论:①EB ⊥ED ;②∠AEB =135°;③S 正方形ABCD =5+2;④PB =2;其中正确结论的序号是( )A.①③④B.②③④C.①②④D.①②③9.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=185.其中正确结论的个数是( )A.1 B.2 C.3 D.410.如图,在ABC中,AB=5,AC=12,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.6013B.3013C.2413D.1213二、填空题11.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是_____.12.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为_____.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.14.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.15.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).16.如图,在正方形ABCD 中,2,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于__度.18.如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.19.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=2CD;其中正确的是_____(填序号)20.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD =4,连接BD,取BD的中点E,连接CE,则CE的最大值为_____.三、解答题21.已知,在△ABC 中,∠BAC =90°,∠ABC =45°,D 为直线BC 上一动点(不与点B ,C 重合),以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BC 与CF 的位置关系是 ,BC 、CF 、CD 三条线段之间的数量关系为 ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请猜想BC 与CF 的位置关系BC ,CD ,CF 三条线段之间的数量关系并证明;(3)如图3,当点D 在线段BC 的反向延长线上时,点A ,F 分别在直线BC 的两侧,其他条件不变.若正方形ADEF 的对角线AE ,DF 相交于点O ,OC =132,DB =5,则△ABC 的面积为 .(直接写出答案)22.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.23.正方形ABCD中,对角线AC与BD交于点O,点P是正方形ABCD对角线BD上的一个动点(点P不与点B,O,D重合),连接CP并延长,分别过点D,B向射线作垂线,垂足分别为点M,N.(1)补全图形,并求证:DM=CN;(2)连接OM,ON,判断OMN的形状并证明.24.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1)当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.25.猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.27.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.28.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.29.如图,在平行四边形 ABCD 中,AD=30 ,CD=10,F 是BC 的中点,P 以每秒1 个单位长度的速度从 A 向 D 运动,到D 点后停止运动;Q 沿着A B C D →→→ 路径以每秒3个单位长度的速度运动,到D 点后停止运动.已知动点 P ,Q 同时出发,当其中一点停止后,另一点也停止运动. 设运动时间为 t 秒,问:(1)经过几秒,以 A ,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P 为顶点的四边形的面积是平行四边形 ABCD 面积的一半?30.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
人教版八年级初二数学第二学期平行四边形单元 期末复习专项训练检测

人教版八年级初二数学第二学期平行四边形单元 期末复习专项训练检测一、解答题1.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由; (2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.2.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.3.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.4.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.5.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 53吗?如果能,求此时x 的值;如果不能,请说明理由.6.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.7.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点E 是AC 的一点,连接EB ,过点A 做AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .(1)猜想:如图(1)线段OE 与线段OF 的数量关系为;(2)拓展:如图(2),若点E 在AC 的延长线上,AM ⊥BE 于点M ,AM 、DB 的延长线相交于点F ,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.8.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若DF=3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.9.在直角梯形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形单元 期末复习检测试题一、解答题1.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.2.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F . ①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.3.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.4.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =; (2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .5.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O .(1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CFOF= (直接填结果).6.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于534吗?如果能,求此时x 的值;如果不能,请说明理由.7.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P . (1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).8.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.9.在直角梯形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm 。
点P 从点A 出发,以每秒3cm 的速度沿折线ABCD 运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动。
已知动点P ,Q 同时出发,当点Q 运动到点C 时,P ,Q 运动停止,设运动时间为t 秒. (1)求CD 的长.(2)t为何值时?四边形PBQD为平行四边形.(3)在点P,点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.10.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)详见解析;(2)145.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,由三角形DEF的面积求出EG的长,根据勾股定理求出FG的长,则可求出答案.【详解】(1)证明:∵AF =DC , ∴AC =DF ,在△ABC 和△DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DEF (SAS ), ∴BC =EF ,∠ACB =∠DFE , ∴BC ∥EF ,∴四边形BCEF 是平行四边形; (2)如图,连接BE ,交CF 于点G ,∵四边形BCEF 是平行四边形, ∴当BE ⊥CF 时,四边形BCEF 是菱形, ∵∠DEF =90°,DE =8,EF =6, ∴DF 222286DE EF +=+10,∴S △DEF 1122EG DF EF DE =⋅=⋅, ∴EG 6824105⨯==, ∴FG =CG 22222418655EF EG ⎛⎫=-=-=⎪⎝⎭,∴AF =CD =DF ﹣2FG =10﹣365=145. 故答案为:145. 【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.熟练掌握平行四边形的判定与性质是解题的关键. 2.(1)四边形ABGE 的形状是正方形;(2)①详见解析;②DF=3CF 【分析】(1)由四边形ABCD 是矩形,可得90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,根据三个内角是直角可判断四边形ABGE 为矩形,由折叠得:AB=BG ,根据一组邻边相等的矩形是正方形可判断矩形ABGE 为正方形;(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,由△ABE 沿BE 折叠后得到△GBE ,可得BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则AD=BC=3a ,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系. 【详解】(1)四边形ABGE 的形状是正方形. 理由是:∵四边形ABCD 是矩形, ∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=, ∴四边形ABGE 为矩形, 由折叠得:AB=BG , ∴矩形ABGE 为正方形; 故答案为:正方形. (2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°, ∵E 是AD 的中点, ∴AE=DE ,∵△ABE 沿BE 折叠后得到△GBE , ∴BG=AB ,EG=AE=ED ,∠A=∠BGE=90°, ∴∠EGF=∠D=90°, Rt △EGF 和Rt △EDF 中,EG EDEF EF=⎧⎨=⎩, ∴Rt △EGF ≌Rt △EDF (HL ), ∴DF=FG ,∴BF=BG+GF=AB+DF ;②不妨假设AB=DC=a ,则AD=BC=3a ,另设CF=x ,则DF=DC-CF=a-x , 由①得BF=AB+DF=a+a-x=2a-x , 在Rt △BCF 中,由勾股定理得: BF 2=BC 2+CF 2, 即(2a-x)2=(3a)2+x 2, 整理得:x=14a , ∴CF=14a ,DF=a-x=34a ,∴DF=3CF . 【点睛】本题主要考查了折叠的性质,正方形的判定,三角形全等的判定,勾股定理等内容,根据图形作出辅助线找出线段的等量关系列出方程是解题的关键.3.(1)四边形AEFD 能够成为菱形,理由见解析;(2)5t =,理由见解析. 【分析】(1)能;首先证明四边形AEFD 为平行四边形,当AE =AD 时,四边形AEFD 为菱形,即40﹣4t =2t ,解方程即可解决问题;(2)当∠FDE =90°时,AEFD 为矩形,再根据线段的长度关系列方程求得. 【详解】解:(1)四边形AEFD 能够成为菱形,理由如下:在DFC ∆中,90,30DFC C ∠=︒∠=︒,4DC t =, ∴2DF t =,又∵2AE t =,∴AE DF =,∵,AB BC DF BC ⊥⊥,∴//AE DF , 又∵AE DF =,∴四边形AEFD 为平行四边形,如图1,当AE AD =时,四边形AEFD 为菱形,即4042t t -=,解得203t =.∴当203t =秒时,四边形AEFD 为菱形. (2)如图2,当90FDE ∠=︒时,四边形EBFD 为矩形, 在Rt AED ∆中,60A ∠=︒,则30ADE ∠=︒,∴2AD AE =, 即4044t t -=, 解得5t =. 【点睛】本题考查平行四边形的判定和性质、菱形的判定、直角三角形的判定和性质、矩形的性质等知识,解题的关键是方程思想,学会构建方程解决问题. 4.(1)见解析;(2)见解析. 【分析】(1)连接BD ,BD 与AM 交于点O ,连接CO 并延长交于AB ,则CO 与AB 的交点为点N .可先证明△AOD ≌△COD ,再证明△MOB ≌NOB ,从而可得NB =MB ;(2)连接MO 并延长与AE 交于点Q ,连接QC ,则CQ ∥AM .理由如下:由正方形的性质以及平行线等分线段可证QO =MO ,从而可知四边形AQCM 为平行四边形,从而可得CQ ∥AM . 【详解】解:(1)如图(1),连接BD ,BD 与AM 交于点O ,连接CO 并延长交于AB ,则CO 与AB 的交点为点N ,则CN 为所作.理由:在△AOD 与△COD 中,∵AD CD ADO CDO OD OD ⎧⎪∠∠⎨⎪⎩===, ∴△AOD ≌△COD (SAS ), ∴∠OAD =∠OCD , ∴∠BAM =∠BCN . 在△ABM 与△CBN 中,∵AB CB ABM CBN ⎪⎨⎪∠∠⎩==, ∴△ABM ≌△CBN (ASA ), ∴CN =AM .(2)如图2连接AC 、BD 交与O 点,连接MO 并延长与AE 交于点Q ,连接QC ,则CQ 为所求的线段.在正方形ABCD 中,OA =OB =OC =OD ,AD ∥BC , ∴QO =MO∴四边形AQCM 为平行四边形, ∴QC ∥AM 【点睛】本题考查了作图-基本作图,解决此题的关键是利用正方形的性质求解. 5.(1)见解析;(2)FG=EP ,理由见解析;(32 【分析】(1)证△ODE ≌△OFB (ASA ),即可得出OE=OF ;(2)连AC ,由(1)可知OE=OF ,OB=OD ,证△AOE ≌△COF (SAS ),得AE=CF ,由折叠性质得AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1,则∠D=∠B 1,证△A 1PE ≌△CGF (AAS ),即可得出FG=EP ;(3)作OH ⊥BC 于H ,证四边形ABCD 是矩形,则∠ABC=90°,得∠OBC=30°,求出AC=8,由勾股定理得BC=43CF=3,由等腰三角形的性质得BH=CH=12BC=3HF=423-,OH=12OB=2,由勾股定理得OF=2622,进而得出答案. 【详解】解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC ,∴∠ODE=∠OBF ,∠OED=∠OFB , ∵AE=CF ,∴AD-AE=BC-CF ,即DE=BF , 在△ODE 和△OFB 中,DE BFOED OFB ⎪=⎨⎪∠=∠⎩, ∴△ODE ≌△OFB (ASA ), ∴OE=OF ;(2)FG=EP ,理由如下: 连AC ,如图②所示:由(1)可知:OE=OF ,OB=OD , ∵四边形ABCD 是平行四边形,∴AC 过点O ,OA=OC ,∠BAD=∠BCD ,∠D=∠B , 在△AOE 和△COF 中,OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩, ∴△AOE ≌△COF (SAS ), ∴AE=CF ,由折叠性质得:AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1, ∴∠D=∠B 1,∵∠A 1PE=∠DPH ,∠PHD=∠B 1HG , ∴∠DPH=∠B 1GH , ∵∠B 1GH=∠CGF , ∴∠A 1PE=∠CGF , 在△A 1PE 和△CGF 中,111A PE CGF A FCG A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△A 1PE ≌△CGF (AAS ), ∴FG=EP ;(3)作OH ⊥BC 于H ,如图③所示: ∵△AOB 是等边三角形,∴∠ABO=∠AOB=∠BAO=60°,OA=OB=AB=4, ∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD , ∴AC=BD ,∴四边形ABCD 是矩形, ∴∠ABC=90°, ∴∠OBC=∠OCB=30°, ∵AB=OB=BF=4, ∴AC=BD=2OB=8, 由勾股定理得:BC=2222=84AC AB --=43,∴CF=43-4, ∵OB=OC ,OH ⊥BC , ∴BH=CH=12BC=23, ∴HF=4-23,OH=12OB=2, 在Rt △OHF 中,由勾股定理得: OF=22OH HF +=()222423+-=2622-,∴434226222CF OF -===-, 故答案为:2.【点睛】本题是四边形综合题,考查了平行四边形的性质、矩形的判定与性质、翻折变换的性质、全等三角形的判定与性质、等腰三角形的性质、含30°角的直角三角形的性质、等边三角形的性质、勾股定理等知识;本题综合性强,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,属于中考压轴题. 6.(1)见解析;(2)不变,见解析;(3)能,212x =-或21+ 【分析】(1)由折叠的性质得到BE=EP ,BF=PF ,得到BE=BF ,根据菱形的性质得到AB ∥CD ∥FG ,BC ∥EH ∥AD ,于是得到结论;(2)由菱形的性质得到BE=BF ,AE=FC ,推出△ABC 是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;(3)记AC 与BD 交于点O ,得到∠ABD=30°,解直角三角形得到AO=1,3S 四边形ABCD =23,当六边形AEFCHG 的面积等于534时,得到S △BEF +S △DGH =334,设GH 与BD 交于点M ,求得GM=12x ,根据三角形的面积列方程即可得到结论. 【详解】 解:()1折叠后B 落在BD 上,,BE EP ∴=BF PF =BD 平分,ABC ∠BE BF ∴=,∴四边形BEPF 为菱形,同理四边形GDHP 为菱形,////,// //,AB CD FG BC EH AD ∴ ∴四边形AEPG 为平行四边形,AG EP BE ∴==.()2不变.理由如下:由()1得.AG BE = 四边形BEPF 为菱形,,.BE BF AE FC ∴==60,BAC ABC ∠=︒为等边三角60B D ∴∠=∠=︒,,,EF BE GH DG ∴==36AEFCHG C AE EF FC CH GH AG AB ∴=+++++==六边形为定值.()3记AC 与BD 交于点O .2,60,AB BAC =∠=30,ABD ∴∠= 1,AO ∴=3,BO =12332ABCS∴=⨯⨯= 23ABCD S ∴=四边形当六边形AEFCHG 的面积为534时, 53233344DEFDGHSS +=-=由()1得BE AG =AE DG ∴=DG x = 2BE x ∴=-记GH 与BD 交于点,M12GM x ∴=,32DM x = 234DHGSx ∴= 同理()223323344BEFS x x x =-=+ 即22333333444x x x ++=化简得22410,x x -+=解得112x =-,212x =+∴当1x =1时,六边形AEPCHG【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x 表示出相关的线段,是一道基础题目. 7.(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM. (2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案. 【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒, ∴∠ACN=∠CBM=120︒, 在△CAN 和△CBM 中,CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACN ≌△CBM. (2)∵△ACN ≌△CBM. ∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN , ∴∠CPN=∠BMC+∠BAN =∠BMC+∠BAC+∠CAN =∠BMC+∠BAC+∠BCM =∠ABC+∠BAC =60︒+60︒, =120︒, 故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形, ∴BC=DC ,∠ABC=∠BCD=90︒, ∴∠MBC=∠DCN=90︒, 在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩, ∴△DCN ≌△CBM , ∴∠CDN=∠BCM , ∵∠BCM=∠PCN , ∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒, ∴∠PCN+∠CND=90︒, ∴∠CPN=90︒, 故答案为:90.(4)将等边三角形换成正五边形, ∴∠ABC=∠DCB=108︒, ∴∠MBC=∠DCN=72︒, 在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩, ∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN , ∵∠BCM=∠PCN , ∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒, ∴∠CPN=180︒-(∠CND+∠PCN) =180︒-(∠CND+∠CDN) =180︒-108︒, =72︒, 故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605,正n边形时,∠CPN=360n,故答案为:360 n.【点睛】此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.8.(1)证明见解析;(2)证明见解析;(3)CN=25.【解析】【分析】(1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,先证明得到FG=CG=GE,∠CGT=2α,再由FG是BC的中垂线,可得BG = CG,∠CGT=∠FGK=∠BGT=2α,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN ,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据22222BC CN BN CE BE=-=-,可得关于m的方程,解方程求得m的值即可求得答案.【详解】(1)如图,延长EF交CD延长线于点Q,∵矩形ABCD,AB∥CD,∴∠AEF=∠CQE,∠A=∠QDF,又∵EF 平分∠AEC ,∴∠AEF=∠CEF,∴∠CEF=∠CQE,∴CQ=CE,∵点F是AD中点,∴AF=DF,∴△FQD≌△FEA,∴EF=FQ,又∵CE=CQ,(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,∵CQ=CE ,CF⊥EF,∴∠DCF=∠FCE,又∵FD⊥CD,∴FM=DF,∵FG//AB,∴∠DFH=∠DAC=90°,∴∠DFH=∠FDP=∠DPH=90°,∴四边形DFHP是矩形,∴DF=HP,∴FM= DF=HP,∵∠CHG=∠BCE,AD∥BC,FG∥CD,∴∠K=∠BCE=∠CHG=∠DCH,又∵∠FMK=∠HPC=90°,∴△HPC≌△FMK,∴CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,∵FG∥CD ,∴∠DCF=∠CFG,∴∠FCG=∠CFG,∴FG=CG,∵CF⊥EF,∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,∴∠GFE=∠FEG,∴GF=FE,∴FG=CG=GE,∠CGT=2α,∵FG是BC的中垂线,∴BG = CG,∠CGT=∠FGK=∠BGT=2α,∵∠CHG=∠BCE=90°-2α,∠CHN=90°,∴∠GHN=∠FGK=∠BGT=2α,∴四边形HGBN 是平行四边形, ∴HG=BN ,HN=BG = CG =FG , ∴△HNC ≌△KGF ,∴GK=CN ,∠HNC=∠FGK=∠NHT=2α, ∴HT=CT=TN ,∵FH-HG=1,∴设GH=m ,则BN=m ,FH=m+1,CE=2FG=4m+2, ∵GT=1122EN =,∴CN=2HT=11+2m , ∵22222BC CN BN CE BE =-=-,∴2222(112)(42)(11)m m m m +-=+-+∴1176m =-(舍去),27m =, ∴CN=GK=2HT=25. 【点睛】本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键. 9.(1)16;(2)8813+;(3)53935或. 【解析】试题分析:(1)过点A 作AM ⊥CD 于M ,四边形AMCB 是矩形,AM=BC,AD 是已知的,根据勾股定理求出DM,CM=AB,所以CD 就求出来了;(2)当四边形PBQD 为平行四边形时,点P 在AB 上,点Q 在DC 上,用t 表示出BP ,DQ 的长,满足BP=DQ,求出t 值,则BP ,DQ 即可求出,然后求出CQ,用勾股定理求出BQ ,四边形PBQD 的周长就求出来了;(3)D 从Q 到C 需要8秒,所以t 的范围是0≤t≤8,Q 根据P 所在线段不同,分三种情况讨论,即①当点P 在线段AB 上时,即时,用t 表示出BP 的长,列三角形BPQ 的面积等于20的方程求解;②当点P 在线段BC 上时,即时,用t 表示出BP ,CQ的长,建立三角形BPQ 的面积等于20的方程求解;③当点P 在线段CD 上时,因为他们相遇的时间是,若点P 在Q 的右侧,即6≤t≤,用t 表示出PQ 的长,进而列出面积方程式求解;若点P 在Q 的左侧,即,用t 表示出PQ 的长,列出面积方程式求解.试题解析:(1)过点A 作AM ⊥CD 于M ,根据勾股定理,AD=10,AM=BC=8,∴DM==6,∴CD=16;(2)当四边形PBQD 为平行四边形时,点P 在AB 上,点Q 在DC 上,如图,由题知:AP=3t,BP=10﹣3t ,DQ=2t ,∴10﹣3t=2t ,解得t=2,此时,BP=DQ=4,CQ=12,∴,∴四边形PBQD 的周长=2(BP+BQ )=;(3)①当点P 在线段AB 上时,到B 点时是秒,即时,如图,BP=10﹣3t ,BC=8,∴,∴.②当点P 在线段BC 上时,P 到达C 点t 值时6秒,即时,如图,BP=AB+BP-AB=3t ﹣10,DQ=2t,CQ=16﹣2t ,∴,化简得:3t 2﹣34t+100=0,△=﹣44<0,所以方程无实数解.此种情况不存在三角形BPQ 的面积是20;③当点P 在线段CD 上时,P 点与Q 点相遇时,可列2t+3t=10+8+16,t=,相遇时间是,若点P 在Q 的右侧,即6≤t≤,则有PQ=34-(2t+3t )=34﹣5t ,于是()13458202BPQ s t ∆=-⨯=,解此方程得: <6,舍去,若点P 在Q 的左侧,即,则有PQ=2t+3t-34=5t ﹣34,可列方程:,解得:t=7.8.∴综合得出满足条件的t 值存在,其值分别为,t 2=7.8.考点:1.动点问题;2.分类讨论三角形面积;3.梯形,矩形与三角形综合知识..10.(1)14;(2)mbAGa;(3)53【分析】(1)如图①,根据正方形的性质和全等三角形的性质即可得到结论;(2)如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到14mb=14AG•a,于是得到结论;(3)如图③,同理:过O作QM⊥AB,PN⊥AD,先根据平行四边形面积可得OM和ON 的比,同理可得S△BOE=S△AOG,根据面积公式可计算AG的长.【详解】解:(1)如图①,∵四边形ABCD是正方形,∴OA=OC,∠OAG=∠EBO=45°,∠AOB=90°,∵EF⊥GH,∴∠EOG=90°,∴∠BOE=∠AOG(SAS),∴△BOE≌△AOG,∴S△BOE=S△AOG,又∵S△AOB=14S四边形ABCD,∴S四边形AEOG=14S正方形ABCD,故答案为:14.(2)解:如图②,过O作OM⊥AB于M,ON⊥AD于N,∴S△AOB=S△AOD=14S矩形ABCD,∵S四边形AEOG=14S矩形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=14mb,S△AOG=12AG•ON=14AG•a,∴mb=AG•a,∴AG=mba;(3)如图③,过O作OM⊥AB于M,ON⊥AD于N,∵S△AOB=S△AOD=14S▱ABCD,S四边形AEOG=14S▱ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=12OM,S△AOG=12AG•ON,∴OM=AG•ON,∵S▱ABCD=3×2OM=5×2 ON,∴53 OMON,∴AG=53;【点睛】本题是四边形综合题,考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明S△BOE=S△AOG是解决问题的关键.。