PCR引物设计原则

合集下载

设计pcr引物遵循的原则

设计pcr引物遵循的原则

设计pcr引物遵循的原则聚合酶链反应(PCR)引物的设计是PCR实验成功的关键因素之一。

以下是一些设计PCR引物时应遵循的原则:1. 特异性:引物应具有高度特异性,以确保它们只与目标DNA序列结合,而不与其他非目标序列结合。

这有助于避免非特异性扩增产物的形成。

2. 长度:引物的长度通常应在18到25个碱基对之间,过长或过短的引物可能导致扩增效率降低。

引物长度的一般建议是20-22个碱基对。

3. GC含量:引物的GC含量应在40-60%之间。

这有助于确保引物的熔解温度适中,提高引物的特异性。

4. 熔解温度(Tm):引物的Tm是引物与模板DNA结合和解离的温度。

引物的Tm应该在50-65°C之间,以确保在PCR循环中引物能够特异性结合到模板。

5. 避免自相互或异相互二聚体:引物的设计应防止引物之间或引物与模板之间发生意外的二聚体形成,这可能导致PCR反应的不稳定性。

可以使用在线工具预测引物之间和引物与模板之间的二聚体。

6. 避免重复序列:引物应避免含有重复序列,以防止非特异性扩增。

7. 避免剪切位点:引物不应该包含酶切位点,以防止在PCR扩增过程中被酶切。

8. 引物对的选择:在PCR反应中,通常需要一对引物。

这对引物应该相互配合,以确保它们在同一温度下工作,并且扩增产物大小符合实验要求。

9. 考虑引物的位置:引物应设计在目标序列内部,而不是在末端。

这有助于确保扩增产物包含目标区域的完整信息。

10. 检查SNP和突变:引物的设计需要考虑可能存在的单核苷酸多态性(SNP)或突变。

确保引物能够区分目标序列中的变异。

在进行PCR引物设计时,通常使用一些在线工具或软件来辅助,这些工具可以帮助评估引物的特异性和其他参数。

PCR引物设计的原则

PCR引物设计的原则

PCR引物设计的原则引物设计的原则:首先引物要跟模板紧密结合,其次引物与引物之间不能有稳定的二聚体或发夹结构存在,再次引物不能在别的非目的位点引起DNA聚合反应(即错配)。

围绕这几条基本原则,设计引物需要考虑诸多因素,如引物长度(primer length)、产物长度(product length)、序列Tm 值(melting temperature)、ΔG值(internal stability)、引物二聚体及发夹结构(duplex formation and hairpin)、错误引发位点(false priming site)、引物及产物GC 含量(composition),有时还要对引物进行修饰,如增加限制酶切点,引进突变等。

以使用Oligo 软件分析设计引物为例,笔者总结出以下的要点:1. 引物的长度一般为15-30bp,常用的是18-27bp,但不能大于38,因为过长会导致其延伸温度大于74℃,即Taq 酶的最适温度。

2. 引物3’端的序列要比5’端重要。

引物3’端的碱基一般不用A(3’端碱基序列最好是G、C、CG、GC),因为A在错误引发位点的引发效率相对比较高。

另外引物间3’端的互补、二聚体或发夹结构也可能导致PCR反应失败。

5’端序列对PCR 影响不大,因此常用来引进修饰位点或标记物。

3. 引物的GC含量一般为40-60%,以45-55%为宜,过高或过低都不利于引发反应。

有一些模板本身的GC 含量偏低或偏高,导致引物的GC含量不能在上述范围内,这时应尽量使上下游引物的GC 含量以及Tm 值保持接近(上下游引物的GC含量不能相差太大),以有利于退火温度的选择。

如果G-C比例超出,则在引物的5’端增加As或Ts;而如果A-T 比例过高,则同样在5’端增加Gs或Cs。

但也有认为:原来普遍认为PCR引物应当有50%的GC/AT比率的观点其实是不对的,以人基因组DNA为模板,用81%AT的引物可以产生单一的、专一的、长250 bp,含有70% AT的产物。

引物设计基本原则

引物设计基本原则

引物设计基本原则引物设计是指在分子生物学研究中,用于扩增目标DNA序列的两个引物的设计。

好的引物设计是成功进行PCR反应的关键之一、下面是引物设计的基本原则:1.引物长度:引物长度一般在18-24个碱基对左右,太短容易引起非特异性扩增,太长则可能导致引物无法与目标序列完全匹配。

2.引物的GC含量:引物的GC含量一般在40-60%之间,太低则可能导致引物无法与目标序列形成稳定的双链结构,太高则可能导致引物与非特异性目标序列发生杂交。

3.引物的熔解温度(Tm):引物的Tm是指引物与目标序列在溶液中解链的温度。

引物设计时应保证所设计的两个引物的Tm值相似,一般相差不超过2-3摄氏度。

这样可以保证引物在PCR反应中同时结合于目标序列。

4.引物的特异性:引物设计时必须确保引物与目标序列的特异性,即引物在基因组中只与目标序列互补匹配,不与其他非目标序列发生杂交。

为了提高引物的特异性,可以使用生物信息学工具如BLAST进行引物的序列比对和分析。

5.引物的结构:引物设计时应注意引物的序列结构。

首先要避免引物的自身二级结构,特别是避免引物的自身二聚体形成,可以使用在线工具进行预测和评估。

另外,引物的末端最好是链末端,避免引物形成环状结构。

6.引物的位点选择:在设计引物时,应选择位于目标序列上的独特位点作为引物扩增的位点。

这样可以确保引物扩增出的产物是目标序列,而不是其他类似的序列。

7.引物的序列设计:引物设计时应避免序列中出现连续的重复碱基序列,避免过多的GC或AT连续存在。

此外,引物设计时还可以考虑在引物的序列中加入特定的限制性内切酶位点,方便后续分子克隆和分析。

总结起来,引物设计的基本原则包括引物长度、GC含量、Tm值、特异性、结构、位点选择和序列设计。

良好的引物设计是成功进行PCR反应的前提之一,能够提高扩增效率和特异性,并且避免产生非特异性扩增产物。

PCR引物设计原理及原则

PCR引物设计原理及原则

PCR引物设计原理及原则PCR引物设计是聚合酶链反应(Polymerase Chain Reaction,PCR)的关键步骤之一、PCR引物是指PCR扩增反应中作为起始材料的两个DNA片段,通常是20-30个碱基对长的寡核苷酸序列。

PCR引物设计的目的是选择合适的引物序列,以实现特定DNA序列的扩增。

1.特异性:PCR引物应该非常特异地与目标序列相互作用,不与其他非特异性的序列发生非特异性的扩增反应。

为了实现特异性,引物序列应该在目标序列上具有高度互补性,但是在非特异性序列上没有互补性。

2.合适的长度:PCR引物的长度在20-30个碱基对之间,较短的引物可能无法特异性地与目标序列结合,而较长的引物可能导致PCR反应的效率降低。

3.避免结构性:PCR引物设计中应避免引物之间或引物与模板之间的二级结构形成。

二级结构会干扰PCR反应的进行,降低扩增效率。

4.避免引物间杂交:在PCR反应中,通过引物间的相互作用引发的非特异性扩增会干扰特异性扩增的结果。

因此,在设计PCR引物时,需要避免引物间的互补性。

1.选择位于目标序列上的合适区域进行扩增,通常选择区域位于目标序列上游和下游的相对保守区域。

这样可以确保PCR引物的特异性和稳定性。

2.引物应具有一定的GC含量,一般在40%-60%之间,过低的GC含量会降低PCR反应的特异性和稳定性。

3.引物的两端不应含有重复序列,这样可以避免模板序列的间断扩增。

4.引物的两端应该有相对稳定的酮基或磷酸基,这样可以提高引物的稳定性,确保特异性扩增。

5.避免引物的自身互补性,以防止引物间的二级结构形成。

引物的互补性会干扰PCR反应的进行。

6.引物应避免在末端存在带有杂质的碱基,因为这可能会导致扩增产物的杂交和二级结构形成。

7.引物序列应尽量避开重复序列、富含AT或GC的序列、高度变异的区域和基因座之间的序列相似性较高的区域。

8.引物设计应考虑到引物长度、温度和浓度的相互配合,以保证对目标序列的特异性扩增。

PCR引物设计原理

PCR引物设计原理

PCR引物设计原理PCR(聚合酶链式反应)是一种常用的分子生物学技术,用于扩增特定DNA序列。

PCR引物设计是PCR实验的关键步骤,合理的引物设计能够确保PCR反应的特异性和高效性。

1.引物长度:通常,PCR引物的长度在18-25个碱基对之间,较短的引物能够提高PCR扩增的特异性,但也会减弱引物与模板DNA的互补性。

较长的引物能够提高PCR扩增的选择性,但也会增加二次结构的可能性。

2. 引物温度:引物通常被设计成具有相似的熔解温度(Tm),即引物与模板DNA解离的温度。

Tm计算可根据引物序列中的碱基组成和长度来进行,通常采用Wallace规则或Marmur规则。

相似的Tm可以确保引物在PCR反应中一起工作,提高特异性和扩增效率。

3.引物特异性:为了确保PCR扩增的特异性,引物应在模板DNA中有唯一的互补区域。

这可以通过NCBI的BLAST或其他引物设计软件进行引物序列比对来验证。

特异性也可以通过引物的3'端碱基匹配限制来提高。

此外,避免引物之间的重叠或互补也可以减少非特异性扩增的风险。

4.引物GC含量:GC含量是影响PCR引物的熔解温度和特异性的重要因素。

高GC含量的引物比低GC含量的引物具有更高的熔解温度,因此在高GC含量的引物中,引物长度应适当缩短,以保持相似的Tm。

此外,高GC含量的引物在互补区域中与模板DNA结合更牢固,有利于特异性扩增。

5.引物末端修饰:末端修饰可以改变引物的特性,如增加引物的亲合性、稳定性和特异性。

一般采用引物末端加入磷酸基团或胺基基团的修饰,用于提高引物的稳定性和抗核酸酶降解的能力。

6.引物序列的配对:在PCR反应中,两个引物需要配对以形成DNA双链,在DNA扩增过程中选择性地与模板DNA结合。

引物配对需要满足碱基之间的互补关系。

因此,引物序列的选择应考虑到碱基之间的配对能力。

总结起来,PCR引物设计的原理主要涉及引物长度、温度、特异性、GC含量、末端修饰和序列配对。

PCR引物设计原则

PCR引物设计原则

PCR引物设计原则PCR(聚合酶链反应)是一种广泛应用于分子生物学领域的基础技术,可以在体外复制DNA分子。

PCR的核心是引物,引物的设计质量直接影响PCR反应的效率和特异性。

以下是PCR引物设计的原则。

1.引物长度:引物的理想长度为18-22个碱基对。

引物过短可能导致特异性不足,引物过长则可能降低PCR的效率。

2.引物序列:引物序列应具备良好的互补性,即能与待扩增的目标DNA序列特异性结合。

通常,引物的GC含量应在40-60%之间,以确保引物和目标序列之间形成稳定的氢键。

3.引物选择:引物的设计需要仔细考虑避免引物间以及引物与模板序列间的互补。

如果引物之间有互补性,则可能导致非特异性扩增。

另外,引物不能与附近的肥皂序列或重复序列互补,以免引入非特异性产物。

4.引物结构:引物的3'端应以碱基对为基础设计,以提高扩增特异性。

同时,避免引物在末端出现重复序列,以免引导多聚加合反应。

5.引物的熔解温度(Tm):引物的熔解温度应相似,并在50-60℃之间,以确保引物和模板序列的互补结合,同时避免引物之间的自身结合。

6.引物的位点选择:引物应选择在目标序列上的保守区域,以确保引物在不同基因型和物种之间的通用性。

在选择引物位点时,避免选择在引物附近有大量SNP(单核苷酸多态性)或缺失突变的区域。

7.引物的杂合性别:引物的杂合性别是指引物本身的互补性。

如果引物存在杂合性别,则可能导致非特异性扩增。

在进行引物设计时,可以使用软件工具来评估引物的可能杂合效应。

8.引物的特异性评估:在进行引物设计后,可以使用BLAST等工具来评估引物的特异性。

该工具可以引物序列与数据库中的其他序列的互补匹配。

特异性较好的引物应仅与目标序列匹配。

9.引物标记:引物可以通过添加特定序列或化学标记进行标记。

在PCR扩增过程中,通过标记引物可以进行定量和检测反应产物的操作。

在PCR实验中,良好的引物设计是确保特异性扩增的关键。

引物设计需要综合考虑引物长度、序列、选择、结构、熔解温度、位点选择、杂合性别、特异性评估、标记和固定等因素。

PCR引物设计原则

PCR引物设计原则

PCR引物设计原则PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。

因此,引物的优劣直接关系到PCR的特异性与成功与否。

要设计引物首先要找到DNA序列的保守区。

同时应预测将要扩增的片段单链是否形成二级结构。

如这个区域单链能形成二级结构,就要避开它。

如这一段不能形成二级结构,那就可以在这一区域设计引物。

现在可以在这一保守区域里设计一对引物。

一般引物长度为15-30碱基,扩增片段长度为100-600碱基对。

让我们先看看P1引物。

一般引物序列中G+C含量一般为40%-60%。

而且四种碱基的分布最好随机。

不要有聚嘌呤或聚嘧啶存在。

否则P1引物设计的就不合理。

应重新寻找区域设计引物。

同时,引物之间不能有互补性。

通常,一对引物之间互补的连续碱基不应超过四个。

引物确定以后,可以对引物进行必要的修饰,例如可以在引物的5′端加酶切位点序列;标记生物素、荧光素、地高辛等,这对扩增的特异性影响不大。

但3′端绝对不能进行任何修饰,因为引物的延伸是从3′端开始的。

这里还需提醒的是3′端不要终止于密码子的第3位,因为密码子第3位易发生简并,会影响扩增的特异性与效率。

综上所述我们可以归纳十条PCR引物的设计原则:1.引物设计在核酸序列的保守区域,具有特异性。

2、产物不能形成二级结构。

3、引物长度一般在15~30碱基之间。

4、G+C含量在40%~60%之间。

5、碱基要随机分布。

6.引物本身不能与四个连续的碱基互补。

7.引物不能与四个连续的碱基互补。

8、引物5′端可以修饰。

9、引物3′端不可修饰。

10、引物3′端要避开密码子的第3位。

PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。

如前述,引物的优劣直接关系到PCR 的特异性与成功与否。

对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。

1、引物的特异性引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。

PCR引物设计的基本原则

PCR引物设计的基本原则

PCR引物设计的基本原则PCR引物设计的基本原则1. 引物的长度一般取15-30bp,常用18-27bp,但不能大于38bp,因为引物过长会导致其延伸温度大于74℃。

2. 引物3’端的序列要比5’端重要。

引物3’端的碱基一般不用A(3’端碱基序列最好是G、C、CG、GC),因为A在错误引发位点的引发效率相对比较高。

另引物间3’端的互补、二聚体或发夹结构也很可能导致PCR反应失败。

5’端序列对PCR 影响不太大,因此常用来引进修饰位点或标记物。

3. 引物的GC含量一般为40-60%,以45-55%为宜,过高或过低都不利于引发反应。

有一些模板本身的GC 含量偏低或偏高,导致引物的GC含量不能在上述范围内,这时应尽量使上下游引物的GC 含量以及Tm 值保持接近(上下游引物的GC含量不能相差太大),以有利于退火温度的选择。

如果G-C比例超出,则在引物的5’端增加As或Ts;而如果A-T比例过高,则同样在5’端增加Gs或Cs。

4. 引物所对应模板序列的Tm 值最好处于72℃左右。

(Tm 值曲线以选取72 度附近为佳,5’到3’的下降形状也有利于引物引发聚合反应),至少要在55-80℃之间5. ΔG值(自由能)反映了引物与模板结合的强弱程度。

一般情况下,引物的ΔG值最好呈正弦曲线,即5’端和中间ΔG值较高,而3’端ΔG值相对较低,且不要超过9(ΔG值为负值,这里取绝对值),如此可防止错误引发。

3′末端双链的ΔG是0~-2 kcal/mol时,PCR 产量几乎到百分之百,随着其绝对值的增加产量逐渐下降,在-6时只有40%、到-8时少于20%、而-10时接近于0。

6.错配率一般不要超过100,否则会出现非目的条带。

但是对于某些特定的模板序列,还应结合比较其在正确位点引发效率。

如果两者相差很大,比如在正确位点的引发效率为340以上,而在错误位点的引发效率为110,并且不好找到其他更合适的引物,那么这对引物是可以接受的;7. Frq 曲线为Oligo6新引进的一个指标,揭示了序列片断存在的重复机率大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 一般采用较引物Tm值低5℃作为PCR退火温度。
引物设计软件
Primer Premier 5.0
– 生物软件网下载 – 安装后,用文本编辑器打开WIN.INI,将vspace=DU
改为vspace=PU便可以使用全部功能。
Oligo primer 3 The Primer Generator NetPrimer
– GC含量太低导致引物 含量太低导致引物Tm值较低,使用较低 值较低, 含量太低导致引物 值较低
的退火温度不利于提高PCR的特异性 的特异性 的退火温度不利于提高
– GC含量太高也易于引发非特异扩增。 含量太高也易于引发非特异扩增。 含量太高也易于引发非特异扩增
引物Tm值 引物Tm值
一般要求:55℃-65℃。 一般要求:55℃-65℃。 计算: 计算:
引物的保守性与特异性
保守性:通用引物 保守性:通用引物——检测同一类病原 检测同一类病原 微生物尽可能多的型别 特异性: 特异性:避免非特异性扩增
扩增区域的二级结构
模板DNA的某些区域具有高度复杂的二级结构, 模板DNA的某些区域具有高度复杂的二级结构, DNA的某些区域具有高度复杂的二级结构 在选择引物时, 在选择引物时,应使扩增区域尽可能避开这些 区域。 区域。
引物长度
一般为15-30个核苷酸,在做长片段PCR 个核苷酸,在做长片段 一般为 个核苷酸 或做某些特殊的PCR时应使用较长的引 时应使用较长的引 或做某些特殊的 个核苷酸。 物,但最多不超过50个核苷酸。 但最多不超过 个核苷酸
碱基分布的均衡性
同一碱基连续出现不应超过5个 同一碱基连续出现不应超过 个 GC含量一般 含量一般40-60% 含量一般
物素、地高辛等)。 物素、地高辛等)。
引物的内部稳定性
过去认为,引物 端应牢牢结合在模板上才能 过去认为,引物3’端应牢牢结合在模板上才能 有效地进行延伸, 端最好为G或 。 有效地进行延伸,故3’端最好为 或C。 端最好为 现在的观点认为,引物的 端应是相对稳定结 现在的观点认为,引物的5’端应是相对稳定结 构,而3’端在碱基配对的情况下最好为低稳定 端在碱基配对的情况下最好为低稳定 性结构, 端尽可能选用A或 ,少用G或 。 性结构,即3’端尽可能选用 或T,少用 或C。 端尽可能选用
引物与PCR 引物与PCR
引物浓度:一般为0.1-0.5umol/L
– 引物浓度(uM)=n OD×33/(A×312+C×288+G×328
+T×303-61)/VH2O
VH2O (单位:L)
退火温度
– 最适退火温度(Ta Opt ) = 0.3 ×(Tm of primer) + 0.7
× (Tm of product) – 25
如何使用Primer 如何使用Primer Premier 5.0
引物设计
–一般引物设计 –5’带酶切位点引物设计 带酶切位点引物设计 –巢式PCR引物设计 巢式PCR PCR引物设计 –多重PCR引物设计 多重PCR PCR引物设计
探针设计 引物评析
引物同源性分析
用Blastn软件进行同源性比较 Blastn软件进行同源性比较
– 仅仅 端几个碱基与非特异位点上的碱基形成的低 仅仅3’端几个碱基与非特异位点上的碱基形成的低
稳定性结构是难以有效引发引物延伸的。 稳定性结构是难以有效引发引物延伸的。
– 如果3’端为富含 、C的结构,只需3’端几个碱基与 如果 端为富含G、 的结构,只需 端几个碱基与 端为富含 的结构
模板互补结合,就可能引发延伸,造成假引发。 模板互补结合,就可能引发延伸,造成假引发。
位点5 端加上适当数量的保护碱基 端加上适当数量的保护碱基)。 位点5’端加上适当数量的保护碱基)。
–5’端的某一位点修改某个碱基,人为地在产 端的某一位点修改某个碱基, 端的某一位点修改某个碱基
物中引入该位点的点突变以作研究。 物中引入该位点的点突变以作研究。
–5’端标记放射性元素或非放射性物质(如生 端标记放射性元素或非放射性物质( 端标记放射性元素或非放射性物质
引 物 设 计
引物 引物的重要性 引物设计的原则 引物与PCR 引物设计软件 如何使用Primer Premier 5.0 引物同源性分析
引物(primers) 引物(primers)
引物是人工合成的两段 寡核苷酸序列,一个引 物与感兴趣区域一端的 一条DNA模板链互补, 另一个引物与感兴趣区 域另一端的另一条DNA 模板链互补。 5’ 3’ Sense primer
H/(△ Tm = △H/(△ S + R * ln (C/4)) + 16.6 log ([K+]/(1 + 0.7 [K+])) - 273.15
引物二级结构
引物二聚体
–尽可能避免两个引物分子之间3’端有有较多 尽可能避免两个引物分子之间3 端有有较多
碱基互补
发夹结构
–尤其是要避免引物3’端形成发夹结构,否则 尤其是要避免引物3 端形成发夹结构 端形成发夹结构,
–对于低于20个碱基的引物,Tm值可根据 对于低于20个碱基的引物,Tm值可根据 20个碱基的引物
Tm=4(G+C)+2(A+T)来粗略估算 Tm=4(G+C)+2(A+T)来粗略估算
–对于较长引物,Tm值则需要考虑热动力学参 对于较长引物,Tm值则需要考虑热动力学参
数,从“最近邻位”的计算方式得到,这也 最近邻位”的计算方式得到, 是现有的引物设计软件最常用的计算方式。 是现有的引物设计软件最常用的计算方式。

5’
Antisense primer

3’
引物的重要性
在整个PCR体系中, 引物占有十分重要的 地位。PCR的特异性要求引物与靶DNA 特异结合,不与其他非目的DNA结合, PCR的灵敏性要求DNA聚合酶能对引物 进行有效的延伸,可见引物设计好坏与 PCR结果密切相关。
引物设计原则
引物长度 碱基分布的均衡性 Tm值 引物二级结构 引物3’端 引物5’端 引物的内部稳定性 引物的保守性与特异性 扩增区域的二级结构
–尽可能选择与非目的基因同源性小的序列作

为引物
–选择3’端与非目的基因不同源的序列作为引 选择3 端与非目的基因不同源的序列作为引

–选择两个引物3’端与同一非目的基因不同源 选择两个引物3 端与同一非目的基因不同源
的序列作为引物
引物5 引物5’端
引物5 端可以有与模板DNA不配对碱基 端可以有与模板DNA不配对碱基, 引物5’端可以有与模板DNA不配对碱基, 端引入一段非模板依赖性序列。 在5’端引入一段非模板依赖性序列。 端引入一段非模板依赖性序列
–5’端加上限制性核酸内切酶位点序列(酶切 端加上限制性核酸内切酶位点序列( 端加上限制性核酸内切酶位点序列
将严重影响DNA聚合酶的延伸。 将严重影响DNA聚合酶的延伸。 DNA聚合酶的延伸
引物3 引物3’端
引物的延伸从3 端开始 因此3 端的 端开始, 引物的延伸从3’端开始,因此3’端的 几个碱基与模板DNA均需严格配对, 几个碱基与模板DNA均需严格配对,不能 DNA均需严格配对 进行任何修饰, 进行任何修饰,否则不能进行有效的延 伸,甚至导致PCR扩增完全失败。考虑到 甚至导致PCR扩增完全失败。 PCR扩增完全失败 密码子的简并性,引物3 端最后一个碱 密码子的简并性,引物3’端最后一个碱 基最好不与密码子第三个碱基配对。 基最好不与密码子第三个碱基配对。
–扩增区域的自由能(△G。)小于 扩增区域的自由能(
58.61kJ/mol
– 引物Tm值与PCR产物Tm值相差一般不超过30℃ 引物Tm值与PCR产物Tm值相差一般不超过30℃ Tm值与PCR产物Tm值相差一般不超过
Tm
product
= 81.5 + 16.6 log
([K+]/(1+0.7[K+])) + 0.41 (%G + %C) 500/lengt
相关文档
最新文档