膜分离技术处理工业废水的应用现状及发展趋势
污水处理中的膜分离技术应用

污水处理中的膜分离技术应用污水处理是一项关乎环保和可持续发展的重要任务。
随着工业化和人口增长,污水处理厂承担着越来越大的压力。
为了有效地去除废水中的有害物质,一种被广泛应用的技术是膜分离技术。
本文将探讨膜分离技术在污水处理中的应用,包括其原理、优势和发展趋势。
1. 膜分离技术的原理膜分离技术是通过半透膜的筛选作用将废水中的杂质分离出来。
膜分离技术主要包括微滤、超滤、纳滤和反渗透等过程。
微滤膜的孔径较大,能有效分离悬浮物和胶体颗粒;超滤膜的孔径较小,可去除大部分溶解性有机物和微生物体;纳滤膜则可以进一步去除溶解性无机盐和有机物;反渗透膜则可将污水中绝大部分溶质拦截在膜外,得到清洁水。
2. 膜分离技术在污水处理中的优势膜分离技术在污水处理中具有以下优势:2.1 高效去除污染物膜分离技术能够有效去除污水中的悬浮物、胶体颗粒、有机物和无机盐等污染物,使污水得到有效处理。
2.2 高度自动化膜分离技术可以实现自动化控制,减少人工干预和操作成本,并确保处理过程的稳定性和一致性。
2.3 占地面积小相比传统污水处理工艺,膜分离技术需要的占地面积更小,可以有效节约土地资源。
2.4 产水质量高膜分离技术可以产生高质量的清洁水,满足日常生活用水和工业用水的要求。
2.5 节能环保膜分离技术相比传统的汽提和吸附等工艺,能耗更低,减少了对能源的依赖,同时废膜可回收,降低了环境污染。
3. 膜分离技术的应用领域膜分离技术在污水处理中有广泛的应用,包括城市污水处理厂、工业废水处理、饮用水制备等。
3.1 城市污水处理厂在城市污水处理厂,膜分离技术常用于二次处理过程,能够有效去除残余的悬浮物和有机物,提高出水质量。
3.2 工业废水处理膜分离技术在工业废水处理中被广泛应用。
不同类型的膜可根据废水中的污染物进行选择,如去除重金属离子、有机溶剂等。
3.3 饮用水制备膜分离技术在饮用水制备中也具有重要应用。
通过微滤和超滤膜的组合,能够有效去除水中的病原微生物和悬浮颗粒,提供安全的饮用水。
mbr技术应用现状及发展新趋势

mbr技术应用现状及发展新趋势MBR技术(膜生物反应器)是一种将活性污泥法与膜分离技术相结合的污水处理技术。
它通过在生物反应器中引入膜分离装置,能够高效地去除污水中的悬浮物、胶体物质和微生物等,使处理后的水质达到国家排放标准。
目前,MBR技术已经得到广泛应用,并在实际工程中取得了良好的效果。
MBR技术的应用现状:1.城市污水处理厂:MBR技术在城市污水处理厂得到广泛应用。
由于MBR技术能够有效去除悬浮物和微生物,处理后的水质稳定,适合用于灌溉、冲洗和工业用水等水源。
2.工业废水处理:MBR技术具有处理废水中有机物浓度高、水质波动大的特点,适用于各种工业废水的处理。
例如,纺织、造纸、化工等行业利用MBR技术处理废水,能够达到较高的处理效果。
3.海水淡化:MBR技术可以在海水淡化过程中用于去除悬浮物和胶体物质,减轻后续淡化设备的负担。
MBR海水淡化技术在节能和降低成本方面具有优势。
MBR技术的发展新趋势:1.技术改进:随着MBR技术的不断发展,越来越多的新材料和新工艺被应用于MBR膜的制备和运行中,以提高膜的抗污染能力和使用寿命。
同时,MBR技术也通过改进、优化反应器结构和控制系统,提高了系统的稳定性和运行效率。
2.结合其他技术:MBR技术和其他污水处理技术的结合也成为发展的趋势。
例如,MBR技术与生物膜反应器(MBBR)技术相结合,形成MBMBR技术,在提高处理能力的同时减少了化学药剂的使用量。
3.能源回收利用:MBR技术在处理废水的过程中产生的污泥可以通过厌氧消化和沼气发电等方式进行能源回收利用。
这不仅能够减少废弃物的处理量,还可以节约能源成本。
4.智能化和自动化:随着信息技术的快速发展,MBR技术在控制和管理方面也趋向于智能化和自动化。
通过实时监测和数据分析,可以对系统的运行状态进行实时调整和优化,提高运行效率。
总而言之,MBR技术在城市污水处理、工业废水处理和海水淡化等领域具有广阔的应用前景。
膜技术在工业废水处理中的应用

适用于处理含有有机物和重金属的 废水,通过纳滤膜可以将这些物质 进行分离和去除。
膜生物反应器在废水处理中的应用
MBR技术:将膜分离技术和生物反应器相结合,通过膜的截 留作用将微生物和废水中的悬浮物进行分离,从而得到高质 量的出水。
膜生物反应器可以高效地去除废水中的有机物、氨氮、总磷 等污染物,同时具有占地面积小、操作简便、处理效果稳定 等优点。
生活污水处理:膜技术可以用于处理 生活污水,如家庭、学校、医院等场 所产生的污水。
工业废水处理:膜技术可以用于处理 各种工业废水,如石油化工、制药、 造纸、印染等行业。
饮用水处理:膜技术可以用于处理饮 用水,提高水质,保障人民的健康。
02
工业废水处理现状及挑战
工业废水排放现状
工业废水排放量巨大 ,对环境造成严重污 染。
废水处理设施建设不 足,存在偷排、漏排 等问题。
不同行业产生的废水 成分复杂,处理难度 大。
工业废水处理面临的挑战
废水成分复杂,处理难度大。 处理技术单一,缺乏综合解决方案。
处理成本高,企业难以承担。
工业废水处理技术的发展趋势
发展高效、节能、环保的废水处 理技术。
加强废水回用,实现资源化利用 。
中来。
开展膜技术在不同工业领域的应用研究 ,拓展膜技术在各行业废水处理中的应
用范围。
加强膜技术研发,提高膜材料性能与寿命
膜技术的关键在于膜材料,因 此需要加强膜材料的研发,提 高膜材料的性能和寿命。
研究开发具有高透水性、高抗 污染性、高耐酸碱性和高机械 强度的膜材料,以满足不同工 业废水处理的需求。
探索新的制备方法,降低膜材 料的制造成本,促进膜技术的 推广应用。
开展低成本、高效能的膜技术解决方案研究
膜分离技术应用的研究进展

膜分离技术应用的研究进展一、本文概述随着科技的不断进步,膜分离技术作为一种高效、环保的分离技术,已经在多个领域得到了广泛的应用。
膜分离技术,利用特定的膜材料对混合物中的不同组分进行选择性分离,具有操作简便、能耗低、分离效果好等优点,因此在化工、环保、食品、医药等领域有着广阔的应用前景。
本文旨在对膜分离技术应用的研究进展进行全面的综述,分析各类膜材料的性能特点,探讨膜分离技术在不同领域的应用现状,以及未来可能的发展趋势。
通过对膜分离技术的深入研究,我们期望能够为相关领域的科技进步和产业发展提供有益的参考。
二、膜分离技术的分类与特点膜分离技术是一种基于膜的选择性渗透原理,用于分离、提纯和浓缩溶液中的不同组分的高效分离技术。
根据其分离机制和操作原理,膜分离技术主要分为以下几类,并各自具有其独特的特点。
微滤(Microfiltration,MF):微滤膜通常具有较大的孔径,能够有效截留溶液中的悬浮物、颗粒物和细菌等。
其特点是操作简单、高通量、低能耗,广泛应用于水处理、食品加工和制药等领域。
超滤(Ultrafiltration,UF):超滤膜的孔径介于微滤和纳滤之间,能够截留分子量较大的溶质和胶体物质。
超滤技术具有分离效果好、操作简便、对热敏性物质损伤小等优点,常用于蛋白质、酶等生物大分子的分离和纯化。
纳滤(Nanofiltration,NF):纳滤膜的孔径较小,能够截留分子量较小的溶质和无机盐。
纳滤技术具有对有机物和无机盐的高效分离能力,且能在较低的操作压力下实现较高的分离效率,适用于水软化、废水处理和食品工业等领域。
反渗透(Reverse Osmosis,RO):反渗透膜具有极小的孔径,能够截留溶液中的绝大多数溶质,实现高纯度水的制备。
反渗透技术具有分离效果好、产水水质高、操作稳定等优点,是海水淡化、苦咸水脱盐、工业废水处理等领域的首选技术。
电渗析(Electrodialysis,ED):电渗析技术利用电场作用下的离子迁移原理,实现溶液中阴阳离子的分离。
膜分离法污水处理技术

膜分离法污水处理技术膜分离法污水处理技术一、引言随着人口和工业的不断增长,污水成为一个日益严重的环境问题。
传统的污水处理方法往往存在着处理能力低、占地面积大、能源消耗高等问题。
而膜分离法作为一种高效、节能、环保的污水处理技术,正逐渐受到人们的关注和应用。
二、膜分离法概述膜分离法是指利用微孔膜或渗透膜对污水中的有害物质进行过滤、分离和浓缩的技术。
根据膜材料的不同,可以将其分为微孔膜和渗透膜两种类型。
微孔膜是一种孔径较小的膜,可以通过物理或化学方法将污水中的悬浮物、胶体、微生物和部分有机物去除。
而渗透膜则是依靠分离层的选择性渗透效应将污水中的溶解物、无机盐和有机物分离。
三、常用膜分离法污水处理技术1. 微滤膜法微滤膜法是一种利用孔径为0.1-10μm的微孔膜进行过滤的技术。
通过微滤膜可以有效去除污水中的悬浮物、胶体和微生物等大颗粒物质。
微滤膜法具有工艺简单、设备操作方便、膜寿命较长等优点,适用于饮用水的预处理、医药行业的水质净化等领域。
2. 超滤膜法超滤膜法是一种利用孔径为0.001-0.1μm的超滤膜进行分离的技术。
超滤膜可以有效去除污水中的胶体、蛋白质、微生物等物质,同时还能保留溶解物和低分子量有机物。
超滤膜法被广泛应用于饮用水的处理、垃圾渗滤液的处理、印染废水的处理等领域。
3. 逆渗透膜法逆渗透膜法是一种利用孔径为0.0001-0.001μm的逆渗透膜进行分离的技术。
逆渗透膜具有较高的选择性,可以除去污水中的溶解物、无机盐、有机物等物质。
逆渗透膜法被广泛应用于海水淡化、工业废水处理、饮用水处理等领域。
四、膜分离法的优势与挑战1. 优势:膜分离法具有高效、节能、环保等优点。
相比于传统的沉淀、过滤等处理方法,膜分离法处理效果更好,剩余浸出物也更干净,且所需能源较少。
2. 挑战:膜分离法的挑战主要来自于膜污染问题。
由于污水中存在有机物、微生物和胶体颗粒等,在膜表面容易形成污垢,影响膜的通量和使用寿命。
污水处理中的膜分离技术与应用

纳滤
微滤
介于反渗透和超滤之间的一种膜分离技术 ,可去除水中的有机物、重金属和农药等 。
利用微孔滤膜拦截微粒、细菌和微生物等 ,常用于水和液体的澄清过滤。
膜分离技术的应用领域
01
02
03
04
饮用水处理
通过膜分离技术去除水中的杂 质、细菌和病毒等,提供安全
可靠的饮用水。
工业废水处理
用于处理工业废水中的有害物 质、重金属和有机物等,实现 废水的净化与资源化利用。
海水淡化
总结词
膜分离技术是实现海水淡化的关键技术 之一,通过脱盐处理,提供可靠的淡水 资源。
VS
详细描述
反渗透技术是海水淡化的主流技术,利用 半透膜实现水与盐类等物质的分离。经过 反渗透处理,海水可转化为淡水,满足人 类生产和生活用水需求。
CHAPTER
04
膜分离技术在污水处理中的优 势与挑战
膜分离技术的优势
目前应用的膜材料种类有限,性能参 差不齐,尚不能满足各种污水处理的 需求。
未来发展方向与趋势
新型膜材料的研发
01
研究开发具有优异性能、高稳定性、低成本的新型膜材料是未
来的重要方向。
膜组件与设备的优化设计
02
改进膜组件和设备的设计,提高其处理能力和降低能耗是重要
的研究方向。
与其他技术的联合应用
03
将膜分离技术与其他污水处理技术相结合,形成多级处理工艺
反渗透膜分离技术
总结词
高精度过滤
详细描述
反渗透膜分离技术的孔径最小,几乎可以去除所有的溶解盐分、有机物、重金属等,是目前最为先进 的污水处理技术之一。
CHAPTER
03
膜分离技术在污水处理中的应 用
膜分离技术在工业废水处理中的应用

膜分离技术在工业废水处理中的应用随着工业化进程的推进,工业废水处理问题日益受到人们的关注。
工业废水中富含有各种有害物质,如果不经过合适的处理,将对环境造成严重的污染。
因此,寻找一种高效、经济、环保的工业废水处理技术显得尤为重要。
膜分离技术作为一种新兴的分离技术,具有其独特的优势,被广泛应用于工业废水处理中。
膜分离技术是一种基于物质分子尺寸差异,利用膜为过滤介质进行分离和浓缩的技术。
膜可以根据不同的废水成分,选择合适的膜材料和膜类型,实现对特定有害物质的高效分离。
常见的膜材料有聚合物膜、无机陶瓷膜、复合膜等,具有较高的分离效率和稳定性。
在工业废水处理中,膜分离技术具有以下几个优势:首先,膜分离技术具有高效性。
由于膜孔径较小,能够有效地阻隔废水中不同尺寸的杂质和有害物质,使其无法通过膜孔,从而实现对废水的有效分离和净化。
其次,膜分离技术具有高选择性。
因为膜孔径可以根据需要进行调整,可以精确地控制物质的传递速率和选择性。
利用这一特性,可以实现对废水中特定杂质或有害物质的精确分离和去除,从而达到去污净化的目的。
再次,膜分离技术操作简便,易于实施。
相比传统的物理化学处理方法,膜分离技术无需投加大量化学药剂,不需要高温高压环境,操作起来更加方便、简单。
同时,膜分离技术的自动化程度高,能够实现连续处理,节省人力和资源成本。
此外,膜分离技术具有较小的占地面积。
由于膜分离技术充分利用了膜的分离作用,可以将废水中的有害物质通过膜的层层过滤逐步分离,从而大大减小了处理系统的体积和面积,为工业废水处理提供了一种节约空间资源的方式。
根据不同的工业废水成分和处理目标,膜分离技术可以应用于工业废水处理的各个环节,如固液分离、浓缩和回收等。
在固液分离方面,膜分离技术可以用于去除废水中的悬浮物、颗粒物等固体杂质。
通过选择合适的膜材料和膜孔径,可以实现对不同尺寸的固体颗粒或泥浆的过滤和分离。
相比传统的过滤方法,膜分离技术具有更高的分离效率和更稳定的操作。
mbr技术应用现状及发展新趋势

mbr技术应用现状及发展新趋势MBR技术是一种膜生物反应器技术,它将膜分离技术和生物处理技术相结合,具有高效、节能、占地面积小等优点。
目前,MBR技术已经广泛应用于城市污水处理、工业废水处理、海水淡化和污泥处理等领域。
一、MBR技术应用现状1. 城市污水处理MBR技术在城市污水处理领域的应用日益广泛。
由于MBR技术具有高效、节能、占地面积小等优点,使得其在城市污水处理厂改扩建、小型污水处理站以及农村污水处理等领域具有广阔的应用前景。
目前,全球多个国家和地区已建设和运营了MBR污水处理厂,如美国、欧洲、日本、中国等。
2. 工业废水处理除了城市污水处理外,MBR技术也在工业废水处理领域得到广泛应用。
由于MBR技术对有机物、重金属等污染物的去除效果较好,因此适用于电子、化工、制药、印染等行业废水的处理。
全球多个国家和地区的工业废水处理项目已采用了MBR技术,并取得了良好的处理效果和经济效益。
3. 生态修复MBR技术也可以应用于生态修复领域。
通过将MBR工艺与湿地、河道等生态工程相结合,可以实现污水的净化与生态修复的双重目标。
目前,全球多个国家和地区已成功应用了MBR工艺进行生态修复工程,如德国的韦特河、英国的泰晤士河等。
二、MBR技术的发展新趋势1. 技术创新和提升随着科技的不断进步,MBR工艺的技术也将不断创新和提升。
目前,研究者们正致力于提高MBR工艺的运行效率、提高膜的抗污染性能、减小系统的能耗和减少膜模块的成本等方面。
例如,利用新型材料研制出更具抗污染性能的膜材料,开发出更高效的膜清洗技术等。
2. 节能环保发展随着全球可持续发展的重要性日益凸显,MBR工艺也将朝着节能环保的方向发展。
未来,MBR工艺将致力于减少能耗,提高资源利用效率,降低对环境的影响。
例如,通过优化操作参数、改进系统结构和采用可再生能源等方式,降低MBR工艺的能耗。
同时,利用MBR 工艺处理废水可以实现废水的再利用,减少对水资源的消耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬州工业职业技术学院2013 —2014 学年第一学期文献检索论文课题名称:膜分离技术在废水处理中的应用及其发展方向设计时间: 2013.10.10~2013.12.15系部:化学工程学院班级: 1301应用化工姓名:郑鹏指导教师:王富花学号: 1301110137目录摘要 (1)Abstract (1)第一章前言 (3)1.1膜技术在水处理中应用的基本原理 (3)1.1.1根据混合物物理性质的不同 (3)1.1.2根据混合物的不同化学性质 (3)1.2 膜分离技术的特点 (4)2.1 分离性 (4)2.1.1 分离膜必须对被分离的混合物具有选择透过(即具有分离)的能力 (4)2.1.2 分离能力要适度 (4)2.2 透过性 (4)2.3 物理、化学稳定性 (4)2.4 经济性 (5)3在工业废水处理中的具体应用 (5)3.1 淀粉污水处理 (5)3.2 含酚废水处理 (5)3.3 含氰废水处理 (5)3.4 重金属离子的处理 (6)3.5 炼油废水处理 (6)展望 (6)参考文献 (8)膜分离技术在废水处理中的应用及其发展方向摘要:本文阐述了膜分离技术基本原理及其特点、分离膜需要具备的条件,介绍了膜分离技术在工业废水处理中的应用情况,提出了膜分离技术发展趋势。
关键词:膜分离技术;废水处理;发展趋势膜分离技术是在20世纪初出现、20世纪60年代迅速崛起的一门分离新技术,膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、吸附、萃取、深冷分离等)相比较,过程不发生相变,可以在常温下操作,具有能耗低、效率高、工艺简单等特点,受到世界各技术先进国家的高度重视,投入大量资金和人力,促进膜技术迅速发展,使用范围日益扩大,广泛应用于工业废水等处理过程,给人类带来了巨大的环境效应。
膜分离技术应用到工业废水的处理中,不仅使渗透液达到排放标准或循环生产,而且能回收有价资源。
1. 膜分离技术的基本原理和特点1.1 膜技术在水处理中应用的基本原理是:利用水溶液(原水)中的水分子具有透过分离膜的能力,而溶质或其他杂质不能透过分离膜,在外力作用下对水溶液(原水)进行分离,获得纯净的水,从而达到提高水质的目的。
总的说来,分离膜之所以能使混在一起的物质分开,不外乎两种手段。
1.1.1 根据混合物物理性质的不同——主要是质量、体积大小和几何形态差异,用过筛的办法将其分离。
微滤膜分离过程就是根据这一原理将水溶液中孔径大于50 nm的固体杂质去掉的。
1.1.2 根据混合物的不同化学性质。
物质通过分离膜的速度取决于以下两个步骤的速度,首先是从膜表面接触的混合物中进入膜内的速度(称溶解速度),其次是进入膜内后从膜的表面扩散到膜的另一表面的速度。
二者之和为总速度。
总速度愈大,透过膜所需的时间愈短;总速度愈小,透过时间愈久。
1.2 膜分离技术的特点膜分离技术是以高分子分离膜为代表的一种新型流体分离单元操作技术。
在膜分离出现前,已有很多分离技术在生产中得到广泛应用。
例如:蒸馏、吸附、吸收、苹取、深冷分离等。
与这些传统的分离技术相比,膜分离具有以下特点:(1) 膜分离通常是一个高效的分离过程。
例如:在按物质颗粒大小分离的领域,以重力为基础的分离技术最小极限是微米,而膜分离却可以做到将相对分子质量为几千甚至几百的物质进行分离(相应的颗粒大小为纳米)。
(2) 膜分离过程的能耗(功耗)通常比较低。
大多数膜分离过程都不发生“相”的变化。
(3) 多数膜分离过程的工作温度在室温附近,特别适用于对热过敏物质的处理。
(4) 膜分离设备本身没有运动的部件,工作温度又在室温附近,所以很少需要维护,可靠度很高。
(5) 膜分离过程的规模和处理能力可在很大范围内变化,而它的效率、设备单价、运行费用等都变化不大。
(6) 膜分离由于分离效率高,通常设备的体积比较小,占地较少。
而且膜分离通常可以直接插入已有的生产工艺流程,不需要对生产线进行大的改变。
2. 分离膜具备的基本条件2.1 分离性关于膜的分离性能,有以下二个要点:2.1.1 分离膜必须对被分离的混合物具有选择透过(即具有分离)的能力。
2.1.2 分离能力要适度。
它是根据被分离混合物的原始状态和分离后要达到的目标来合理确定的。
2.2 透过性能够对被分离的混合物进行有选择的透过是分离膜的最基本条件。
需要除去的物质透过速度与通过的物质透过速度之比为分离效率。
分离膜的透过性能是它处理能力的主要标志。
我们希望在达到所需要的分离率之后,分离膜的透量愈大愈好。
2.3 物理、化学稳定性目前所用的分离膜大多数是以高聚物为膜材料、需要定期更换。
这是因为高聚物在长期使用中,与光、热、氧气或酸、碱相接触,容易老化。
膜分离过程中除上述因素外,还有其他因素。
例如有些反渗透过程或气体分离过程是在几十到上百个大气压下进行的。
高聚物膜长期处在高压下,会发生被压密现象,它会使膜在长期使用中透量慢慢减少(这种变化是不可逆的),终至达到不能使用的极限。
又如,膜在使用过程中与混合物接触的表面会被各种各样的杂质所污染,它们遮住了膜的表面,阻碍了被分离混合物的直接接触,等于减少了膜的有效使用面积,还有一些污染物会破坏高聚物的结构。
污染造成的膜性能减退大部分可以通过清洗的方法使它基本上恢复。
膜的更换周期关系着生产成本,十分重要。
2.4 经济性分离膜的价格不能太贵,否则生产上就无法采用。
分离膜的价格取决于膜材料和制造工艺两个方面。
综上所述,具有适度的分离率、较高的透量、较好的物理、化学稳定性和便宜的价格是一张具有工业实用价值分离膜的最基本条件。
3. 在工业废水处理中的具体应用膜分离技术在工业水处理中的主要应用方向为工业用水中的物质回收与水资源再利用、工业废水的治理等。
下面着重介绍其在淀粉污水、含酚废水、含氰废水、含重金属废水和含油废水处理中的应用。
3.1 淀粉污水处理针对传统污水处理方法中蛋白质去除率较低,而COD负荷增加问题,采用膜处理装置进行试验研究。
周晶晶,金鹰[2]在膜分离技术的基础上,以调节豆浆废水、淀粉废水等电位点作为预处理,采用中空纤维膜装置进行超过滤,并对温度影响作定性分析。
结果表明:膜分离技术可以大大提高这两种废水中COD的去除率,分别为76.13%和82.19%。
另外,适当的温度可以提高污水处理的效率,试验得出20℃时效率最佳。
3.2 含酚废水处理石油工业的含酚废水中酚类物质毒性很大,必须脱出后才能排放。
贺增第等[3]进行了中空纤维膜萃取酚的实验研究,膜材料为聚砜,配合萃取剂为50%磷酸三丁酯(TBP)-煤油溶液;经过2级膜萃取,废水中酚的质量浓度由1223.53mg/L 降到45.85mg/ L,去除率达到96.3%。
李健生等[4]采用聚偏氟乙烯为中空纤维膜,以煤油-50%磷酸三丁酯为萃取剂,对含酚废进行了实验,废水的酚质量浓度可从1223mg/ L降到45mg/L,去除率达96%以上,排出的废水中酚含量符合国家排放标准。
王志强等[5]采用了一种新的硅橡胶复合中空纤维超滤膜处理苯酚废水。
采用的复合膜硅橡胶厚度小于10m,较前人使用硅橡胶管处理废水时苯酚的透过速率大大加快。
处理高质量浓度(8.1977g/L)和低质量浓度(0.1939g/L)的苯酚废水时,去除效果分别能达到99.19%和96.19%。
并发现,氯化钠的存在可大大增加苯酚的传质系数。
3.3 含氰废水处理我国处理含氰废水主要使用四效蒸发和焚烧的方法,此方法不仅成本高,而且焚烧过程会产生大量的CO2和氮氧化物对环境同样造成一定程度的污染。
张力等[6]采用膜分离技术,发展出一条处理丙烯腈装置含氰废水的新工艺、新方法。
他们根据膜分离过程的不同特点,结合含氰废水的特点,利用超滤和反渗透两种膜分离过程来处理丙烯腈装置的含氰废水。
结果表明:丙烯腈装置所产生的含氰废水中氰根浓度一般在0.3‰-0.4‰之间,COD一般在4000mg/l-5000mg/l,而装置外排废水中氰根的允许浓度是CN-0.005‰,COD〈1500mg/l。
3.4 重金属离子的处理含有各种重金属离子的污水排入天然水体会破坏水体环境,危害渔业和农业生产,污染饮用水源。
重金属进入人体后会在人体的某些器官中积蓄起来构成慢性中毒,严重危害人体的健康。
震惊世界的水俣病和骨痛病就是分别由含汞废水和含镉废水污染环境所造成的。
因此,控制和治理重金属离子的污染备受重视。
传统上处理重金属离子工业废水的方法主要有以下几种:化学沉淀法、离子交换法和物理吸附法等,这些重金属废水的处理方法都是一种污染转移,将废水中溶解的重金属转化成沉淀或是更加易于处理的形式,对这些物质最终的处置,通常是进行填埋。
然而,重金属对环境的危害依然长期存在,常常造成对地下水和地表水的污染。
Hafez等[7]用反渗透膜装置对污水中的铬进行了回收处理试验,结果表明:反渗透膜技术能从污水中回收流失的铬,且其对铬的平均回收率超过99.8%。
史红文等[8]选择0.5um孔径的无机膜,采用化学沉淀-超滤膜法去除电镀废液中的Ni2+。
结果表明:该法具有通量大、易清洗、耐蚀等优点,且能保障水Ni2+≤1.0mg/l,达到国家排放标准。
3.5 炼油废水处理含油废水是一种量大面广的工业废水,含油废水对环境危害极大,随着国家不断加大环保力度,对含油废水处理和排放要求越来越高。
一般炼油厂处理含油废水主要是去除浮油、乳化油、COD、BOD等。
大多数的废水在排放前虽都已进行了物化处理,但物化处理只能除去水中的浮油和分散油,而更稳定的乳化油尤其是含有溶解油的废水依然以很高的浓度排入受纳水体中。
因此众多的水处理工作者正在竭力寻找其他更有效的处理方法。
膜分离法处理炼油厂含油废水有了较大的发展,但采用单一的膜分离法处理含油废水,膜污染严重。
针对以上问题,李爱阳等[9]采用絮凝沉降和膜分离法联合处理含油废水,废水中油、CODcr、SS 的含量由原来的1000mg/L、2000mg/L、1000mg/L降到14mg/L、87mg/L、63mg/L,总去除率分别达到98%、95%和93%以上。
展望膜分离技术近年来发展迅速已在众多领域中得到广泛的应用,与常规的分离方法相比膜分离过程具有节能、分离效率高等特点,是解决当代能源、资源和环境污染等问题的重要技术。
我国的膜技术在废水水深度处理领域的应用与世界先进水平尚有较大差距。
今后膜技术发展趋势如下:(1) 开发、制造高强度、长寿命、抗污染、高通量的膜材料,对于不同的污染源采用不同的膜技术及相应的配套工艺,以达到降低投资和运行成本的目的。
在膜使用中着重解决膜污染、浓差极化及清洗等关键问题。
(2) 新型膜材料的开发利用。
新型膜材料有金属膜、有机-无机混合膜和新型有机膜等。
可以预期,随着膜材料的继续改善,膜技术在水处理中的运用前景将更为广阔。