泛函分析总结
泛函分析复习与总结

泛函分析复习与总结泛函分析是数学中的一个重要分支,是研究无限维空间上的函数和线性算子的学科。
它的研究对象不再是有限维线性空间上的向量,而是函数或者函数空间,包括无限维的函数空间。
泛函分析在数学中有着广泛的应用,例如在微分方程的理论研究中,泛函分析有助于研究解的连续性、唯一性和存在性等问题;在概率理论中,泛函分析有助于研究随机过程的性质等。
下面将对泛函分析的重要内容进行复习和总结。
1.线性空间与拓扑空间线性空间是指具有线性结构的集合,泛函分析研究的对象就是线性空间上的函数或者函数空间。
拓扑空间是指在集合中引入一个拓扑结构,使得可以定义连续性和收敛性等概念。
泛函分析的研究对象通常是拓扑线性空间,即同时具有线性结构和拓扑结构的空间。
2.赋范空间与完备空间赋范空间是指在线性空间上定义了一个范数(或称规范),从而使得该空间成为一个度量空间。
范数的引入使得我们可以定义距离,并且可以定义收敛性。
完备空间是指其中的Cauchy列总是收敛于该空间中的点。
泛函分析中,赋范空间和完备空间是重要的概念,在研究函数的连续性和收敛性时起到了关键的作用。
3.内积空间与希尔伯特空间内积空间是指在线性空间上定义了一个内积,从而可以定义长度和夹角。
希尔伯特空间是指满足内积空间中所有Cauchy列都收敛于该空间中的点的空间。
内积空间和希尔伯特空间在泛函分析中具有重要的作用,特别是在研究函数的正交性和投影等问题时。
4.线性算子与连续算子线性算子是指将一个线性空间映射到另一个线性空间的映射。
连续算子是指在拓扑空间上保持连续性的线性算子。
泛函分析中,线性算子和连续算子是重要的研究对象,它们可以用来描述函数之间的关系和映射。
5. Banach空间与可分空间Banach空间是指在完备的范数空间上定义了一个范数,从而构成一个完备空间。
可分空间是指线性空间中存在可数稠密子集的空间。
Banach空间和可分空间是泛函分析中重要的类别,它们在研究最优性,特别是最优解的存在性和表示性时起到了关键的作用。
泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间与赋范线性空间;二、有界线性算子与连续线性泛函;三、内积空间与希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间与赋范线性空间(一)度量空间度量空间在泛函分析中就是最基本的概念,它就是n 维欧氏空间n R (有限维空间)的推广,所以学好它有助于后面知识的学习与理解。
1.度量定义:设X 就是一个集合,若对于X 中任意两个元素x,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)就是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义就是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为就是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 与度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 与2d ,则我们认为(X, 1d )与(X, 2d )就是两个不同的度量空间。
⑶ 集合X 不一定就是数集,也不一定就是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d,而称“度量空间X ” 。
泛函分析总结范文高中

泛函分析是现代数学分析的一个重要分支,它主要研究的是函数构成的函数空间以及这些空间上的线性算子。
相较于高中数学中的实变函数和复变函数,泛函分析更多地关注函数之间的相互关系和映射性质,为解决实际问题提供了新的视角和方法。
一、泛函分析的基本概念1. 函数空间:泛函分析研究的对象是函数,这些函数构成一个集合,称为函数空间。
常见的函数空间有实值函数空间、复值函数空间、有界函数空间、连续函数空间等。
2. 线性算子:函数空间上的线性算子是一种映射,它将一个函数映射到另一个函数,同时满足线性性质。
线性算子是泛函分析的核心概念,如积分算子、微分算子、傅里叶变换等。
3. 范数:范数是度量函数空间中函数“大小”的一种方式。
一个函数空间的范数满足以下性质:非负性、齐次性、三角不等式和归一性。
4. 内积:内积是度量函数空间中函数“夹角”的一种方式。
一个函数空间的内积满足以下性质:非负性、齐次性、共轭对称性和三角不等式。
二、泛函分析的主要理论1. 线性算子的谱理论:研究线性算子的特征值和特征向量,以及这些特征值和特征向量的性质。
2. 线性算子的有界性:研究线性算子是否具有有界性,以及有界性的条件。
3. 线性算子的连续性:研究线性算子是否具有连续性,以及连续性的条件。
4. 线性算子的可逆性:研究线性算子是否具有可逆性,以及可逆性的条件。
5. 线性算子的对偶性:研究线性算子的对偶算子,以及对偶算子的性质。
三、泛函分析的应用1. 微分方程:泛函分析为微分方程的求解提供了新的方法,如泛函微分方程、积分方程等。
2. 积分方程:泛函分析为积分方程的求解提供了新的方法,如变分法、迭代法等。
3. 函数论:泛函分析为函数论的研究提供了新的工具,如傅里叶分析、Sobolev空间等。
4. 线性代数:泛函分析为线性代数的研究提供了新的视角,如无穷维线性空间、线性算子等。
总之,泛函分析是一门具有广泛应用前景的数学分支。
通过对函数空间、线性算子、范数、内积等基本概念的研究,泛函分析为解决实际问题提供了新的思路和方法。
(完整)泛函分析知识总结,推荐文档

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析知识总结

泛函分析知识总结泛函分析是数学中一个重要的分支领域,它研究的是无穷维空间和函数的性质。
在泛函分析中,我们考虑的对象是函数空间,而不是具体的函数。
泛函分析广泛应用于数学、物理学、工程学等领域。
1.线性空间与拓扑空间:泛函分析的基础是线性空间的理论。
线性空间是指具有加法和数乘运算,同时满足线性结构条件的集合。
泛函分析还引入了拓扑空间的概念,拓扑空间是指在线性空间的基础上引入了距离、收敛等概念,并给出了一些性质。
2.范数与内积:范数和内积是泛函分析中常用的两个概念。
范数是定义在线性空间上的一种非负实值函数,它满足正定性、齐次性和三角不等式。
范数可以用来度量向量的大小。
内积是将两个向量映射到实数的一个运算,它满足对称性、线性性和正定性。
3.完备性和紧性:完备性是指一个空间中的柯西序列收敛于空间内的一个点。
完备性是一个重要的性质,它可以用来判断一个空间是否是可度量空间,即能够定义距离的空间。
紧性是指一个空间内的每个序列都存在收敛的子序列。
紧性常用于分析序列在空间内的收敛性。
4.泛函空间和对偶空间:泛函分析中经常考虑的是函数空间,函数空间是指由一类满足特定条件的函数构成的空间。
常用的函数空间有连续函数空间、可积函数空间等。
函数空间还可以定义内积、范数等结构。
对偶空间是一个线性空间的对偶空间,它由该线性空间上的线性函数构成。
5.泛函的连续性和收敛性:泛函分析研究的是空间到实数域的映射,所以泛函的连续性和收敛性是一个重要的问题。
在泛函分析中,我们定义了一个泛函的连续性,当且仅当对于任意给定的序列,如果其收敛于一个点,那么其映射的泛函值也会收敛于该泛函值。
类似地,我们还可以定义泛函的收敛性。
6.算子:算子是泛函分析中一个重要的概念,它是一种将一个空间映射到另一个空间的映射。
线性算子是指满足线性性质的映射,而有界算子是指满足一定范围内的性质的映射。
算子可以是线性差分方程、微分算符等。
7.泛函分析在物理学和工程学中的应用:泛函分析在物理学和工程学中有广泛的应用。
泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析复习与总结汇编

泛函分析复习与总结汇编泛函分析是数学中的一个重要分支,它研究的是无穷维空间中的函数和函数空间的性质。
泛函分析具有很强的抽象性和广泛的应用性,在数学和物理学中都有着重要的地位。
本文将对泛函分析的基本概念、定理与应用进行复习与总结。
一、基本概念1.线性空间与赋范线性空间:线性空间是指满足线性运算规则的集合,包括实数域上的向量空间和复数域上的向量空间。
赋范线性空间是在线性空间的基础上,引入了范数的概念,即给每个向量赋予一个非负实数,满足非负性、齐次性和三角不等式等性质。
2.内积空间与希尔伯特空间:内积空间是在赋范线性空间的基础上,引入了内积的概念,即给每一对向量赋予一个复数,满足线性性、共轭对称性和正定性等性质。
希尔伯特空间是一个完备的内积空间,即内积空间中的柯西序列收敛于该空间中的元素。
3.函数空间:函数空间是指由特定性质的函数组成的集合,常见的函数空间有连续函数空间、可微函数空间和L^p空间等。
二、定理与性质1.希尔伯特空间的性质:希尔伯特空间是一个完备的内积空间,任意一序列收敛于希尔伯特空间中的元素,该序列收敛于该元素的充分必要条件是该序列的柯西序列。
2. Riesz表示定理:Riesz表示定理是希尔伯特空间的一个重要定理,它指出了希尔伯特空间中的任意线性连续泛函都可以由内积表示。
具体地说,对于希尔伯特空间中的任意线性连续泛函f,存在唯一的y∈H,使得对于所有的x∈H,有f(x)=(x,y)。
3.泛函分析的基本算子理论:算子是泛函分析中的一个重要概念,它用来描述线性变换的性质。
常见的算子包括线性算子、连续算子和紧算子等。
4.开放映射定理:开放映射定理是泛函分析中的一个重要定理,它指出了一个连续算子的开集的像还是开集。
具体地说,如果X和Y是两个赋范线性空间,并且T:X→Y是一个连续线性算子,如果T是开映射,则其像T(X)也是Y中的开集。
三、应用泛函分析在数学和物理学的各个领域都有重要的应用,包括偏微分方程、最优控制理论和量子力学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析知识点小结及应用§1 度量空间的进一步例子设X 是任一非空集合,若对于∈∀y x ,X ,都有唯一确定的实数()y x d,与之对应,且满足 1.非负性:()y x d,0≥,()y x d ,=0y x =⇔;2. 对称性:d(x,y)=d(y,x);3.三角不等式:对∈∀z y x ,,X ,都有()y x d ,≤()z x d ,+()z y d ,, 则称(X ,d )为度量空间,X 中的元素称为点。
欧氏空间n R 对nR 中任意两点()n x x x x ,,,21 =和()n y y y y ,,,21 =,规定距离为()y x d ,=()2112⎪⎭⎫⎝⎛-∑=n i i i y x .[]b a C ,空间 []b a C ,表示闭区间[]b a ,上实值(或复值)连续函数的全体.对[]b a C ,中任意两点y x ,,定义()y x d ,=()()t y t x b t a -≤≤max . p l ()1+∞<≤p 空间 记pl ={}⎭⎬⎫⎩⎨⎧∞<=∑∞=∞=11k p kk k x x x . 设{}∞==1k k x x ,{}∞==1k k y y ∈p l ,定义 ()y x d ,=p i p i i y x 11⎪⎪⎭⎫ ⎝⎛-∞=. 例1 序列空间S令S 表示实数列(或复数列)的全体,对{}∞==∀1k k x x ,{}∞==1k k y y ,令 ()y x d ,=∑∞=121k k k k k k y x y x -+-1. 例2 有界函数空间()A B设A 是一个给定的集合,令()A B 表示A 上有界实值(或复值)函数的全体. ∈∀y x ,()A B ,定义 ()y x d ,=()()t y t x At -∈sup .例3 可测函数空间()X M设()X M为X 上实值(或复值)的可测函数的全体,m 为Lebesgue 测度,若()X m ∞<,对任意两个可测函数()t f 及()t g ,由于()()()()11<-+-t g t f t g t f ,故不等式左边为X 上可积函数. 令 ()g f d,=()()()()t 1f t g t d Xf yg t -⎰+-.§2 度量空间中的极限设{}∞=1n n x 是()d X ,中点列,若X x ∈∃,s.t. ()0,lim =∞→x x d n n (*)则称{}∞=1n n x 是收敛点列,x 是点列{}∞=1n n x 的极限.收敛点列的极限是唯一的. 若设n x 既牧敛于x 又收敛y ,则因为()()()0,,,0→+≤≤n n x y d x x d y x d ()∞→n ,而有 ()y x d ,=0. 所以x =y .注 (*)式换一个表达方式:()x x d n n ,lim ∞→=()x x d n n ,lim ∞→. 即当点列极限存在时,距离运算与极限运算可以换序. 更一般地有 距离()y x d,是x 和y 的连续函数.具体空间中点列收敛的具体意义:1. 欧氏空间n R m x =()()()()m n m m x x x ,,,21 , ,2,1=m ,为nR 中的点列,x =()n x x x ,,,21 ∈n R ,()x x d m ,=()()()()()()2222211n m n m m x x x x x x -++-+- . x x m → ()∞→m ⇔ 对每个n i ≤≤1,有 ()i m i x x → ()∞→m .2. []b a C , 设{}⊂∞=1n n x []b a C ,,∈x []b a C ,,则()x x d n ,=()()0max →-≤≤t x t x n bt a ()∞→n ⇔ {}∞=1n n x 在[]b a ,一致收敛于x .3. 序列空间S 设m x =()()()(),,,,21m n m m ξξξ, ,2,1=m ,及x =() ,,,,21n ξξξ分别是S 中的点列及点,则()()()∑∞=→-+-=10121,k k m kkm k k m x x d ξξξξ ()∞→m ⇔ m x 依坐标收敛于x .4. 可测函数空间()X M设{}∞=1n n f ⊂()X M ,f ⊂()X M ,则因()f f d n ,=()()()()⎰-+-X nn dm t f t f t f t f 1,有 f f n → ⇔ f f n ⇒. §3 度量空间中的稠密集 可分空间定义 设X 是度量空间,N 和M 是X 的两个子集,令M 表示M 的闭包,若N ⊂M ,则称集M 在集N 中稠密,当N =X 时,称M 为X 的一个稠密子集. 若X 有一个可数的稠密子集,则称X 是可分空间. 例1 n 维欧氏空间nR 是可分空间. 事实上,坐标为有理数的点的全体是nR 的可数稠密子集. 例2 离散距离空间X 可分 ⇔ X 是可数集. 例3 ∞l 是不可分空间.§4 连续映射 定义 设X =()d X ,,Y =()dY ~,是两个度量空间,T 是X 到Y 中的映射:X =()d X ,T→ Y =()d Y ~,. 0x ∈X ,若∀ε>0,∃δ>0,s.t. ∀x ∈X 且()0,x x d <δ,都有()0,~Tx Tx d <ε,则称T 在0x 连续:定理 1 设T 是度量空间()d X ,到度量空间()d Y ~,中的映射:()d X ,T →()d Y ~,, 则T 在0x 连续 ⇔ 当n x →0x 时,必有n Tx →0Tx .定理2 度量空间X 到Y 中的映照T 是X 上的连续映射 ⇔ 任意开集M ⊂Y ,M T 1-是X 中的开集.定理2' 度量空间X 到Y 中的映照T 是X 上的连续映照 ⇔ 任意闭集M ⊂Y ,M T 1-是X 中的闭集.§5 柯西点列和完备度量空间定义 1 设X =(X ,d )是度量空间,{}∞=1n n x 是X 中的点列. 若>∀ε0,()N ∈=∃εN N ,s.t.当N n m >,时,有()m n x x d ,<ε,则称{}∞=1n n x 是X 中的柯西点列或基本点列. 若度量空间(X ,d )中每个柯西点列都收敛,则称(X ,d )是完备的度量空间.在一般空间中,柯西点列不一定收敛,如点列1, 1.4, 1,41, ,412.1 在1R 中收敛于2,在有理数集中不收敛.但度量空间中每一个收敛点列都是柯西点列.定理1 完备度量空间X 的子空间M 是完备度量空间 ⇔ M 是X中的闭子空间.常见例子:(1)C (收敛的实或复数列的全体)是完备度量空间 (2) []b a C,是完备的度量空间(3) []b a P ,(实系数多项式全体) 是不完备的度量空间§6 度量空间的完备化 定义 1 设(X ,d ),(X ~,d ~)是两个度量空间,若存在X 到X ~上的保距映射T (∀1x ,2x ∈X ,有d ~(T 1x ,T 2x )=d (1x ,2x )),则称(X ,d )和(X ~,d ~)等距同构,此时称T 为X 到X ~上的等距同构映照。
等距同构映照是1-1映射. 定理1 (度量空间的完备化定理) 设X =(X ,d )是度量空间,那么一定存在一完备度量空间X ~=(X ~,d ~),使X 与X ~的其个稠密子空间W 等距同构,并且X ~在等距同构意义下是唯一的,即若(Xˆ,d ˆ)也是一完备度量空间,且X 与X ˆ的其个稠密子空间W 等距同构,则(X ~,d ~)与(Xˆ,d ˆ)等距同构. §7压缩映照原理及其应用定义 设X 是度量空间,T 是X 到X 中的压映照,若存在一个数α:0<α<1,s.t. ∀x 、y X ∈,成立 ()Ty Tx d ,≤α()y x d , 则称T 是X 到X 中的压缩映照(简称压缩映照).定理1.(压缩映射定理) 设X 是完备度量空间,T 是X 上的压缩映照,则T 有且只有一个不动点(即方程x Tx =有且只有一个解).补充定义:若TX=X,则称X 是T 的不动点,即X 是T 的不动点⇔X 是方程TX=X 的解。
定理2. 设函数()y x f ,在带状域b x a ≤≤,+∞<<∞-y 中处处连续,且处处有关于y 的偏导数()y x f y,',若存在常数m 和M , 满足 m <M ,0<m ≤()y x f y,'≤M , 则方程 ()y x f ,=0 在区间[]b a ,上必有唯一的连续函数()x y ϕ=作为解:()()≡x x f ϕ,0,∈x []b a ,.§8赋范线性空间和Banach 空间线性空间+范数⇒线性赋范空间线性赋范空间+完备性⇒巴拿赫空间定义1 设X 是任一非空集合,若K 是一个数域(R 或C ),如果X 对某种规定的加法和数乘两种运算封闭,且∀x,y,z ∈X, λ,∈μK, 满足: 1) x+y=y+x (加法交换律) 2) (x+y)+z+x+(x+y) (加法结合律)3) ∈θ∃X, 使x+θ=x (零元素存在性) 4) ∃x ’∈X,使x+x ’=θ (逆元存在性) 5) λ(μx)=μλx=μ(λx) (数乘结合律) 6) 1x=x, 0x=θ7) (λ+μ)x=λx+μx (元素对数的加法分配律) 8) λ(x+y)=λx+λy (数对元素的加法分配律)则称x+y 为x 与y 的和,λx 为数λ与x 的数乘 , 称X 为线性空间或向量空间 (实或复),X 中的元素称为向量。
定义 (范数,赋范线性空间) 设X 为是实(或复)数域F 的线性空间,若对x X ∀∈,存在一个实数x 于之对应,且满足下列条件:(1) 0≥x ; 且0=x ⇔=0x ; (非负性)(2) α=x x ,α∈F ; (正齐(次)性) (3) +≤+x y x y ,,X ∈x y ; (三角不等式)则称x 为x 的范数(norm),称(,)X ∙(或:X )为赋范线性空间定义 完备的赋范线性空间称为巴拿赫(Banach )空间。
例子:[,]C a b ,空间pl ,n 维Euclidean 空间nR ,[,]a b L ,都是Banach 空间。
度量空间与赋范线性空间 区别:度量空间是定义了度量的线性空间,也就是两个元素之间的“长度”,满足非负性、对称性、三角不等式。
赋范线性空间就是定义了范数的线性空间,其满足范数公理(非负性,齐次性,三角不等式)联系:都是在线性空间的前提下讨论的。