内蒙古呼伦贝尔市2020年普通高中第一次统考(高考一模)理科数学试题 含答案

合集下载

2020年呼伦贝尔市普通高中第一次统考理科数学(附答案)

2020年呼伦贝尔市普通高中第一次统考理科数学(附答案)

2020年呼伦贝尔市普通高中第一次统考理科数学(附答案)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若{}{}0,1,2,|2,a A B x x a A ===∈,则A B =U ( )A .{0,1,2}B. {0,1,23},C. {0,1,24},D. {1,24},2.复数( ) A. i B. C.D.3.在△ABC 中, 则= ( )A . 31B .31-C .21-D .214.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( ) A .60种B .70种C .75种D .150种5. 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF|=3,则直线AB 的斜率为( )A.2±B.2-C. 2 2 D .22± 6.等比数列{}n a 的前n 项和为n S ,若0n a >,公比1q >,352620,64,a a a a +==则5S =( )A.31B.36C. 42D.487.函数1)(3+=x e x x f 的图象大致是( )8.在天文学中,天体明暗的程度可以用星等或亮度来描述。

两颗星的星等与亮度满足=-+ii221i +1i -i -1AC AB BP PD AP DC BD μλ+===,2,μλ+其中星等为的星的亮度为.已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度比值为( )A. B. C. D. 9.把函数)6sin(y π+=x 图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一个对称中心为 A .(3π,0) B .(4π,0) C .(12π,0) D .(0,0)10.在棱长均相等的正三棱柱ABCA 1B 1C 1中,D 为BB 1的中点,F 在AC 1上,且DF ⊥AC 1,则下述结论:① AC 1⊥BC ;②AF =FC 1;③平面DAC 1⊥平面ACC 1A 1; ④异面直线AC 1与CD 所成角为60°.其中正确命题的个数为( ) A .1 B .2 C .3D .411.已知双曲线C :,)0,0(12222>>=-b a by a x 以点),0(b P 为圆心a 为半径作圆,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若∠MPN =90°,则双曲线C 的离心率为( )A.27 B. 25C. 2D. 312.已知⎪⎪⎩⎪⎪⎨⎧<≤<<--+=10,201,1)1(1)(x x x x f x f ,若方程()21f x ax a -=-有唯一解,则实数a 的取值范围是( ) A .{}),1(8+∞⋃-B .{}),2(]1,21(16+∞⋃⋃- C .{}),2(]1,21[8+∞⋃⋃-D .{}),4(]2,1[32+∞⋃⋃-二、填空题:本题共4小题,每小题5分,共20分. 13.的展开式中的系数为______.14.设实数x 、y 满足约束条件,则的最小值为_______.,lg 252112E E m m =-k m )2,1(=k E k 1.10101.101.10lg 1.1010-5)2)((y x y x -+33y x ⎪⎩⎪⎨⎧≥≤-≤+4210x y x y x y x z 32+=15.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标A ,B ,C D,则该四面体的外接球的体积为_______.16. 数列的前项和为,数列的前项和为, 满足,,且1+=n b a n n . 若任意n n T T N n -≤∈2*,λ成立,则实数的取值范围为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。

2020届内蒙古呼伦贝尔市海拉尔区高三第一次统考理科数学试题

2020届内蒙古呼伦贝尔市海拉尔区高三第一次统考理科数学试题

2020年呼伦贝尔市普通高中第一次统考理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,2A =,{}2,aB x x a A ==∈,则A B =U ( )A. {}0,1,2B. {}0,1,2,3C. {}0,1,2,4D. {}1,2,42.复数12i2i+=-( ). A. iB. 1i +C. i -D. 1i -3.在ABC ∆中,,2,BD DC AP PD BP AB AC λμ===+u u u v u u u v u u u v u u u v u u u v u u u v u u u v,则λμ+= ( )A. 13-B.13C. 12-D.124.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( ) A. 60种B. 70种C. 75种D. 150种5.过抛物线24y x =的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若3AF =,则直线AB 的斜率为( )A. B.C.D. ±6.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,3520a a +=,2664a a =,则5S =( ) A. 48B. 36C. 42D. 317.函数3()e 1=+xx f x 的图象大致是( ) A. B.C. D.8.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( ) A. 1010.1B. 10.1C. lg10.1D. 10–10.19.把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移3π个单位,那么所得图象的一个对称中心为( ) A. (,0)3πB. (,0)4πC. (,0)12πD. (0,0)10.在棱长均相等的正三棱柱111ABC A B C =中,D 为1BB 的中点,F 在1AC 上,且1DF AC ⊥,则下述结论:①1AC BC ⊥;②1AF FC =;③平面1DAC ⊥平面11ACC A :④异面直线1AC 与CD 所成角为60︒其中正确命题的个数为( )A. 1B. 2C. 3D. 411.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )A.B.C.D.212.已知()()11,101,012x f x f x x x ⎧--<<⎪+⎪=⎨⎪≤<⎪⎩,若方程()21f x ax a -=-有唯一解,则实数a 取值范围是( )A. {}()81,-⋃+∞B. {}()116,12,2⎛⎤-⋃⋃+∞⎥⎝⎦C. {}()18,12,2⎡⎤-⋃⋃+∞⎢⎥⎣⎦D. {}[]()321,24,-⋃⋃+∞二、填空题:本题共4小题,每小题5分,共20分.13.(x +y )(2x -y )5的展开式中x 3y 3的系数为________.14.设实数,x y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最大值为______.15.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是A,B ,(0,1,0)C,D ,则该四面体的外接球的体积为__________.16.数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,满足12a =,()()*3N ,n n S n m a n m R =+∈∈,且1n n a b n =+.若任意*N n ∈,2n n T T λ≤-成立,则实数λ的取值范围为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。

内蒙古呼和浩特市2020届高三数学第一次质量普查调研考试试题理(含解析)

内蒙古呼和浩特市2020届高三数学第一次质量普查调研考试试题理(含解析)

对于③,由函数解析式可知对称轴满足
42
,解得 8 2

x 3
所以当 k 1 时,对称轴为
8 ,所以③正确;
对于④,函数 y 2 sin 2x 的图象向左平移 4 个单位可得
y
2
sin
2
x
4
2
sin
2
x
2
,与所求解析式不同,因而④错误,
综上可知,正确的为①②③,
故选:C.
【点睛】本题考查了降幂公式与辅助角公式化简三角函数式的应用,正弦函数图像与性质的 综合应用,属于基础题. 8.“中国剩余定理”又称“孙子定理”,讲的是一个关于整除的问题,现有这样一个整除问
想、转化与化归思想,考查空间想象能力、运算求解能力.
7.已知函数 f (x) sin 2x 2sin2 x 1,给出下列四个结论:
①函数 f (x) 的最小正周期是 ;
②函数
f
(x)
在区间
8
,
5 8
上是减函数;
x 3
③函数 f (x) 的图象关于直线
8 对称;
④函数 f (x) 的图象可由函数 y 2 sin 2x 的图象向左平移 4 个单位得到其中所有正确结论
的点所在象限.
【详解】复数 z cos i sin ,在复平面内对应的点为 cos ,sin ,
当2
时, cos
0, sin
0

所以对应点的坐标位于第二象限,
故选:B.
【点睛】本题考查了复数的几何意义,三角函数符号的判断,属于基础题.
3.如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图
2x
4

2020年内蒙古呼伦贝尔市高考(理科)数学一模测试试卷 解析版

2020年内蒙古呼伦贝尔市高考(理科)数学一模测试试卷 解析版

2020年高考数学一模试卷(理科)一、选择题1.若A={0,1,2},B={x=2a,a∈A},则A∪B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,2,4}D.{1,2,4}2.复数=()A.i B.1+i C.﹣i D.1﹣i3.在△ABC中,=,=2,=,则λ+μ=()A.B.C.D.4.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种B.70种C.75种D.150种5.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则直线AB的斜率为()A.B.C.2D.6.等比数列{a n}每项都是正数,设其前n项和为S n,若满足q>1,a3+a5=20,a2a6=64,则S5=()A.31B.36C.42D.487.函数的图象大致是()A.B.C.D.8.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.19.把函数y=sin(x+)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一个对称中心为()A.(,0)B.(,0)C.(,0)D.(0,0)10.在棱长均相等的正三棱柱ABC﹣A1B1C1中,D为BB1的中点,F在AC1上,且DF⊥AC1,则下述结论:①AC1⊥BC;②AF=FC1;③平面DAC1⊥平面ACC1A1;④异面直线AC1与CD所成角为60°.其中正确命题的个数为()A.1B.2C.3D.411.已知双曲线C:﹣=1(a>0,b>0),以点P(b,0)为圆心,a为半径作圆P,圆P与双曲线C的一条渐近线交于M,N两点,若∠MPN=90°,则C的离心率为()A.B.C.D.12.已知,若方程f(x)﹣2ax=a﹣1有唯一解,则实数a的取值范围是()A.{﹣8}∪(1,+∞)B.C.D.{﹣32}∪[1,2]∪(4,+∞)二、填空题13.(x+y)(2x﹣y)5的展开式中x3y3的系数为.(用数字填写答案)14.设实数x和y满足约束条件,则z=2x+3y的最小值为.15.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是,,C(0,1,0),,则该四面体的外接球的体积为.16.数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,满足a1=2,3S n=(n+m)a n(n∈N*,m∈R),且a n b n=n+1.若任意n∈N*,λ≤T2n﹣T n成立,则实数λ的取值范围为.三、解答题17.在△ABC中,角A、B、C的对应边分别为a、b、c,已知a=2,c=2,cos C=﹣.(1)求A;(2)设M为BC中点,求AM的长.18.万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:男女合计冰雪迷20非冰雪迷20合计(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全2×2列联表;并判断能否有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望.附表及公式:P(K2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828,n=a+b+c+d19.在如图所示的四棱锥F﹣ABCD中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,FC⊥平面ABCD,AC⊥BF,CB=CD=1,(1)求证:AC⊥平面BCF;(2)已知二面角F﹣BD﹣C的余弦值为,求直线AF与平面DFB所成角的正弦值.20.已知点M(x0,y0)为椭圆C:+y2=1上任意一点,直线l:x0x+2y0y=2与圆(x ﹣1)2+y2=6交于A,B两点,点F为椭圆C的左焦点.(Ⅰ)求椭圆C的离心率及左焦点F的坐标;(Ⅱ)求证:直线l与椭圆C相切;(Ⅲ)判断∠AFB是否为定值,并说明理由.21.已知函数.(1)当a=1时①求函数f(x)在(2,f(2))处的切线方程;②定义其中n∈N*,求S2020;(2)当a≠2时,设t(x)=f(x)﹣ln(4x﹣x2),g(x)=xe1﹣x(e为自然对数的底数),若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得t(x i)=g(x0)成立,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:极坐标系与参数方程]22.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若A={0,1,2},B={x=2a,a∈A},则A∪B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,2,4}D.{1,2,4}【分析】求出A,B,由此利用并集的定义能求出A∪B.解:∵A={0,1,2},B={x=2a,a∈A}=(1,2,4),则A∪B=(0,1,2,4)故选:C.2.复数=()A.i B.1+i C.﹣i D.1﹣i【分析】将分子分线同乘2+i,整理可得答案.解:===i,故选:A.3.在△ABC中,=,=2,=,则λ+μ=()A.B.C.D.【分析】由平面向量的基本定理得:P为△ABC的重心,则==()=﹣+,所以,,所以,得解.解:由在△ABC中,=,=2,则P为△ABC的重心,则==()=﹣+,所以,,所以,故选:A.4.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.解:根据题意,从6名男干部中选出2名男干部,有C62=15种取法,从5名女干部中选出1名女干部,有C51=15种取法,则有15×5=75种不同的选法;故选:C.5.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则直线AB的斜率为()A.B.C.2D.【分析】根据抛物线的定义,结合|AF|=3,求出A的坐标,然后求出AF的斜率即可.解:抛物线的焦点F(1,0),准线方程为x=﹣1,设A(x,y),则|AF|=x+1=3,故x=2,此时y=,即A(2,).则直线AF的斜率k=.故选:D.6.等比数列{a n}每项都是正数,设其前n项和为S n,若满足q>1,a3+a5=20,a2a6=64,则S5=()A.31B.36C.42D.48【分析】利用等比中项的性质求得a3a5=a2a6,进而根据a3+a5=20,构造出一元二次方程求得a3和a5,则a1和q可求得,最后利用等比数列的求和公式求得答案.解:a3a5=a2a6=64,∵a3+a5=20,∴a3和a5为方程x2﹣20x+64=0的两根,∵a n>0,q>1,∴a3<a5,∴a5=16,a3=4,∴q===2,∴a1===1,∴S5==31.故选:A.7.函数的图象大致是()A.B.C.D.【分析】当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,f(x)→0,排除B,由此得答案.解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.8.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.1【分析】把已知熟记代入m2﹣m1=lg,化简后利用对数的运算性质求解.解:设太阳的星等是m1=﹣26.7,天狼星的星等是m2=﹣1.45,由题意可得:,∴,则.故选:A.9.把函数y=sin(x+)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一个对称中心为()A.(,0)B.(,0)C.(,0)D.(0,0)【分析】由条件利用函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.解:把函数y=sin(x+)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得函数y=sin(x+)的图象;再将图象向右平移个单位,可得y=sin[(x﹣)+]=sin x的图象,令x=kπ,求得x=2kπ,k∈Z,那么所得图象的对称中心为(2kπ,0)k∈Z,故选:D.10.在棱长均相等的正三棱柱ABC﹣A1B1C1中,D为BB1的中点,F在AC1上,且DF⊥AC1,则下述结论:①AC1⊥BC;②AF=FC1;③平面DAC1⊥平面ACC1A1;④异面直线AC1与CD所成角为60°.其中正确命题的个数为()A.1B.2C.3D.4【分析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断F是AC1的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线AC1与CD所成角判断④的正误.解:不妨设棱长为:2,对于①连结AB1,则AB1=AC1=2,∴∠AC1B1≠90°即AC1与B1C1不垂直,又BC∥B1C1,∴①不正确;对于②,连结AD,DC1,在△ADC1中,AD=DC1=,而DF⊥AC1,∴F是AC1的中点,AF=FC1;∴②正确;对于③由②可知,在△ADC1中,DF=,连结CF,易知CF=,而在Rt△CBD中,CD =,∴DF2+CF2=CD2,即DF⊥CF,又DF⊥AC1,∴DF⊥面ACC1A1,∴平面DAC1⊥平面ACC1A1,∴③正确;以A1为坐标原点,平面A1B1C1上过A1点垂直于A1C1的直线为x轴,A1C1所在的直线为y轴,A1A所在的直线为z轴,建立如图所示的直角坐标系;A1(0,0,0),B1(,1,0),C1(0,2,0),A(0,0,2),C(0,2,2),D (,1,1);=(0,2,﹣2),=(,﹣1,﹣1);异面直线AC1与CD所成角为θ,cosθ==0,故θ=90°.④不正确.故选:B.11.已知双曲线C:﹣=1(a>0,b>0),以点P(b,0)为圆心,a为半径作圆P,圆P与双曲线C的一条渐近线交于M,N两点,若∠MPN=90°,则C的离心率为()A.B.C.D.【分析】求出双曲线的一条渐近线方程,利用圆P与双曲线C的一条渐近线交于M,N 两点,若∠MPN=90°,列出方程,求解离心率即可.解:不妨设双曲线C的一条渐近线bx﹣ay=0与圆P交于M,N,因为∠MPN=90°,所以圆心P到bx﹣ay=0的距离为:=a,即2c2﹣2a2=ac,e=>1,解得e=.故选:A.12.已知,若方程f(x)﹣2ax=a﹣1有唯一解,则实数a的取值范围是()A.{﹣8}∪(1,+∞)B.C.D.{﹣32}∪[1,2]∪(4,+∞)【分析】求出f(x)的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出a的范围即可.解:令﹣1<x<0,则0<x+1<1,则f(x+1)=,故f(x)=,如图示:由f(x)﹣2ax=a﹣1,得f(x)=a(2x+1)﹣1,函数y=a(2x+1)﹣1恒过A(﹣,﹣1),由B(1,),C(0,1),可得k AB==1,k OA=2,k AC==4,若方程f(x)﹣2ax=a﹣1有唯一解,则1<2a≤2或2a>4,即<a≤1或a>2;当2ax+a﹣1=﹣1即图象相切时,根据△=0,9a2﹣8a(a﹣2)=0,解得a=﹣16(0舍去),则a的范围是{﹣16}∪(,1]∪(2,+∞),故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(x+y)(2x﹣y)5的展开式中x3y3的系数为40.(用数字填写答案)【分析】由二项式定理及分类讨论思想得:(2x﹣y)5的展开式的通项为T r+1=(2x)5﹣r(﹣y)r,则(x+y)(2x﹣y)5的展开式中x3y3的系数为﹣22+=40,得解.解:由(2x﹣y)5的展开式的通项为T r+1=(2x)5﹣r(﹣y)r,则(x+y)(2x﹣y)5的展开式中x3y3的系数为﹣22+=40,故答案为:40.14.设实数x和y满足约束条件,则z=2x+3y的最小值为14.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+3y对应的直线进行平移,可得当x=4且y=2时,z=2x+3y取得最小值.解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(4,2),B(4,6),C(6,4)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最大值∴z最小值=F(4,2)=14故答案为:1415.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是,,C(0,1,0),,则该四面体的外接球的体积为.【分析】由题意,四面体的外接球就是长方体的外接球,其直径为长方体的对角线OD,求出半径,即可求出四面体的外接球的体积解:由题意,四面体的外接球就是长方体的外接球,其直径为长方体的对角线OD==3,可得四面体的外接球的半径R=,可得四面体的外接球的体积为V=π•()3=.故答案为:.16.数列{a n}的前n项和为S n,数列{b n}的前n项和为T n,满足a1=2,3S n=(n+m)a n(n∈N*,m∈R),且a n b n=n+1.若任意n∈N*,λ≤T2n﹣T n成立,则实数λ的取值范围为(﹣∞,].【分析】当n≥2时,a n=S n﹣S n﹣1,可得到=,再用累乘法求出a n,再求出b n,根据定义求出T n,再借助单调性求解.解:当n=1时,3S1=(1+m)a1=3a1,则m=2,3S n=(n+2)a n,当n≥2时,3S n﹣1=(n+1)a n﹣1,∴3a n=(n+2)a n﹣(n+1)a n﹣1,∴=,∴a n=a1••…=2×××…•=n(n+1),∴b n==,∴T2n﹣T n=++…+≥(当且仅当n=1时等号成立),∴λ≤,故答案为:(﹣∞,].三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在△ABC中,角A、B、C的对应边分别为a、b、c,已知a=2,c=2,cos C=﹣.(1)求A;(2)设M为BC中点,求AM的长.【分析】(1)直接根据特殊角的三角函数值求出C,结合正弦定理求出A;(2)结合第一问的结论以及余弦定理即可求解.解:(1)∵△ABC中,角A、B、C的对应边分别为a、b、c;a=2,c=2,cos C=﹣,∴C=120°;∴sin C=,∵=⇒sin A==⇒A=30°;(2)由(1)得:B=30°,∴AC=BC=2;∴CM=1;∴AM2=AC2+CM2﹣2AC•CM•cos∠ACM=22+12﹣2×2×1×cos120°=7;∴AM=.18.万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:男女合计冰雪迷20非冰雪迷20合计(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全2×2列联表;并判断能否有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望.附表及公式:P(K2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828,n=a+b+c+d【分析】(1)根据频率分布直方图补全2×2列联表,求出k2≈2.778>2.706,从而有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:6×=4人,抽中女教工:6×=2人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,则ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和数学期望.解:(1)将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,根据频率分布直方图补全2×2列联表:男女合计冰雪迷402060非冰雪迷202040合计6040100=≈2.778>2.706,∴有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:6×=4人,抽中女教工:6×=2人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,则ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为:ξ012P数学期望E(ξ)==.19.在如图所示的四棱锥F﹣ABCD中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,FC⊥平面ABCD,AC⊥BF,CB=CD=1,(1)求证:AC⊥平面BCF;(2)已知二面角F﹣BD﹣C的余弦值为,求直线AF与平面DFB所成角的正弦值.【分析】(1)由已知可得CF⊥AC,结合AC⊥BF,由直线与平面垂直的判定可得AC ⊥平面BCF;(2)由(1)知,AC⊥CB,则CA,CB,CF两两互相垂直,以C为坐标原点,分别以CA,CB,CF所在直线为x,y,z轴建立空间直角坐标系,设F(0,0,a),由二面角F﹣BD﹣C的余弦值为求解a,再由空间向量求解直线AF与平面DFB所成角的正弦值.【解答】(1)证明:∵FC⊥平面ABCD,∴CF⊥AC,又AC⊥BF,BF∩CF=F,∴AC⊥平面BCF;(2)解:由(1)知,AC⊥CB,则CA,CB,CF两两互相垂直,以C为坐标原点,分别以CA,CB,CF所在直线为x,y,z轴建立空间直角坐标系,由CB=CD=1,∠ABC=60°,得C(0,0,0),A(,0,0),B(0,1,0),D(,﹣,0),设F(0,0,a),则,,设平面BDF的一个法向量为,由,取x=,得.平面BCD的一个法向量为.由cos<>==,解得a=1.∴,又,∴直线AF与平面DFB所成角的正弦值为|cos<>|==.20.已知点M(x0,y0)为椭圆C:+y2=1上任意一点,直线l:x0x+2y0y=2与圆(x ﹣1)2+y2=6交于A,B两点,点F为椭圆C的左焦点.(Ⅰ)求椭圆C的离心率及左焦点F的坐标;(Ⅱ)求证:直线l与椭圆C相切;(Ⅲ)判断∠AFB是否为定值,并说明理由.【分析】(Ⅰ)根据椭圆的离心率公式即可求出,(Ⅱ)根据判别式即可证明.(Ⅲ)根据向量的数量积和韦达定理即可证明,需要分类讨论,解:(Ⅰ)由题意可得a=,b=1,则c==1,∴椭圆C的离心率e==,左焦点F的坐标(﹣1,0),证明:(Ⅱ)由题意可得+y02=1,当y0=0时,直线l的方程为x=或x=﹣,直线l与椭圆相切,当y0≠0时,由可得(2y02+x02)x2﹣4x0x+4﹣4y02=0,即x2﹣2xx0+2﹣2y02=0,∴△=(﹣2x0)2﹣4(2﹣2y02)=4x02+8y02﹣8=0,故直线l与椭圆C相切.(Ⅲ)设A(x1,y1),B(x2,y2),当y0=0时,x1=x2,y1=﹣y2,x1=±,∴•=(x1+1)2﹣y12=(x1+1)2﹣6+(x1﹣1)2=2x12﹣4=0,∴⊥,即∠AFB=90°当y0≠0时,由,(y02+1)x2﹣2(2y02+x0x)x+2﹣10y02=0,则x1+x2=,x1x2=,∴y1y2=x1x2﹣(x1+x2)+=,∴•=(x1+1,y1)•(x2+1,y2)=x1x2+x1+x2+1+y1y2=++==0,∴⊥,即∠AFB=90°综上所述∠AFB为定值90°.21.已知函数.(1)当a=1时①求函数f(x)在(2,f(2))处的切线方程;②定义其中n∈N*,求S2020;(2)当a≠2时,设t(x)=f(x)﹣ln(4x﹣x2),g(x)=xe1﹣x(e为自然对数的底数),若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得t(x i)=g(x0)成立,求a的取值范围.【分析】(1)①a=1时,+x﹣1,f′(x)=,利用导数的几何意义能求出函数f(x)在(2,f(2))处的切线方程.②由+x﹣1,得f(x)+f(4﹣x)=2,由此能求出S2020=f()+f()+…+f()的值.(2)根据若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的x i(i=1,2),使得t(x i)=g(x0)成立,得到函数t(x)在区间(0,e]上不单调,从而求得a的取值范围.解:(1)①a=1时,+x﹣1,f′(x)=+1=,=0,f(2)=ln1+2﹣1=1,∴函数f(x)在(2,f(2))处的切线方程为y﹣1=0,即y=1.②∵,其中n∈N*,∴S2020=f()+f()+…+f(),∵+x﹣1,∴f(x)+f(4﹣x)=ln+x﹣1+ln+4﹣x﹣1=2,∴S2020=f()+f()+…+f()=2×4039+f(2)=8078+1=8079.(2)∵t(x)=f(x)﹣ln(4x﹣x2)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x,g'(x)=(1﹣x)e1﹣x,∴g(x)在(0,1)上单调递增,在(1,e]上单调递减,又因为g(0)=0,g(1)=1,g(e)=e2﹣e>0,∴g(x)在(0,e]上的值域为(0,1].t′(x)=2﹣a﹣=,当x=时,t′(x)=0,t(x)在x=处取得最小值t()=a﹣2ln,由题意知,t(x)在(0,e]上不单调,所以0<,解得a<,所以对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得t(x i)=g(x0)成立,当且仅当a满足条件t()≤0且f(e)≥1,∵t(1)=0,∴t()恒成立,由t(e)≥1,解得a≤,综上所述,a的取值范围是(﹣∞,).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.[选修4-4:极坐标系与参数方程]22.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.【分析】(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程.(II)由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().【分析】(Ⅰ)根据f(x)+f(x+4)=|x﹣1|+|x+3|=,分类讨论求得不等式f(x)+f(x+4)≥8的解集.(Ⅱ)要证的不等式即|ab﹣1|>|a﹣b|,根据|a|<1,|b|<1,可得|ab﹣1|2﹣|a﹣b|2 >0,从而得到所证不等式成立.解:(Ⅰ)f(x)+f(x+4)=|x﹣1|+|x+3|=,当x<﹣3时,由﹣2x﹣2≥8,解得x≤﹣5;当﹣3≤x≤1时,f(x)≤8不成立;当x>1时,由2x+2≥8,解得x≥3.所以,不等式f(x)+f(x+4)≤4的解集为{x|x≤﹣5,或x≥3}.(Ⅱ)f(ab)>|a|f(),即|ab﹣1|>|a﹣b|.因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以|ab﹣1|>|a﹣b|,故所证不等式成立.。

内蒙古呼伦贝尔市高考数学一模试卷(理科)解析版

内蒙古呼伦贝尔市高考数学一模试卷(理科)解析版

20. 已知椭圆 C:
离心率为 ,直线 x=1 被椭圆截得的弦长为 .
(1)求椭圆方程; (2)设直线 y=kx+m 交椭圆 C 于 A,B 两点,且线段 AB 的中点 M 在直线 x=1 上, 求证:线段 AB 的中垂线恒过定点.
21. 已知函数 f(x)=ax-lnx+1(a∈R),g(x)=xe1-x. (1)求函数 g(x)在区间(0,e]上的值域; (2)是否存在实数 a,对任意给定的 x0∈(0,e],在区间[1,e]上都存在两个不同 的 xi(i=1,2),使得 f(xi)=g(x0)成立.若存在,求出 a 的取值范围;若不存 在,请说明理由.
,则 y=f(x)的图象大致为(
)பைடு நூலகம்
第 1 页,共 14 页
A.
B.
C.
D.
11. 已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的 外接球表面积( )
A.
B. 2
C. 4
12. 已知 2a=3b=6,则 a,b 不可能满足的关系是( )
A. a+b=ab
B. a+b>4
(2)分别从表中每个周期的 4 个数据中随机抽取 1 个数据,设随机变量 X 表示取 出的 3 个数据中“水站诚信度”超过 91%的数据的个数,求随机变量 X 的分布列 和期望; (3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了 一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣 传效果,并根据已有数据陈述理由.
16. 数列
的前 n 项和为 Sn,若 S1,Sm,Sn 成等比数列(m>1),则正整数 n
值为______. 三、解答题(本大题共 7 小题,共 82.0 分)

内蒙古呼伦贝尔市海拉尔区2020年普通高中第一次统考(高考一模)理科综合试题

内蒙古呼伦贝尔市海拉尔区2020年普通高中第一次统考(高考一模)理科综合试题

2020年呼伦贝尔市高考模拟统一考试(一)理科综合能力测试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、考生号、座位号填写在答题卡上。

本试卷满分300分,考试时间150分钟。

2.作答时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Mg-24 S-32 Cu-64第Ⅰ卷一、选择题:本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于微生物的叙述中,正确的是A.鼠疫是由鼠疫杆菌引起的,其遗传物质一定是DNAB.肺炎双球菌合成蛋白质需要核仁的参与C.蓝藻进行光合作用的场所是叶绿体D.小球藻、酵母菌和T2噬菌体共有的结构是核糖体2.下列关于物质运输的叙述,正确的是A.促胰液素是由核糖体→内质网→高尔基体→细胞膜以囊泡形式运输到细胞外B.胚芽鞘尖端产生的生长素运输到尖端以下的方式为主动运输C.无机盐离子均是逆浓度梯度进行跨膜运输D.细胞中运输氨基酸的物质只有载体蛋白3.糖酵解是葡萄糖或糖原在组织细胞中进行类似发酵的降解反应过程,最终会形成乳酸或丙酮酸。

下列有关糖酵解的说法,不合理...的是A.慢跑等有氧运动可防止肌肉细胞的糖酵解产生乳酸B.通过糖酵解,有机物中的能量大部分转化为热能C.溴麝香草酚蓝水溶液不能用于糖酵解产物的检测D.糖酵解过程中会产生NADH4.下列关于内环境稳态与动物生命活动调节的叙述,正确的是A.HIV侵入人体后可刺激T细胞分泌淋巴因子并与HIV结合B.严重焦虑时肾上腺素会定向运输到靶细胞,参与细胞代谢C.糖尿病患者的血浆渗透压一般高于正常人D.产生动作电位时,神经元的细胞膜只进行Na+的运输,没有其他物质的运输5.下列关于遗传和变异的叙述,正确的是A. DNA分子上发生碱基对的增添、缺失或替换,导致基因数量的改变B. 基因型为Aa的个体连续自交3次,子代中aa个体所占的比例为7/8C. 单基因遗传病是指受一个基因控制的遗传病D. 正常情况下,父亲通过儿子将其细胞中的染色体传至孙子体细胞中,最少可能有1条,最多可能有23条6. 相对于自然生态系统,城市生态系统无论在物质上还是在能量上都是一个高度开放的生态系统。

2020年呼伦贝尔市数学高考第一次模拟试卷含答案

2020年呼伦贝尔市数学高考第一次模拟试卷含答案

2020年呼伦贝尔市数学高考第一次模拟试卷含答案一、选择题1.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .2.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .353.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( ) A .2 B .1C .-2D .-14.若满足sin cos cos A B C a b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形5.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .136.数列2,5,11,20,x ,47...中的x 等于( ) A .28 B .32C .33D .277.下列各组函数是同一函数的是( )①()32f x x =-与()2f x x x =-()3f x 2x y x 2x 与=-=-()f x x =与()2g x x =③()0f x x =与()01g x x=;④()221f x x x =--与()221g t t t =--. A .① ② B .① ③C .③ ④D .① ④8.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A BC .D .9.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .丁可以知道四人的成绩10.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨 D .t 的值是3.1511.在△ABC 中,AB=2,AC=3,1AB BC ⋅=u u u r u u u r则BC=______A BCD 12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 14.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 . 15.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 17.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.18.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.19.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .22.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =3BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.23.在△ABC中,a=7,b=8,cos B= –17.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.24.随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷,现从某市使用A和B两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A和B两款订餐软件中选择一款订餐,你会选择哪款?25.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y(单位:百万元)与月份代码x 之间的关系,求y关于x的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx====---=--∑∑∑∑26.如图所示,已知正方体1111ABCD A B C D -中,E F ,分别为11D C ,11C B 的中点,AC BD P =I ,11A C EF Q =I .求证:(1)D B F E ,,,四点共面;(2)若1A C 交平面DBEF 于R 点,则P Q R ,,三点共线.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.2.C解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭ 则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.3.D解析:D 【解析】【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r 与a r 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=-r r r考点:向量垂直与坐标运算4.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==o .所以180454590A =--=o o o o . 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.5.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.6.B解析:B 【解析】 【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x 的值.因为数列的前几项为2,5,11,20,,47x , 其中5213,11523,201133-=⨯-=⨯-=⨯, 可得2043x -=⨯,解得32x =,故选B. 【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.C解析:C 【解析】 【分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可. 【详解】①中()f x =的定义域为(),0∞-,()f x =(),0∞-,但()f x ==-与()f x =②中()f x x =与()g x =R ,但()g x x ==与()f x x =对应关系不一致,所以②不是同一函数;③中()0f x x =与()01g x x =定义域都是{}|0x x ≠,且()01f x x ==,()11g x x ==对应关系一致,所以③是同一函数;④中()221f x x x =--与()221g t t t =--定义域和对应关系都一致,所以④是同一函数.故选C 【点睛】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.8.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =,所以公共弦长为:l ==. 故选:C本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.9.A解析:A 【解析】 【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果. 【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.10.D解析:D 【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .11.A解析:A 【解析】 【分析】 【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=u u u r u u u r Q|BC ∴故选:A 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.12.B解析:B 【解析】等比数列的性质可知226416a a a ⋅==,故选B .二、填空题13.【解析】试题分析:依题意有即解得考点:三点共线 解析:12【解析】试题分析:依题意有AB AC k k =,即531522m --=+,解得12m =. 考点:三点共线.14.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算 解析:2-【解析】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以.考点:复数的运算.15.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性解析:1(,)9-+∞【解析】 【分析】 【详解】试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭.考点:利用导数判断函数的单调性.16.【解析】【分析】【详解】设AB=2作CO⊥面ABDEOH⊥AB 则CH⊥AB∠CHO 为二面角C −AB −D 的平面角CH=3√OH=CHcos∠CHO=1结合等边三角形ABC 与正方形ABDE 可知此四棱锥为解析:16【解析】 【分析】 【详解】设AB =2,作CO ⊥面ABDEOH ⊥AB ,则CH ⊥AB ,∠CHO 为二面角C −AB −D 的平面角, CH =3√,OH =CH cos ∠CHO =1,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,3,11(),2212AN EM CH ANAC AB EM AC AEAN EM ====+=-∴⋅=u u u ru u ur u u u r u u u u r u u u r u u u r u u u r u u u u r 故EM ,AN 112633=⋅,17.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积【详解】因为长方体的体积为120所以因为为的中点所以由长方体的性质知底面所以是三棱锥的底面上的高所以三棱锥的体积【点睛】本题蕴解析:【解析】 【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.18.【解析】【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系进一步得到S 到上底面距离与棱锥高的关系则答案可求【详解】设三棱柱的底面积为高为则再设到底面的距离为则得所以则到上底面的距离为所 解析:1【解析】 【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系,进一步得到S 到上底面距离与棱锥高的关系,则答案可求. 【详解】设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 【点睛】本题考查棱柱、棱锥体积的求法,考查空间想象能力、思维能力与计算能力,考查数形结合思想,三棱锥体积为1V 3S h =n 底,本题是中档题. 19.5﹣【解析】【分析】设圆心为OAB 中点为D 先求出再求PM 的最小值得解【详解】设圆心为OAB 中点为D 由题得取AC 中点M 由题得两方程平方相减得要使取最小值就是PM 最小当圆弧AB 的圆心与点PM 共线时PM 最解析:5﹣【解析】 【分析】设圆心为O,AB 中点为D,先求出2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r ,再求PM 的最小值得解. 【详解】设圆心为O,AB 中点为D,由题得22sin2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PM PC PA AC ⎧+=⎨-=⎩u u u v u u u v u u u u v u u u v u u u v u u u v , 两方程平方相减得2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r ,要使PC PA ⋅u u u r u u u r取最小值,就是PM 最小,当圆弧AB 的圆心与点P 、M 共线时,PM 最小. 此时DM=1,22DM ∴==, 所以PM 有最小值为2, 代入求得PC PA ⋅u u u r u u u r的最小值为5﹣ 故答案为5﹣【点睛】本题主要考查直线和圆的位置关系,考查平面向量的数量积及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用 解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n nn a a a a qL L --++++-==⨯=,于是当3n =或4时,12na a a L 取得最大值6264=. 考点:等比数列及其应用三、解答题21.(1)n b n =(2)()1122n n S n +=-+(3)()()()114123312n n n n +++---+⋅ 【解析】 【分析】 【详解】(1)由1122n n n a a ++=+得11n n b b +=+,得n b n =;(2)易得2nn a n =g ,1223112222,212222,n n n n S n S n +=⨯+⨯++⨯=⨯+⨯++⨯L L错位相减得12111222222212nn n n n S n n ++--=+++-⨯=⨯-⨯-L所以其前n 项和()1122n n S n +=-+; (3)()()()()()()()()()()2221111422142121·2?12?12?12nnnnn n n n n n n n n nn n nc n n n n n n +++-++-++-++++===+++()()()()()()1111111111112?21?222?21?2nn n n nn n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫ ⎪=+-+=-+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()2231212231111111*********?22?22?23?2?21?2n n n n n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪=-+-++-+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦L L ()()1112113621?2n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()11412331?2n n n n +++---+.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.(Ⅰ)证明见解析;(Ⅱ(Ⅲ.【解析】分析:(Ⅰ)由面面垂直的性质定理可得AD ⊥平面ABC ,则AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD所成的角.计算可得1226MNcos DMN DM ∠==.则异面直线BC 与MD 所. (Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD 所成的角.计算可得3 4CMsin CDMCD∠==.即直线CD与平面ABD所成角的正弦值为34.详解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM22=13AD AM+AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN22=13AD AN+.在等腰三角形DMN中,MN=1,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD13.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM3ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD22AC AD+.在Rt△CMD中,3sinCMCDMCD∠==.所以,直线CD与平面ABD所成角的正弦值为34.点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.23.(1) ∠A=π3(2) AC33【解析】分析:(1)先根据平方关系求sin B,再根据正弦定理求sin A,即得A∠;(2)根据三角形面积公式两种表示形式列方程11sin22ab C hb=,再利用诱导公式以及两角和正弦公式求sin C,解得AC边上的高.详解:解:(1)在△ABC中,∵cos B=–17,∴B∈(π2,π),∴sin B =2431cos 7B -=.由正弦定理得sin sin a b A B = ⇒ 7sin A =437,∴sin A =32.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =311432727⎛⎫⨯-+⨯⎪⎝⎭=3314. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337⨯=,∴AC 边上的高为33.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 24.(1)12; (2)40; (3)选B 款订餐软件. 【解析】 【分析】⑴运用列举法给出所有情况,求出结果 ⑵由众数结合题意求出平均数⑶分别计算出使用A 款订餐、使用B 款订餐的平均数进行比较,从而判定 【详解】(1)使用A 款订餐软件的商家中“平均送达时间”不超过20分钟的商家共有1000.006106⨯⨯=个,分别记为甲,,,,,,a b c d e从中随机抽取3个商家的情况如下:共20种.{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{}{},,c d c e 甲,甲,,{},d e 甲,,{},,a b c ,{},,a b d ,{},,a b e ,{},,a c d ,{},,a c e ,{},,a d e ,{},,b c d ,{},,b c e ,{},,b d e ,{},,c d e .甲商家被抽到的情况如下:共10种.{},a b 甲,,{},a c 甲,,{},a d 甲,,{},a e 甲,,{},b c 甲,,{},b d 甲,,{},b e 甲,,{},c d 甲,,{},c e 甲,,{},d e 甲,记事件A 为甲商家被抽到,则()101202P A ==.(2)依题意可得,使用A 款订餐软件的商家中“平均送达时间”的众数为55,平均数为150.06250.34350.12450.04550.4650.0440⨯+⨯++⨯+⨯+⨯=. (3)使用B 款订餐软件的商家中“平均送达时间”的平均数为150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=< 所以选B 款订餐软件. 【点睛】本题主要考查了频率分布直方图,平均数和众数,古典概率等基础知识,考查了数据处理能力以及运算求解能力和应用意识,属于基础题.25.(1) ˆ29yx =+ , 31百万元;(2) B 型新材料. 【解析】 【分析】(1)根据所给的数据,做出变量,x y 的平均数,求出最小二乘法所需要的数据,可得线性回归方程的系数b ,再根据样本中心点一定在线性回归方程上,求出a 的值,写出线性回归方程;将11x =代入所求线性回归方程,求出对应的y 的值即可得结果; (2)求出A 型新材料对应产品的使用寿命的平均数与B 型新材料对应产品的使用寿命的平均数,比较其大小即可得结果. 【详解】(1)由折线图可知统计数据(),x y 共有6组,即(1,11),(2,13),(3,16),(4,15),(5,20),(6,21), 计算可得1234563.56x +++++==,611191666ii y ==⨯=∑ 所以()1221ˆni i i n ii x y nxybx n x ==-==-∑∑37163.516217.5-⋅⋅=,1ˆˆ62 3.59ˆay bx =-=-⨯=, 所以月度利润y 与月份代码x 之间的线性回归方程为ˆ29yx =+. 当11x =时,211931ˆy=⨯+=. 故预计甲公司2019年3月份的利润为31百万元.(2)A 型新材料对应产品的使用寿命的平均数为1 2.35x =,B 型新材料对应的产品的使用寿命的平均数为2 2.7x =,12x x <Q ∴,应该采购B 型新材料. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算,x y 的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆybx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势. 26.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)由中位线定理可知//EF BD ,故四点共面(2)PQ 是平面11AAC C 与平面DBFE 的交线,可证R 是两平面公共点,故PQ 过R ,得证. 【详解】证明:(1)EF Q 是111D B C ∆的中位线,11//EF B D ∴.在正方体1AC 中,11//B D BD ,//EF BD ∴.,EF BD ∴确定一个平面,即D B F E ,,,四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α, 又设平面BDEF 为β.11,Q AC Q α∈∴∈Q .又Q EF ∈,Q β∴∈, 则Q 是α与β的公共点,a PQ β∴⋂=.又11,AC R R AC β⋂=∴∈.R a ∴∈,且R β∈,则R PQ ∈,故P Q R ,,三点共线. 【点睛】本题主要考查了多点共面及多点共线问题,主要利用平面的基本性质解决,属于中档题.。

2020年高考理科数学(1卷):答案详细解析(客观题 最新)

2020年高考理科数学(1卷):答案详细解析(客观题 最新)

2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512 C.514+ D.512+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】A二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古呼伦贝尔市2020年普通高中第一次统考理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若{}{}0,1,2,|2,a A B x x a A ===∈,则A B =A .{0,1,2}B. {0,1,23},C. {0,1,24},D. {1,24},2.复数A. iB.C.D.3.在△ABC 中, 则= A .31 B .31− C .21− D .21 4.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有A .60种B .70种C .75种D .150种5. 过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF|=3,则直线AB 的斜率为A.2±B.2−C. 2 2 D .22±6.等比数列{}n a 的前n 项和为n S ,若0n a >,公比1q >,352620,64,a a a a +==则5S =A.31B.36C. 42D.487.函数1)(3+=x e x x f 的图象大致是=−+ii221i +1i −i −1AC AB BP PD AP DC BD μλ+===,2,μλ+8.在天文学中,天体明暗的程度可以用星等或亮度来描述。

两颗星的星等与亮度满足 其中星等为的星的亮度为.已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度比值为A. B. C. D. 9.把函数)6sin(y π+=x 图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一个对称中心为A .(3π,0) B .(4π,0) C .(12π,0) D .(0,0)10.在棱长均相等的正三棱柱ABC­A 1B 1C 1中,D 为BB 1的中点,F 在AC 1上,且DF ⊥AC 1,则下述结论:①AC 1⊥BC ;②AF =FC 1;③平面DAC 1⊥平面ACC 1A 1; ④异面直线AC 1与CD 所成角为60°.其中正确命题的个数为A .1B .2C .3D .411.已知双曲线C :,)0,0(12222>>=−b a by a x 以点),0(b P 为圆心a 为半径作圆,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若∠MPN =90°,则双曲线C 的离心率为A.27 B. 25 C.2 D. 312.已知⎪⎪⎩⎪⎪⎨⎧<≤<<−−+=10,201,1)1(1)(x x x x f x f ,若方程()21f x ax a −=−有唯一解,则实数a 的取值范围是 A .{}),1(8+∞⋃− B .{}),2(]1,21(16+∞⋃⋃− C .{}),2(]1,21[8+∞⋃⋃−D .{}),4(]2,1[32+∞⋃⋃−二、填空题:本题共4小题,每小题5分,共20分.13.的展开式中的系数为______.14.设实数x 、y 满足约束条件,则的最小值为_______.15.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标A ,B ,C D ,则该四面体的外接球的体积为_______.,lg 252112E E m m =−k m )2,1(=k E k 1.10101.101.10lg 1.1010−5)2)((y x y x −+33y x ⎪⎩⎪⎨⎧≥≤−≤+4210x y x y x y x z 32+=)5,0,0()0,0,3()0,1,0()5,1,3(16. 数列的前项和为,数列的前项和为, 满足,,且1+=n b a n n . 若任意n n T T N n −≤∈2*,λ成立,则实数的取值范围为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分).21cos 32c 2−===∆C a c b a C B A ABC ,,,已知、、的对应边分别为、、中,角在(1)求A ;(2)设M 为BC 中点,求AM 的长.18.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为 “冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全22⨯列联表;并判断能否有90%的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望.{}n a n n S {}n b n n T 21=a ),()(3R m N n a m n S n n ∈∈+=*λ男 女 合计 冰雪迷 20 非冰雪迷 20 合计收看时间(小时)0 3 1 2 4 5 6 0.18 0.30 0.11 0.12 0.200.09频率/组距附表及公式:()20P K k ≥0.15 0.100.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()22n ad bc K a b c d a c b d −=++++,d c b a n +++=19.(12分)在如图所示的四棱锥F -ABCD 中,四边形ABCD 是等腰梯形,AB ∥CD ,ABC ∠=60°,FC ⊥平面ABCD ,AC ⊥BF ,CB =CD =1,(1)求证:AC ⊥平面BCF ;(2)已知二面角F -BD -C 的余弦值为55, 求直线AF 与平面DFB 所成角的正弦值. 20.(12分)已知点),(00y x M 为椭圆12:22=+y x C 上任意一点,直线22:00=+y y x x l 与圆6)1(22=+−y x 交于B A , 两点,点F 为椭圆C 的左焦点. (1)求证:直线l 与椭圆C 相切;(2)判断AFB ∠是否为定值,并说明理由. 21.(12分)已知函数)1)(2(4ln )(−−+−=x a xxx f (1)当1=a 时①求函数)(x f 在))2(,2(f 处的切线方程; ②定义)14()2()1(nn f n f n f S n −+++= 其中,求2020S ; (2)当2≠a 时,设(),4ln )()(2x x x f x t −−=1()x g x xe −=(e 为自然对数的底数), 若对任意给定的(](]00,,0,(1,2)i x e e x i ∈=在上总存在两个不同的,使得)()(0x g x t i =成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分.*n ∈N DACBF22.[选修4-4:极坐标系与参数方程](10分) 在直角坐标系x O y 中,曲线C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数,πϕ<<0).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)直线l 的极坐标方程是2sin()3πρθ+=OM :3πθ=与曲线C 的交点为P ,与直线l 的交点为Q ,求线段PQ 的长.23.[选修4-5:不等式选讲](10分) 已知函数f (x )=|x -1|.(1)解不等式8)4()(≥++x f x f(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ( ba ).内蒙古呼伦贝尔市2020年普通高中第一次统考理科数学(答案)二、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.三、填空题:本题共4小题,每小题5分,共20分. 13.40 14.14 15.29π 16.21≤λ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.77)21(12241cos 2230120,3023012021sin ,120sin 3sin 2sin asin c ,1200,21cos 1222=∴=−⨯⨯⨯−+=⋅⋅−+=∆∴==∴︒=∴︒=︒=︒=∴∴︒==∴︒==︒=∴<<−=AM CCM AC CM AC AM AMC a b B C A A A C A A AA C C C 中,由余弦定理得在)(锐角,,由正弦定理,且)( π 18.解(1)由题意得下表:20 60······ 3分2k 的观测值为706.292540604060)400800(1002>=⨯⨯⨯−. ·······6分所以有90%的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,·····7分 所以的可能取值为0,1,2.且()2426C C 620155P ξ====,()114226C C C 8115P ξ===,()2226C C 1215P ξ===, ···10分 所以的分布列为()28110201251515153E ξ=⨯+⨯+⨯==. ········· 12分19.解:(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠ABC =60°,所以∠ADC =∠BCD =120°.又AD =CD ,所以∠A CD =30°,因此∠ACB =90°,AC ⊥BC , ········· 3分又AC ⊥BF ,且BC ∩BF =B ,BC ,BF ⊂平面BCF ,(没有BC ∩BF =B 扣1分) 所以AC ⊥平面BCF . ·········5分 (2)取BD 的中点G ,连接CG ,FG , 由于CB =CD ,因此CG ⊥BD ,又FC ⊥平面ABCD ,BD ⊂平面ABCD ,所以FC ⊥BD . 由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG ,故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角.在等腰三角形BCD 中,由于∠BCD =120°, 因此CG =12,又CB =CF=1,因为cos ∠FGC =55,所以2tan =∠FGC ,所以FC=1 ·········8 分 以CA 为x 轴、CB 为y 轴、CF 为z 轴建立空间直角坐标系,则D )0,21,23(−,F (0,0,1),B (0,1,0) 则平面DBF 的法向量)1,1,3(=n,)1,0,3(−=AF ,设直线AF 与平面BDF 所成角为θ,则||||sin AF n n AF =θ=55 ······· 12分 20.(12分)解:(1)当时直线方程为或与椭圆相切.00y =l 2x =2x =l C当时,由得,由题知,,即,所以 =.故直线与椭圆相切.…………………………………6分(2)设,, 当时,,,,所以,即.当时,由得,则,,.因为.所以,即.故为定值. ………………………………12分21.(1)①1=a )40(,1ln )4ln()(<<−+−−=∴x x x x x f1141)(+−−='∴x x x f ,1)2(='∴f 1)2(=f00y ≠22001,222x y x x y y ⎧+=⎪⎨⎪+=⎩22220000(2)4440y x x x x y +−+−=220012x y +=220022x y +=22220000(4)4(2)(44)x y x y ∆=−+−220016[2(1)]x y =−−220016(22)0x y +−=l C 11(,)A x y 22(,)B x y 00y =12x x =12y y =−1x =2211(1)FA FB x y ⋅=+−2211(1)6(1)x x =+−+−21240x =−=FA FB ⊥90AFB ∠=00y ≠2200(1)6,22x y x x y y ⎧−+=⎪⎨+=⎪⎩22220000(1)2(2)2100y x y x x y +−++−=2001222(2)1y x x x y ++=+21222101y x x y −=+2001212122220001()42x x y y x x x x y y y =−++200254422x x y −−+=+1122(1,)(1,)FA FB x y x y ⋅=+⋅+1212121x x x x y y =++++2222000000220042084225442222y y x y x x y y −++++−−+=+++220025(2)10022x y y −++==+FA FB ⊥90AFB ∠=AFB ∠90所以切线方程为1−=x y . ········· 3分 ②)40(,2)4()(<<=−+x x f x f .令,则2)4()(=−+nif n i f ,)14,,2,1(−=n i . 因为)14()24()2()1(nf nf nf nf S n −+−+++= ①,所以)1()2()24()14(nf n f n f n f S n +++−+−= ②,由①+②得)14(22−=n S n ,所以)(,14*N n n S n ∈−=. 所以80792020=S . ········· 7分(2)111()(1),x x x g x e xe x e −−−'=−=−当(0,1)x ∈时,()0,g x '>函数()g x 单调递增;当(]1,x e ∈时,()0g x '<,函数()g x 单调递减0)(,1)1(,0)0(2>===−ee e g g g所以,函数(](]()0,0,1.g x e 在上的值域为因为2a ≠,],0(,)22)(2(22)(e x xa x a xa x t ∈−−−=−−='故220,22e a a e<<<−− ① 此时,当x 变化时)(x t '、)(x t 的变化情况如下:2)1)(2()(,22ln 2)22(,)(,0−−−=−−=−+∞→→e a e t aa a t x h x ∴,对任意给定的(]00,e ∈x ,在区间(]0,e 上总存在两个不同的(1,2),i x i =使得)()(0x g x t i =成立,当且仅当a 满足下列条件i x n =,1)(0)22(⎪⎩⎪⎨⎧≥≤−e t a t ⎪⎩⎪⎨⎧≥−−−≤−−12)1)(2(022ln 2e a a a 即 令22()2ln,(,2),2h a a a a e=−∈−∞−− 2()12[ln 2ln(2)]1,22ah a a a a ''=−−−=−=−−当(,0)a ∈−∞时,()0,h a '>函数()h a 单调递增,当2(0,2)a e∈−时,()0,h a '<函数()h a 单调递减 所以,对任意2(,2),a e ∈−∞−有()(0)0,h a h ≤=即②对任意2(,2)a e∈−∞−恒成立。

相关文档
最新文档