操作系统原理-Linux下的内存分配与回收的管理

合集下载

实验报告二主存空间的分配和回收

实验报告二主存空间的分配和回收
temp=freeTab; /*寻找空闲表中对应登记项*/
if(strcmp(PName,"OS")==0)
{ printf("ERROR!");
return;
}
while((strcmp(temp->proID,PName)!=0||temp->flag==1)&&temp)
temp=temp->next;
四、程序中使用的数据结构及符号说明
结构1:
typedef struct freeTable
{
char proID[6];
int startAddr; /*空闲区起始地址*/
int length; /*空闲区长度,单位为字节*/
int flag; /*空闲区表登记栏标志,用"0"表示空表项,用"1"表示未分配*/
freeNode=freeNode->next;
}
getchar();
break;
default:printf("没有该选项\n");
}/*case*/
}/*while*/
}/*main()*/
六、运行调试结果
初始界面:
分配主存,五个作业名:P1、P2、P3、P4、P5
显示主存使用情况:
回收主存P2:
if(front->flag==1&&rear->flag==1)
/* 上邻空闲区,下邻空闲区,三项合并*/
{
front->length=front->length+rear->length+temp->length;

虚拟机内存管理:分配与回收策略

虚拟机内存管理:分配与回收策略

虚拟机内存管理:分配与回收策略虚拟机内存管理是操作系统中的一个重要领域。

在计算机系统中,内存是一项有限的资源,而操作系统需要合理地分配和回收内存,以满足不同应用程序的需求。

本文将探讨虚拟机内存管理中的分配与回收策略。

一、内存分配策略在虚拟机中,内存的分配通常是在进程创建时进行的。

操作系统需要将一块连续的内存空间分配给该进程,并且记录该进程的内存边界。

常见的内存分配策略有以下几种。

首次适应算法(First Fit):该算法将内存空间划分为若干块,从头开始查找第一个足够大的空闲块来进行分配。

这种算法的优点是简单高效,但容易造成内存碎片。

最佳适应算法(Best Fit):该算法从所有空闲块中找到最小的适配块进行分配。

相比首次适应算法,最佳适应算法能更好地利用内存空间,减少碎片的产生,但分配效率较低。

循环首次适应算法(Next Fit):该算法与首次适应算法类似,但是从上一次分配位置开始循环查找。

这样可以减少搜索的时间,提高分配效率。

内存分配时还需要考虑其他因素,如内存的对齐方式和分页机制。

对齐方式可以提高访问速度,而分页机制可以更好地管理内存空间。

二、内存回收策略内存回收是指在程序执行过程中,当某些进程不再使用内存时,将其释放给操作系统重新分配。

常见的内存回收策略有以下几种。

引用计数法:该方法记录每个对象被引用的次数,当引用次数为0时,即可将该对象回收。

但是引用计数法无法解决循环引用的问题,容易造成内存泄漏。

标记-清除算法:该算法通过标记未被引用的内存块,然后清除这些块来回收内存。

这个算法可以解决循环引用的问题,但会产生内存碎片。

分代回收算法:该算法将内存分为多个代,根据对象的存活时间将其分配到不同的代中。

年轻代的回收频率较高,老年代的回收频率较低。

这样可以更有效地进行内存回收。

写时复制(Copy-on-write):该技术将内存分为读写两个副本,在写操作时才会进行复制。

这样可以减少内存拷贝的开销,提高性能。

操作系统-存储管理动态分区分配及回收算法(附源码)

操作系统-存储管理动态分区分配及回收算法(附源码)

存储管理动态分区分配及回收算法课程名称:计算机操作系统班级:信1501-2实验者姓名:李琛实验日期:2018年5月20日评分:教师签名:一、实验目的分区管理是应用较广泛的一种存储管理技术。

本实验要求用一种结构化高级语言构造分区描述器,编制动态分区分配算法和回收算法模拟程序,并讨论不同分配算法的特点.二、实验要求1、编写:First Fit Algorithm2、编写:Best Fit Algorithm3、编写:空闲区回收算法三、实验过程(一)主程序1、定义分区描述器node,包括3 个元素:(1)adr-—分区首地址(2)size——分区大小(3)next——指向下一个分区的指针2、定义3 个指向node 结构的指针变量:(1)head1——空闲区队列首指针(2)back1-—指向释放区node 结构的指针(3)assign——指向申请的内存分区node 结构的指针3、定义1 个整形变量:free——用户申请存储区的大小(由用户键入)(二)过程1、定义check 过程,用于检查指定的释放块(由用户键入)的合法性2、定义assignment1 过程,实现First Fit Algorithm3、定义assignment2 过程,实现Best Fit Algorithm4、定义acceptment1 过程,实现First Fit Algorithm 的回收算法5、定义acceptment2 过程,实现Best Fit Algorithm 的回收算法6、定义print 过程,打印空闲区队列(三)执行程序首先申请一整块空闲区,其首址为0,大小为32767;然后,提示用户使用哪种分配算法,再提示是分配还是回收;分配时要求输入申请区的大小,回收时要求输入释放区的首址和大小。

实验代码Main。

cpp#include〈stdio。

h〉#include<stdlib.h>#include〈string。

实现内存分配实验报告(3篇)

实现内存分配实验报告(3篇)

第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。

2. 掌握动态分区分配方式中的数据结构和分配算法。

3. 通过编写程序,实现内存分配和回收功能。

二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。

内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。

(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。

(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。

2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。

动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。

(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。

(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。

四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。

(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。

(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。

2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。

(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。

(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。

3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。

(2)对比两种算法在内存分配效率、外部碎片等方面的差异。

五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。

计算机操作系统内存管理了解内存分配和回收的原理

计算机操作系统内存管理了解内存分配和回收的原理

计算机操作系统内存管理了解内存分配和回收的原理计算机操作系统内存管理是操作系统中极为重要的一部分,它负责管理计算机主存(内存)的分配和回收。

内存分配和回收的原理对于了解计算机系统的运行机制至关重要。

本文将从内存管理的基本概念开始,介绍内存的分配和回收原理。

一、内存管理基本概念内存管理是操作系统中的一个重要功能,其主要任务是将有限的内存资源分配给各个进程,并及时回收不再使用的内存。

内存管理的核心是虚拟内存技术,它将计算机的内存空间划分为若干个固定大小的页或块,每个进程都认为自己拥有整个内存空间。

二、内存分配原理1. 连续分配在早期的操作系统中,内存分配采用的是连续分配原理。

系统将内存分为固定大小的分区,并为每个进程分配连续的内存空间。

这种分配方法简单高效,但会导致内存碎片问题,进而影响系统性能。

2. 非连续分配为解决内存碎片问题,后来的操作系统引入了非连续分配原理。

非连续分配可以分为分页式和分段式两种方式。

- 分页式:将物理内存划分为固定大小的页框,逻辑地址空间也被划分为相同大小的页。

通过页表实现逻辑地址到物理地址的映射。

- 分段式:将逻辑地址空间划分为若干个段,每个段的大小可以不同。

通过段表实现逻辑地址到物理地址的映射。

三、内存回收原理内存回收是指在进程不再使用某块内存时,及时将其释放,使其成为可供其他进程使用的空闲内存。

内存回收涉及到的主要原理有以下几种:1. 清除位图操作系统通过使用一张位图,来记录内存中的空闲块和已分配块的状态。

当一个进程释放内存时,系统会将相应的位图标记为空闲,以便后续进程可以使用。

2. 空闲链表操作系统通过维护一个空闲链表来管理空闲内存块。

当一个进程释放内存时,系统会将该内存块插入空闲链表,使其成为可供其他进程分配的空闲内存。

3. 垃圾回收垃圾回收是指当进程释放内存后,操作系统自动检测并回收无法访问到的对象所占用的内存。

垃圾回收可以通过引用计数和标记清除等算法实现。

四、内存管理策略为了提高内存利用率和系统性能,操作系统采用了一系列内存管理策略:1. 内存分配策略- 最先适应算法:从空闲链表中选择第一个足够大的内存块分配给进程。

实验8Linux的内存管理

实验8Linux的内存管理

内存管理的概念
内存管理的定义
内存管理是指操作系统对计算机内存 资源的分配、回收、保护和扩充等一 系列操作,以确保系统高效、稳定地 运行。
内存管理的目标
提高内存利用率,减少内存碎片,实 现多任务环境下的内存共享和保护, 以及提供虚拟内存等。
Linux内存管理的特点
分段和分页机制
Linux采用分段和分页机制来管理内存,将物理内 存划分为大小相等的页框,同时将进程地址空间 划分为多个段,每个段对应一个页表项,实现地 址空间的隔离和权限控制。

03 通过实验操作和观察,加深对Linux内存管理的 理解和认识。
实验环境
操作系统
Linux(建议使用Ubuntu或CentOS等常见发行版 )
开发工具
GCC编译器、GDB调试器、Valgrind内存检测工 具等。
实验材料
一台配置有Linux操作系统的计算机,具备基本的 编程和调试能力。
02
Linux内存管理概述
VS
共享内存的实现方式
在Linux中,共享内存可以通过shmget() 、shmat()和shmdt()等系统调用来实现 。首先,使用shmget()函数创建一个共 享内存段;然后,使用shmat()函数将共 享内存段连接到当前进程的地址空间;最 后,使用shmdt()函数将共享内存段从当 前进程的地址空间中分离。
06
内存优化与性能提升
内存泄漏问题及其解决方案
内存泄漏定义
内存泄漏是指程序在申请内存后,未能正确释放,导致系统内存逐 渐耗尽的现象。
检测工具
使用Valgrind等内存检测工具,可以检测程序中的内存泄漏问题。
解决方案
及时释放不再使用的内存,避免不必要的内存申请,采用智能指针等 RAII技术来管理内存。

Linux操作系统中的内存管理和优化技术

Linux操作系统中的内存管理和优化技术

Linux操作系统中的内存管理和优化技术在Linux操作系统中,内存管理是一项非常重要的任务。

因为在计算机系统中,内存是最主要的资源之一,也是最容易被浪费或滥用的资源之一。

因此,在Linux系统中要做好内存管理,就必须要清楚该系统如何使用内存、怎样管理内存,以及如何优化内存使用。

一、Linux内存的分类在Linux系统中,我们一般将内存分为两种类型:物理内存和虚拟内存。

物理内存是指计算机实际存在的内存,而虚拟内存是指计算机中的硬盘空间,它在计算机中被用作为一种虚拟化内存的技术。

这种技术使得计算机可以虚拟出额外的内存空间,从而提高系统的内存使用效率。

二、Linux内存的使用在Linux系统中,内存不是一次性分配给所有程序使用的,而是按需分配的。

当系统需要更多内存时,它会从空闲的内存中分配出一部分,然后再使用这些内存来支持系统进程和应用程序。

此外,Linux系统中还有一个内存缓存,它可以帮助系统将经常被访问的数据存储在内存中,以便快速响应用户请求。

三、Linux内存管理在Linux系统中,内存管理模块负责管理系统的内存使用。

这个模块会跟踪系统内存使用情况,并将一部分内存分配给正在运行的进程和应用程序。

此外,如果系统内存使用过量,内存管理模块还能回收不必要的内存,并将其分配给更需要的进程或应用程序。

四、Linux内存优化技术1. 内存调整在Linux系统中,我们可以使用内存调整技术来优化内存使用。

这种技术可以通过修改内核参数来增加系统的内存使用效率。

我们可以使用sysctl命令来修改内核参数。

2. 内存抖动在Linux系统中,如果内存使用过量,就会出现内存抖动的情况。

内存抖动是指系统频繁地将一页内存从内存中换出,然后再将其换入内存。

这种过程会导致系统速度变慢,因此我们需要采取一些措施来优化内存使用。

我们可以在系统中使用Swap分区和Swap文件来降低内存抖动的风险。

3. 内存清理在Linux系统中,我们可以使用内存清理技术来优化内存使用。

计算机四级网络工程师-操作系统原理-第5章内存管理

计算机四级网络工程师-操作系统原理-第5章内存管理

计算机四级网络工程师-操作系统原理-第5章内存管理计算机四级网络工程师-操作系统原理-第5章内存管理单选题可变分区管理方案,看内存分配表各类适应算法下次适应算法最优适应算法最坏适应算法首次适应算法,系统中剩余的最大空闲分区静态重定位中,从哪个单元获取操作数各类置换算法各类置换算法看内存分配情况表——实战最近最少使用页面置换算法(LRU)先进先出页面置换算法(FIFO)最近最不常用页面置换算法(LFU)最近未使用页面置换算法(NRU)涉及计算【真题讲解】页式管理存储第66题快表命中率花费us计算简单页式存储管理问最大有多少个页面问最大有多少字节问页表长度(页表项个数)写保护中断各个置换算法的缺页率(建议放弃这一题分,比较容易搞混,需要理解各个置换算法并画图表)LRU页面置换算法OPT最佳页面置换算法八进制的计算(先八进制转换成二进制再计算)虚拟页式存储管理(求偏移量题目)题目直接给二进制,直接进行数位数偏移题目直接给16进制,转换为二进制后进行数位数偏移虚拟页式的有效位、修改位、访问位、保护位、禁止位单页存放整数变量个数和循环代码计算缺页次数一般情况通解:两个循环次数相乘,除单页个数答案有整数×整数形式使用快表和不使用快表相比较,求平均访问时间降低x%需要直接记忆单选多选题需要直接记忆多选单选题可变分区管理方案,看内存分配表下次适应算法最优适应算法最坏适应算法首次适应算法,系统中剩余的最大空闲分区这种题目一定要学习画图,画出变化趋势和具体数值静态重定位中,从哪个单元获取操作数第28题:在操作系统的存储系统中,程序装入时采用静态重定位方法。

已知:第18号单元外有一条加法指令,该指令要求处第066号单外取得操作数1234。

假设存储管理为程学分配的内存区域是众第800号开始,则加法指令将从哪一个单元获取操作数:答案——866置换算法策略先进先出页面置换算法(FIFO)将驻留在内存中时间最长的一页调出最先装入内存的一页调出最近最少使用页面置换算法(LRU)最长时间未被使用过的页面距离现在最长时间没有被访问的页面最近最不常用页面置换算法(LFU)一段时间单页面被使用的次数多少选择一段确定的周期T内,使用次数最少最近未使用页面置换算法(NRU)在最近的一个【时钟滴答】中尽量置换一个没有被访问的和没有被修改过的页面理想页面置换算法(OPT)以后不再需要的、或者在最长时间以后才会用到的页面第二次机会页面置换算法检查进入内存时间最久页面的R位,如果是0,则置换该页;如果是1,就将R位清0,并把该页面放到链表的尾端,修改其进入时间【重点就是会放到链表尾端,画图表时注意】各类置换算法各类置换算法看内存分配情况表——实战最近最少使用页面置换算法(LRU)先进先出页面置换算法(FIFO)最近最不常用页面置换算法(LFU)最近未使用页面置换算法(NRU)涉及计算【真题讲解】页式管理存储第60题:在分区管理方法中,假设程序A自60K处开始存放,到124K为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州大学学生实验报告
一、实验目的
在Linux环境下利用下列系统调用malloc(),free()编写一段程序实现内存分配与回收的管理。

二、实验器材
1、计算机一台。

2、Linux
三、实验内容
1.返回已分配给变量的内存地址;
2.返回释放后的内存地址;
3.释放已分配的内存空间后,返回释放内存后未使用内存的大小。

四、实验步骤、记录和结果
源代码有错,不能正常运行,使用纯C语言,修改正如下。

黄色底色的为新增代码新增注释为绿色底色
#include <stdlib.h> /* For _MAX_PATH definition */
#include <stdio.h>
//#include <malloc.h>
//#include <iostream.h>
#include <string.h>
//void main()
int main()
{
// int *string;
char *string;
// string =(int*) malloc(10 );
string = (char*) malloc(sizeof(char)*10);
if( string == NULL )
printf( "Insufficient memory available\n" );
else
{
printf( "Memory space allocated for path name\n" );
/*printf ("string=%d\n",string);*/
// cout<<"string="<<string<<endl;
free( string );
printf( "Memory freed\n" );
}
//int *stringy;
char *stringy;
//stringy =(int*) malloc(12 );
stringy =(char*) malloc(sizeof(char)*12 );
if( stringy == NULL )
printf( "Insufficient memory available\n" );
else
{
printf( "Memory space allocated for path name\n" );
/*printf ("string=%d\n",string);*/
// cout<<"stringy="<<stringy<<endl;
free( stringy );
printf( "Memory freed\n" );
}
return 0;
}
编译运行结果如下图所示:
现在再修改下代码,输出两个变量的内存地址
#include <stdlib.h>
#include <stdio.h>
int main(){
char *string = (char*) malloc(sizeof(char)*10);
if( string == NULL )
printf( "string Insufficient memory available\n" );
else{
printf( "string Memory space allocated for path name\n" );
printf("string's address:%p\n",string); //输出string的内存地址
free(string);
printf( "string Memory freed\n" );
printf("after freed address:%p\n",string); //输出string释放后的内存地址}
char *string_y = (char*) malloc(sizeof(char)*12 );
if( string_y == NULL )
printf( "string_y Insufficient memory available\n" );
else{
printf( "string_y Memory space allocated for path name\n" );
printf("string_y's address:%p\n",string_y); //输出string_y的内存地址
free( string_y );
printf( "string_y Memory freed\n" );
printf("after freed address:%p\n",string_y); //输出string_y释放后的内存地址}
return 0;
}
再次运行,结果如下,可见他们的地址相同,这是因为string分配了内存空间后,释放了,被系统回收,所以string_y申请到的地址是前一个,也就是string的地址。

而执行free之后,地址依然不变是因为内存释放了,但是并没有将其设置为NULL。

再修改代码,将内存释放free放到程序结束前,即
free(string);
printf( "string Memory freed\n" );
free( string_y );
printf( "string_y Memory freed\n" );
return 0;
运行结果如下:
按理说string地址为10010 3630 ,占10字节,那么string_y地址应该是10010 363A才对,
原来这里跟内存地址对齐有关,由下图可见,当前系统默认是以8字节对齐,由于string占10字节,大于8却不足16,所以剩余的6字节被填充了。

因此才会出现上面的结果。

再次修改代码,如下
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int main(){
char *string = (char*) malloc(sizeof(char)*10);
if( string == NULL )
printf( "string Insufficient memory available\n" );
else{
printf( "string Memory space allocated for path name\n" );
strcpy(string, "hello!"); //复制文本到string
unsigned long unused = 10 - strlen(string); //获取未使用长度
free(string);
printf( "string Memory freed\n" );
printf("unused:%lu\n",unused); //输出未使用长度}
return 0;
}
运行结果如下:
可见还有4字节空间未使用。

心得体会
本实验虽然相对上一个实验提供的代码短很多,但是所涉及的知识覆盖面较广,在做实验的过程中也学到了不少知识。

相关文档
最新文档