北京邮电大学信号与系统10年春季期末试题

合集下载

北京邮电大学信息论期末试卷

北京邮电大学信息论期末试卷
2


1
3.设一齐次马氏链 X 1 , X 2 ,... ,各 X i 取值于符号集 {a1 ,a2 ,a3 } ,状态转移概率矩阵为:
1/ 2 1/ 4 1/ 4 2 / 3 0 1/ 3 ,则状态平稳分布为 π1= 2/5 ,π2= 3/10 ;π3= 3/10 ,该马氏链 0 2 / 3 1/ 3
过信道可实现无失真传输。 (3) 将信源的 2 次扩展源进行 Huffman 编码,结果为:
2 次扩展信源符号 00 01 10 11 概 率 0.81 0.09 0.09 0.01 编 0 10 110 111 码
(3 分)
计算每信源符号平均码长为: l (1 0.19 0.10) / 2 0.645 ,编码器每秒输出 符号数为: 3.5 0.645 2.2575 2 ,所以传输不满足失真要求。 将信源的 3 次扩展源进行 Huffman 编码,结果为:
(3)根据高斯信道编码定理,有
(3 分)
R W log 2 (1 SNR ) 29.90 106 W log 2 (1 1000) W 3MHz
所以,信道所需的最小带宽为 3MHz , 设对应的信号平均功率为 P, SNR P /( N 0W0 ) (3 分)
P SNR N 0W0 1000 108 3 106 30 W
(2)信道达到容量时,其输入总能量的分配遵循什么原理?当这个输入总能量从 0 逐渐 增加时,各子信道被分配到能量的先后顺序如何?如果输入总能量为 6,各子信道被分配 到的能量( Ei,i=1,2,3,4)分别为多少? (2+2+2 分)
(3)设输入总能量大于 0,当信道达到容量时,各子信道的输入信噪比(SNRi,i=1,2, 3,4)从大到小的顺序如何?(即将各子信道的输入信噪比用>或≥符号连接起来) (2 分) 答: (1) 达到容量时, 信道输入应该是高斯分布, 各子信道的输入统计独立; (2) 信道达到容量时,其输入总能量的分配遵循注水原理; 各子信道被分配到能量的先后顺序为:信道 2—信道 1—信道 4—信道 3; (2 分) 各子信道被分配到能量分别为: E1=2, E2=3, E3=0, E4=1 (3) 各子信道的输入信噪比从大到小的顺序: SNR2>SNR1≥SNR4≥SNR3 (2 分) (2 分) (1+1 分) (2 分)

信号与系统期末考试复习题及答案(共8套)

信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

北京邮电大学信号与系统期末复习试题

北京邮电大学信号与系统期末复习试题

第一章 第二章 第三章 第七章 第四章1. ()21F s s=()00σσ>=的拉氏反变换为________()tu t __________________ 。

2. 若因果信号的拉普拉斯变换为3()=(+4)(+2)sF s s s ,则该信号的傅里叶变换(j )F ω=____3j (j )=(j +4)(j +2)F ωωωω_____________。

3.信号()()4f t u t =-的拉普拉斯变换为___4e ss-___________ 。

4. 某因果系统的系统函数为()2125H s s s k=+-+,使该系统稳定的实数k 的取值范围是____ k >5__________。

5. 一个连续因果LTI 系统可由微分方程()3()2()()3()y t y t y t x't x t '''++=+来描述,该系统的系统函数()H s =____2332+++s s s ____________________,请在图1中画出此系统的零、极点图。

6.计算画图题(6分)图3中ab 段电路是某系统的一部分,其中电感L 和电容C 的起始状态分别为()0L i -,()0C v -,请画出该段电路0t >的s 域等效模型,并列写端口电压()v t 和电流()L i t 的s 域约束关系。

C v t L +-()v t图3解答:1sC ()10C v -()V s()()()()1100LL C V s sL I s Li v sC s --⎛⎫=+-+ ⎪⎝⎭7.计算画图题(8分)已知某系统的方框图如图4所示,(1)若已知()1224sH s s s =++,()23H s =,求系统函数()H s ;(2) 画出描述此系统的两个1阶子系统级联形式的信号流图。

(第九章)图4解答:(1)12()()()E s E s E s =-,22()()()E s R s H s =⋅,[]12()()()()R s H s E s E s =⋅-112()() ()()1()()H s R s H s E s H s H s ==+22224354124sss s s s s s s ++==+++++ (2)方法一:()111414111s s H s s s s s=⋅=⋅++++ 系统结构的一种实现见下图方法二:()1111414111s sH s s s s s ⎛⎫ ⎪=⋅=-⋅ ⎪++ ⎪++⎝⎭ 系统结构的一种实现见下图第五章(含第三章基础理论)1. 已知一实值信号()x t ,当采样频率100 rad s ω=时,()x t 能用它的样本值唯一确定。

信号与系统期末试卷及答案

信号与系统期末试卷及答案
定程度上改善频率分辨力,但这不是通过补零使时域长度延长的结果,因为补零不增加信息量。
四、实验思考题
1.既然可直接由DTFT定义计算序列DTFT,为何利用DFT分析序列的频谱?答:通过DFT可以求出确定性信号相应的离散频 谱或频谱的样值,变换到有限频谱序列,这样就可以用计算机实现对信号进行分析,数字化计算速度快,故提出了DFT来分析 序列的频谱
2.若序列持续时间无限长,且无解析表达式,如何利用DFT分析其频谱?答:当原始的非周期信号为无限长或比较长,可截取 一段时间内的序列值,长度为L,作N点的DFT变换,NL。而截取的长度有限或不等于原始信号的 长度,则需考虑频谱泄露引 起的不良影响。为了减少泄露的影响,一般可适当增加长度To,也可以通过试探法,先取长度L1(To=L1*T),然后取 L2=2*L1,进行运算。若两者计算的结果很接近,则可取N1作为截取长度,否则继续去L3=2*L2,直至相邻两个长度的计算结果 相近,取长度较小的L为好。
时60附:当n取n=0:60;x=(0.8).^n;subplot(2,1,1);stem(n,x); ');subplot(2,1,2); 杨婕婕title('朱艺星w=n-15;plot(w,abs(fftshift(fft(x))));
读书破万卷下笔如有神 (2)进行理论值与计算值比较,讨论信号频谱分析过程中误差原因及改善方法。n x(n)?0.8u(n)为离散非周期信号,且为无限 长的信号。根据理答:信号论分析,一个时间有限的信号其频谱宽度为无限,一个时间无限的信号其频带宽度则为有限,因 此,对一个时间有限的信号,应用DFT进行分析,频谱混叠难以避免。对一个时间无限的信号虽然频带有限,但在时间运算 中,时间长度总是取有限值,所以频谱泄露难以避免。当原始信号事有限长,截取的长度等于原始信号的长度,则可以不考虑 泄露的影响。当原始的非周期信号为无限长或比较长,而截取的长度有限或不等于原始信号的长度,则需考虑频谱泄露引起的 不良影响。 为了减少泄露的影响,一般可适当增加长度To,也可以通过试探法,先取长度N1(To=N1*T),然后取N2=2*N1,进行运算。 若两者计算的结果很接近,则可取N1作为截取长度,否则继续去N3=2*N2,直至相邻两个长度的n x(n)?0.8u(n) 为计算结果相近,取长度较小的N为好。本题中,因为信号离散非周期信号,且为无限长的信号,用试探法:取n为30和60, 进行比较,发现两者的频谱基本相似,所以取n为30较好。因为n取过大,fs提高,要求存贮单元增加,硬件速度提高,其结果 势必在经济上和技术上带来新的问题。 3.有限长脉冲序列,利用FFT分析其频 谱。],50,1332?nx()[,,,?N=6;n=0:N-1;x=[2,3,3,1,0,5]; subplot(3,1,1);stem(n,x);title('朱艺星杨婕婕'); subplot(3,1,2);w=n;plot(w,abs(fftshift(fft(x)))); subplot(3,1,3);plot(w,angle(fftshift(fft(x)))); 读书破万卷下笔如有神

信号与系统期末考试试卷有详细答案

信号与系统期末考试试卷有详细答案

《 信号与系统 》考试试卷(时间120分钟)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j(F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × )3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t -=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

北京邮电大学信号与系统10年春季期末试题答案

北京邮电大学信号与系统10年春季期末试题答案

x(t
)
(3)
H
(
jω)
=
− 4 + 2 jω − ω 2 + 4 jω +
8
H
(ω)
ω =1
=
−4 + j2 7 + j4
=
0.55e j123.690
r(t) = 0.55sin(t + 123.69°)
共5页 第 2 页
试题五:(10 分)
解:对差分方程取单边 z 变换
[ ] [ ] Y (z)+ 3 z−1Y (z)+ y(− 1) + 2 z−2Y (z)+ z−1 y(− 1)+ y(− 2) = X (z)
X 1 (ω )
⎜⎛ π ⎟⎞
⎜⎛ π ⎟⎞
⎝2⎠
⎝2⎠
−ωc −ω0 −ωc −ωc +ω0
O
⎜⎛ π ⎟⎞ ⎝2⎠
⎜⎛ π ⎟⎞ ⎝2⎠
ω ωc −ω0 ωc ωc +ω0
共5页 第 3 页
⎜⎛ π ⎟⎞
⎜⎛ π ⎟⎞
⎝4⎠
⎝4⎠
−2ωc −ω0 − 2ωc − 2ωc +ω0
X2(ω)
⎜⎛ π ⎟⎞
试题四:(10 分)
解:(1)
H (s)
=
K
(s
+
2−
s−2
j2)(s +
2
+
j2)
=
K
s2
s−2 + 4s + 8
∵ H (0) = −0.5 , ∴ − 2K = −0.5 ,
8
∴H
(s)
=

北邮考研信号与系统专业课试卷2010

北邮考研信号与系统专业课试卷2010
1 d 0
N 1
t
x
十 、计算 题 ( 本题 8 分 ) 假定对于一个给定信号 e(t) ,需经过时间间隔 T0 的积分。相关积分是
r (t )
t T0
e( )d 。求该系统的频率响应,并画出幅度响应图。
十一、证明题(本题 10 分)判断图示信号 f1 (t ) 和 f 2 (t ) 在区间(0,4)上是否正交,并给出证明。


p(t ) G (t nTs )
n
说明:以下所有题目,只有答案没有解题步骤不得分 五、计算题(本题 10 分)已知系统函数表示式为 H ( s )
式的流图;(2)用流图建立系统的状态方程。
s4 ,(1)画出系统并连结结构形 s 6 s 2 11s 6
3
六、 计算题(本题 10 分)如图所示电路,(1)写出电压转移函数 H ( s)
计算题要算出具体答案,可以用科学计算器,但不能互相借用。
一、判断题(本大题共 5 小题,每题 2 分共 10 分)判断下列说法是否正确,正确的打√,错误的打×
1. 一个频域有限信号,其时域必为无限的。 2. 若
f1 (t ) F1 ( ), f 2 (t ) F2 ( ), 其 频 带 分 别 为 a b , c d , 则
0 的拉普拉斯变换及收敛域为
Re s
全 s 平面 , , B: F ( s )
1 s 1 C : F ( s) s
n
1 s 1 D: F ( s ) s
Re s 0 Re s
4. 序列 f ( n)
j0t
按方向角 θ 斜入射到达天线阵。如果第 1 个天线测量得到的信号是 e(t ) ,则第二个天线

信号与系统2010级试卷B参考答案

信号与系统2010级试卷B参考答案
考生信息栏信息工程学院专业班级姓名学号集美大学试卷纸20112012学年第2学期课程名称信号与系统评分及参考答案试卷卷别b适用学院专业年级电子通信电科2010级考试方式闭卷开卷备注允许携带电子计算器120分钟总分题号一二三四五六得分302446装订线p1p2得分得分阅卷人一基本概念题共30分每题3分1求周期信号
集 美 大 学 试 卷 纸
2011-2012 课程名称
适 用
6、判断如下系统的时不变性、线性、因果性: r ( t ) = e 2 ( t ) 。 答:该系统完成了输入信号的自乘运算,是因果的,时不变的,但是非线性的。 【各 1 分】 7、理想的不失真信号传输系统,其单位冲激响应是: ( h(t)=K δ (t-t0) ) ;而其频率特性是: ( H(jw)=Kexp(jwto) ) 。 【2 分】 【1 分】
d dt d dt
【2 分】
2、 求二阶系统 状态
r ''( t ) + 15 r '( t ) + 56 r ( t ) = 4 e ( t ) 在激励 e ( t ) = e −3 t u (t ) 以及起始
y ( t ) = ∫ [ − 7 y ( t ) − 4 x ( t ) + ∫ ( x ( t ) + 18 y ( t ))dt ]dt
【2 分】 【1 分】
信息工程
( n ) +7 y ( n − 1) -3 y ( n − 2 ) = 4 x ( n ) + x ( n − 1)
H ( z) = 4 + z −1 4z2 + z = 1+7 z −1 − 3 z −2 z 2 +7 z − 3
; 【3 分】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

。(b<0)
9.若信号
f(t)的拉普拉斯变换是
F
(
s)
=
(s
+
ω0 a)2
+
ω02
(收敛域是 σ>-a,a
为正实数),请写出该信号的傅里叶变换

10.序列 x(n) = (n − 2)u(n − 2)的 z 变换 X (z) =

{ } 11. 离散时间信号 x (n) = −1
1
0

2 的能量是

R1
+
+
v1 (t )
C1 R2
C2 v2(t)


题八:(10 分)图中所示一阶离散系统。
(1) 请写出描述该系统的差分方程;
(2) 写出该系统的单位样值响应 h(n) ;
(3) 写出该系统的频率响应,并绘出幅频响应曲线(标出关键点取值)。
x(n) ∑
y(n)
0.5
z −1
共4页 第4 页
点必在 S 平面的

4. 若连续线性时不变系统的输入信号为 f (t),响应为 y(t) ,则系统无畸
变传输的系统传输函数必须满足 H ( jω ) =

5. 若调制信号 f (t ) 的频带宽度为 W,则已调信号 f (t) cos(ω0t) (ω0>>W)
的频带宽度为________________。
(3) 求低通滤波器 LPF 的带宽。
(1) 画 出 x1(t) , x2 (t) 和 y(t) 的频谱图;
(2) 求 x1(t)的平均功率;
共4页 第3 页
试题七:(10
分)电路如图所示。(1)写出电压转移函数
H
(
s)
=
V2 V1
(s) (s)

(2)若 R1=1Ω,C1=2F,R2=2Ω,C2=1F,系统是否会产生失真?
北京邮电大学 2009 ——2010 学年第 2 学期
《信号与系统 》期末考试试题
考试 课程 题号
满分
信号与系统 一 二三 32 8 10
考试时间 四五 10 10
2010 年 1 月 日 六 七 八 总分 10 10 10 100
试题一:填空(每空 2 分,共 32 分)
1 . 若 信 号 f(t) 的 拉 普 拉 斯 变 换 是 F(s) , 则 tf(t) 的 拉 普 拉 斯 变 换
6.
某滤波器的传输函数为 H ( jω) =
1 ,该滤波器是 jω + 0.5

波器。(低通、高通、带通、带阻)
7.
已知某 LTI 连续时间系统的系统函数是 H (s) =
3s + 9 ,则该系统 s2 − 6s + 8
可以用微分方程表示为

共4页 第1 页
8. 写出下图所示系统的频率响应函数 H ( jω)=
求响应序列 y(n),并指出零输入响应与零状态响应。
试题六:(10 分)如图所示为幅度调制信号的相干解调框图。已知
m(t) = cosω0t , x1(t) = m(t) cosωct ,其中ωc >> ω0 。
x1(t) × x2(t)
LPF
y(t)
H( jω) = 2
cos(ωct) ϕ(ω) =0
满足什么条件时,系统是稳定的?
F (s)
+

X (s)
G(s)
Y (s)

k
共4页 第2 页
试题四:(10 分)已知某因果 LTI 系统的系统函数H (s)的零极点图如图 所示, 且 H (0) = −0.5 , 求
(1) 系统函数 H (s)及冲激响应 h(t );
(2) 写出关联系统的输入输出的微分方程;
(3) 已知系统稳定,求 H ( jω ) , 当激励为 sin(t)时, 求系统的稳态响应;

×
2
−2 o
σ 2
×
−2
试 题 五 :( 10 分 ) 已 知 某 离 散 系 统 的 差 分 方 程 为
y(n) + 3y(n −1) + 2 y(n − 2) = x(n),且 y(0)=0, y(1)=2;设激励 x(n) = 2n u(n) ,
O 123 n
x2 (n )
11 O1 2
−1
(1) 试求卷积和
y ( n) = x1 (n) ∗ x2 (n) ; n (2)画出 y ( n) 的波形图。
试 题 三 : ( 10 分 ) 如 图 所 示 反 馈 系 统 , 子 系 统 的 系 统 函 数
G(s)
=
(s

1
1)(s
+
2)
,当常数
k

,e−at f(t)的拉普拉斯变换是
普拉斯变换是


∫t
0
λ
f
(t

λ
)dλ
的拉
2 . 利 用 初 值 定 理 和 终 值 定 理 分 别 求 F (s) = 4s + 5 原 函 数 的 初 值
2s +1
f (0+ ) =
, 终值 f (∞) =

3. 若因果线性时不变连续时间系统是稳定的,则其系统函数 H (s) 的极
0
12. 为 使 线 性 时 不 变 离 散 系 统 稳 定 , 其 单 位 样 值 响 应 h(n) 必 须 满


13.正弦序列 x(n) = Asin⎜⎛ 1 πn + π ⎟⎞ 的周期为

⎝8 4⎠
试题二:(8 分)离散信号 x1 (n) , x2 (n) 波形如图所示。
x1(n)
24 11
相关文档
最新文档