基于 Tableau 软件的数据分析领域预测方法(IJIEEB-V11-N1-3)

合集下载

使用数据可视化工具Tableau进行数据分析

使用数据可视化工具Tableau进行数据分析

使用数据可视化工具Tableau进行数据分析数据分析在当今信息爆炸的时代变得越来越重要。

在过去,人们只能通过繁琐的数据整理和统计来获取有关某个领域的见解。

然而,随着技术的进步,数据可视化工具的出现使得数据分析变得更加简单和直观。

其中,Tableau作为一款强大的数据可视化工具,被广泛应用于各个行业。

Tableau具有直观的用户界面和丰富的功能,使得用户能够通过简单的拖拽和点击操作,快速地创建各种图表和可视化效果。

无论是散点图、柱状图、折线图还是地图,Tableau都能轻松地呈现出来。

这种直观的操作方式让用户能够更加专注于数据本身,而不必被繁琐的技术细节所困扰。

在使用Tableau进行数据分析时,首先需要导入数据。

Tableau支持多种数据源,包括Excel、CSV、SQL数据库等。

用户可以根据自己的需求选择合适的数据源,并通过简单的操作将数据导入Tableau。

一旦数据导入成功,用户就可以开始进行数据分析了。

数据分析的第一步是理解数据。

Tableau提供了多种探索数据的功能,例如数据透视表和数据字段的详细信息。

通过这些功能,用户可以快速了解数据的结构、内容和关联关系。

这种对数据的深入理解是进行有效数据分析的基础。

接下来,用户可以开始创建图表和可视化效果。

Tableau提供了丰富的图表类型和定制选项,用户可以根据自己的需求选择合适的图表,并对其进行定制。

例如,用户可以通过添加筛选器、计算字段和参数来进一步细化图表。

此外,Tableau还支持交互式可视化,用户可以通过点击和拖拽来探索数据的不同维度和层次。

这种交互式的体验使得数据分析更加生动和有趣。

除了创建图表外,Tableau还提供了数据建模和预测分析的功能。

用户可以使用Tableau内置的统计工具来进行数据建模和预测分析。

例如,用户可以使用回归分析来探索变量之间的关系,使用聚类分析来发现数据中的模式。

这些功能使得用户能够更加深入地挖掘数据,发现其中的隐藏规律和趋势。

如何使用Tableau进行商业智能与数据分析

如何使用Tableau进行商业智能与数据分析

如何使用Tableau进行商业智能与数据分析第一章:Tableau的基本介绍在当今的商业环境中,数据分析和商业智能已经成为了企业决策和战略制定的重要工具。

Tableau作为一款领先的数据可视化和分析工具,能够帮助企业从庞杂的数据中提取有价值的信息,并以直观的方式展示出来。

本章将介绍Tableau的基本功能和特点。

1.1 Tableau的概述Tableau是一款业界著名的商业智能和数据可视化工具,可以将企业的数据转化为可视化的报告、仪表盘和交互式分析,使决策者能够更好地理解数据背后的故事和模式。

Tableau支持各种数据源,包括数据库、Excel和Web数据等。

1.2 Tableau的特点Tableau具有以下几个重要特点:- 直观易用:Tableau提供了简单而直观的用户界面,无需编写复杂的代码,即可创建交互式报表和仪表盘。

- 强大的数据连接能力:Tableau可以连接各种数据源,包括数据库、Excel、Web数据和云端数据等,灵活地访问和整合数据。

- 高级可视化功能:Tableau提供丰富的数据可视化选项,包括图表、地图、散点图等,用户可以根据需要自由选择和组合。

- 实时数据分析:Tableau能够实时连接和分析数据,用户可以随时获取最新的数据,并及时进行决策。

- 共享与合作:Tableau支持将分析结果与团队成员和上级分享,也可以与其他人合作创建和编辑报表。

第二章:Tableau的应用场景Tableau作为一款强大的商业智能工具,在不同领域都有广泛的应用。

本章将介绍Tableau在几个具体的应用场景中的应用案例。

2.1 销售分析Tableau可以帮助企业对销售数据进行深入的分析和理解。

通过创建交互式的销售仪表盘,企业可以实时监测销售情况、销售趋势以及不同产品和地区的销售表现。

同时,还可以通过可视化的方式展示销售数据和关键指标,帮助销售团队更好地定位和调整销售策略。

2.2 市场营销分析Tableau可以帮助企业进行市场营销数据的分析和洞察。

可视化技术使用教程:利用Tableau进行数据探索和可视化(五)

可视化技术使用教程:利用Tableau进行数据探索和可视化(五)

可视化技术使用教程:利用Tableau进行数据探索和可视化从数千年前的图表、图像到如今的图表和数据可视化技术,人类一直试图通过图像来更好地理解和呈现数据。

数据图表和可视化技术对于商业决策、市场分析、科学研究以及信息传达等方面起着重要作用。

在众多可视化工具中,Tableau以其易用性和强大的功能受到广大用户的青睐。

本文将为大家介绍如何使用Tableau进行数据探索和可视化。

第一部分:Tableau概述Tableau是一种强大的数据可视化工具,具有直观的用户界面和丰富的功能。

它支持多种数据源,包括数据库、Excel表格、文本文件等。

通过简单拖拽操作,用户可以将数据字段映射到可视化工作表中的不同区域,从而创建交互式和动态的图表和仪表板。

第二部分:数据导入和准备在使用Tableau之前,首先需要将要分析和可视化的数据导入到Tableau中。

Tableau支持多种数据源的导入,包括Excel、CSV、SQL 等。

在数据导入后,可以使用Tableau中的数据连接和数据预处理功能,对数据进行清洗、整合和转换,以便更好地使用和分析。

第三部分:数据可视化一旦数据准备工作完成,就可以开始进行数据可视化了。

在Tableau中,可以使用各种图表类型来呈现数据,如柱形图、折线图、散点图等。

通过将数据字段拖拽到工作表中的不同区域,可以创建各种样式的图表。

同时,还可以添加筛选器、颜色编码、标签等,以增加图表的可读性和可交互性。

第四部分:交互式分析Tableau的强大之处在于其交互式分析功能。

用户可以通过选择和过滤器操作来实时改变图表中的数据显示,从而快速发现数据的关联和趋势。

通过将不同的图表组合在一个仪表板中,还可以更好地进行多维度和多角度的数据分析。

第五部分:故事叙述Tableau还支持将多个图表和分析结果串联起来,创建一个完整的数据故事。

用户可以使用仪表板中的不同图表和图形来讲述一个数据分析的故事,以便更好地将分析结果传达给其他人。

Tableau可视化分析与数据挖掘指南

Tableau可视化分析与数据挖掘指南

Tableau可视化分析与数据挖掘指南Chapter 1: 引言Tableau可视化分析与数据挖掘指南是一本详细介绍如何使用Tableau进行数据可视化和数据挖掘的指南。

本指南旨在帮助读者更好地理解和应用Tableau软件,实现对数据的深入分析和可视化展示。

Chapter 2: Tableau简介本章介绍了Tableau的基本概念和功能。

首先,我们将介绍Tableau软件的发展背景和重要特点。

然后,详细介绍了Tableau 的组成部分和主要功能,包括数据连接、数据源、数据分析和可视化展示等。

Chapter 3: Tableau初步使用本章将介绍Tableau软件的安装和实际操作步骤。

我们将详细介绍如何创建新项目、导入数据源并进行基本的数据可视化。

另外,还将介绍Tableau的主要界面和常用工具的使用方法。

Chapter 4: 数据准备与清洗在这一章节中,我们将讲解如何进行数据准备和清洗。

首先,我们将介绍常见的数据清洗技术和方法,包括数据去重、缺失值处理和异常值检测等。

然后,我们将演示如何使用Tableau进行数据清洗和预处理,以确保数据的准确性和一致性。

Chapter 5: 数据分析与可视化本章将介绍如何使用Tableau进行数据分析和可视化。

我们将探讨不同类型的图表和可视化工具,包括柱状图、折线图、散点图、地图和仪表盘等。

此外,我们还将介绍Tableau的计算字段和数据透视功能,以帮助读者更好地分析和展示数据。

Chapter 6: 高级可视化技术在这一章节中,我们将介绍一些高级的可视化技术和方法。

首先,我们将讨论如何创建交互式可视化和动态可视化效果。

然后,我们将介绍如何使用Tableau进行多维数据分析和深度挖掘,包括数据聚类、关联分析和预测建模等。

Chapter 7: 数据故事讲述本章将介绍如何使用Tableau讲述数据故事。

我们将讨论如何选择合适的数据故事主题和故事线索,并如何使用Tableau创建吸引人的数据故事板。

可视化技术使用教程:利用Tableau进行数据探索和可视化(一)

可视化技术使用教程:利用Tableau进行数据探索和可视化(一)

数据在现代社会中无处不在,对于企业和个人来说,了解和利用数据是非常重要的。

可视化技术可以帮助我们更好地理解和分析数据,使数据变得更具有说服力和易于理解。

在本文中,我将分享如何使用Tableau这一强大的可视化工具进行数据探索和可视化。

一、准备工作在开始使用Tableau之前,我们需要准备一些基础工作。

首先,我们需要安装Tableau Desktop软件。

它提供了一个直观的界面来创建和编辑可视化图表。

其次,我们需要准备我们要分析的数据集。

这可以是一个包含大量数据的Excel文件,或者是数据库中的数据。

二、导入数据在Tableau中,我们可以通过多种方式导入数据。

例如,我们可以使用Excel文件作为数据源,也可以直接连接到数据库。

无论使用哪种方式,我们都需要选择正确的数据表或工作表,并指定正确的数据字段。

三、数据准备在进行可视化之前,我们通常需要对数据进行一些处理和准备。

首先,我们需要检查数据中是否存在缺失值或异常值,并决定如何处理它们。

其次,我们可以将数据进行分组、过滤或排序,以便更好地理解数据的结构和关系。

最后,我们还可以在Tableau中创建计算字段,以便进行更复杂的分析和可视化。

四、创建图表在Tableau中,我们可以创建多种类型的图表来展示数据。

常见的图表类型包括柱状图、折线图、散点图和饼图等。

在选择图表类型时,我们需要根据数据的特点和我们想要传达的信息进行合理的选择。

同时,我们还可以通过调整图表的颜色、大小、标签和样式等属性来增强可视化效果。

五、交互式操作Tableau的一个强大之处在于其交互式功能。

我们可以通过拖放字段来修改图表中的维度和度量。

这使得我们可以轻松地进行多维数据分析和对比。

此外,Tableau还提供了筛选器和参数等功能,使得用户可以根据需求对数据进行灵活的探索和可视化。

六、故事板功能Tableau的故事板功能让我们能够将多个可视化图表组合成一个故事,并以交互方式进行展示。

数据可视化工具Tableau的高级使用方法

数据可视化工具Tableau的高级使用方法

数据可视化工具Tableau的高级使用方法Tableau是一款功能强大的数据可视化工具,它提供了丰富的功能和灵活的操作方式,可以帮助用户更好地理解和分析数据。

在本文中,我将为您介绍Tableau的高级使用方法,帮助您更好地利用这个工具进行数据可视化和分析。

一、数据连接与准备在使用Tableau之前,首先需要将数据导入到Tableau中,并进行必要的数据清洗和转换。

Tableau支持多种数据源,包括Excel、CSV、数据库等,您可以根据数据的来源选择相应的数据连接方式。

一旦连接成功,您可以使用Tableau的数据预览功能来查看导入的数据并进行初步的数据清洗和筛选。

在数据准备过程中,Tableau的高级使用方法包括使用计算字段、参数和集合。

计算字段允许您根据已有字段创建自定义的计算结果,参数允许您动态地调整Dashboard中的数值和指标,集合则使您能够将多个字段或数据聚合为一个单独的对象。

通过这些高级功能,您可以更精确地对数据进行分析,并创建更丰富和有针对性的可视化效果。

二、创建高级可视化效果Tableau拥有丰富的可视化选项和工具,使用户能够创建多种类型的图表和图形。

除了常见的柱状图、折线图和散点图之外,Tableau还支持创建地图、热力图、树状图等多种图表类型,以满足不同数据分析和展示的需求。

在创建可视化效果时,Tableau的高级使用方法包括使用过滤器、参数和动作来增强和改进可视化效果。

过滤器允许您根据特定条件筛选数据,参数可以用于动态调整图表中的数值和指标,动作则允许您创建交互式的图表效果,在用户与可视化结果进行交互时更直观地展示数据和分析结果。

三、设计交互式仪表盘Tableau的仪表盘(Dashboard)功能使用户能够将多个可视化效果组合在一起,并创建交互式的报表和分析工具。

在设计仪表盘时,您可以使用Tableau的布局和样式功能来调整和美化仪表盘的外观和格式,使其更符合您的需求和风格。

如何进行数据可视化使用Tableau

如何进行数据可视化使用Tableau

如何进行数据可视化使用Tableau 数据可视化是当今信息时代中不可忽视的技术手段之一。

它通过将抽象的数据转化为可视化图表,帮助人们更好地理解数据背后的模式、趋势和关联。

Tableau作为一种流行的数据可视化工具,具备强大的数据处理和可视化功能,使得数据的分析和呈现更加直观和易于理解。

本文将介绍如何使用Tableau进行数据可视化,并按照不同的类别划分为四个章节。

第一章:Tableau入门Tableau是一款面向数据分析和可视化工作的商业智能软件。

在开始使用Tableau之前,我们首先需要了解它的基本功能和常用术语。

Tableau支持导入和连接各种数据源,包括Excel、CSV、数据库等。

它提供了直观的界面和交互式的操作方式,用户可以通过拖拽、筛选和联动等方式快速构建图表和仪表板。

此外,Tableau还提供了强大的计算、聚合和过滤功能,使得数据的处理更加灵活和高效。

第二章:数据准备和整理在进行数据可视化之前,我们需要对数据进行准备和整理,以确保数据的完整性和一致性。

Tableau作为一款数据处理工具,提供了多种方法和技巧来处理不同类型的数据。

例如,我们可以使用Tableau内置的数据清洗功能进行数据清洗和填充缺失值。

同时,Tableau还支持数据的合并、拆分和转换等操作,以满足不同的数据处理需求。

此外,Tableau还支持计算字段和参数的定义,使得数据的处理更加灵活和个性化。

第三章:可视化设计和图表构建可视化设计是数据可视化的核心环节。

在Tableau中,我们可以选择不同的可视化图表来呈现数据。

例如,柱状图、折线图和散点图等常用的图表类型,都可以通过简单的拖拽和设置来构建。

同时,Tableau也支持更加高级和复杂的图表,如热力图、地图和仪表盘等。

在进行图表构建之前,我们需要考虑数据的类型、目标和受众,以选择最合适的图表类型和设计风格。

此外,Tableau还提供了丰富的图标、颜色和样式选择,以增强图表的可视效果。

数据可视化利器Tableau的数据分析与可视化技巧

数据可视化利器Tableau的数据分析与可视化技巧

数据可视化利器Tableau的数据分析与可视化技巧Tableau的数据分析与可视化技巧数据分析和可视化已经成为现代商业决策过程中不可或缺的一部分。

为了更好地理解数据,并从中提取出有价值的见解,许多组织和专业人士都在使用各种工具和技术。

而Tableau就是其中一款备受推崇的数据可视化利器。

本文将介绍Tableau的一些常用技巧和策略,帮助读者更好地进行数据分析和可视化。

1. 数据整理与准备在使用Tableau进行数据分析之前,首先需要对数据进行整理和准备。

这包括数据清洗、格式转换和数据聚合等步骤。

例如,使用Tableau Prep可以帮助我们清洗和转换数据,使其符合分析的需求。

此外,Tableau也支持多种数据源的导入,包括Excel、CSV、SQL数据库等,确保我们可以使用最新的数据进行分析。

2. 数据连接与关系建立Tableau允许我们连接多个不同的数据源,并建立它们之间的关系。

这样一来,我们可以对来自不同数据源的数据进行联合分析。

数据连接的过程中,我们可以选择不同的连接类型,如内连接、左连接、右连接等,以满足具体的分析需求。

3. 创建基础视图在Tableau中,我们可以通过拖拽字段到“行”、“列”、“颜色”等区域来创建基础视图。

这可以帮助我们迅速了解数据的整体情况,并挖掘出一些初步的见解。

通过添加过滤器、计算字段和排序等功能,我们可以进一步细化和改进基础视图,以逐步揭示数据背后的规律和关联。

4. 应用视觉化技巧Tableau提供了丰富的视觉化选项,可以帮助我们更好地展示和传达数据分析结果。

例如,可以使用不同类型的图表(如柱状图、折线图、散点图等)来展示数据的分布和趋势。

此外,还可以通过添加颜色、大小、标签等来突出显示重要的信息。

然而,需要谨慎使用过多的颜色和图表,避免信息的混乱和误导。

5. 制作交互式仪表板Tableau的一个显著特点就是它强大的交互性。

我们可以通过添加过滤器、参数、动态工作表等功能来制作交互式的仪表板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I.J. Information Engineering and Electronic Business, 2019, 1, 19-26Published Online January 2019 in MECS (/)DOI: 10.5815/ijieeb.2019.01.03An Approach for Forecast Prediction in Data Analytics Field by Tableau SoftwareBibhudutta JenaEmail: bibhudutta93@Received: 13 December 2017; Accepted: 18 October 2018; Published: 08 January 2019Abstract—The current era is generally treated as the era of data, Users of computer are gradually increasing day by day and vast amount of data is generated from multiple domains such as healthcare- domain, Business related domains etc. The terminology Business Intelligence (BI) generally refers different technologies, applications and practices used for the collection, integration, analysis, and presentation of information of business related domain. The main motive for Business intelligence and analytics are to help in decision making process and to enhance the profit of the organisation. Various business related tools are used to analyze & visualize different types of data which are generated frequently. Tableau prepared its mark on the Field of BI by being one of the first companies to permit business customers the ability to achieve equitably arduous data visualization in a very interesting, drag and drop manner. Tableau will enhance decision making, add operational awareness, and increase performance throughout the organization The presented paper describes different tools used for business intelligence field and provides a depth knowledge regarding the tableau tool. It also describes why tableau is widely used for data visualization purpose in different organization day by day. The main aim of this paper is to describe how easily forecasting and analysis can be done by using this tool ,this paper has explained how easily prediction can be done through tableau by taking the dataset of a superstore and predict the forthcoming sales and profit for the next four quarters of the forthcoming year. In the collected dataset sales and profit details of different categories of goods are given and by using the forecasting method in tableau platform these two measures are calculated for the forthcoming year and represented in a fruitful way. Finally, the paper has compared all the framework used for business intelligence and analytics on the basis of various parameters such as complexity, speed etc.Index Terms—Big Data, Business Intelligence, Data Visualization, Tableau, QlickVieew.I.I NTRODUCTIONDue to the increased market competition increased data management and analysis has landed as in an era that requires further optimization data management and analysis. Big data technologies like apache HADOOP provide a frame work for parallel data processing and generation of analyzed results .MAPREDUCE method is used for analysis of data using various data analysis algorithms like clustering, fragmentation and aggregation. (BI) generally refers different technologies, applications and practices used for the collection, integration, analysis, and presentation of information of business related domain[1]. The main motive for Business intelligence and analytics are to help in decision making process and to enhance the profit of the organisation. Various business related tools are used to analyze & visualize different types of data which are generated frequently. Data is one of the most important and vital aspect of different activities in today's world. Now -a -days the modern civilization gradually more dependent on the age of information which is concentrated in computers, So the Society is becoming more dependent on computers and technology for functioning in every- day life .As the number of users are gradually increasing day by day, So the data generated by them is also enlarging gradually[2].The main aim of this paper is to describe how easily forecasting and analysis can be done by using this tool ,this paper has explained how easily prediction can be done through tableau by taking the dataset of a superstore and predict the forthcoming sales and profit for the next four quarters of the forthcoming year. The reminder of this paper is organized as. Section II presents a literature survey on various approaches and tools used for business intelligence and analysis purpose. Section III presents a brief idea about Tableau tools and its application. The motivation for this work is laid out in Section II. Section IV represents the Implementation part for the forecast analysis of sample retail store data Finally, Section V concludes the paper.II.L ITERATURE S URVEYTableau presently has the largest customer domain. When businesses organization are focusing for a BI solution, it’s always their first choice. In the below section the paper has described different BI tools that are currently used in the business market for enhancing the business strategy. Sisense is one of the leaders in the market of BI and a winner of the Best Business Intelligence Software Award given by Finances Online [3][4], It was considered as one of the most adopted business, software review platforms. The users of thistool will also enjoy effectively by using the in-chip technology in a database that operates the data much more faste than the existing traditional systems. BIRT project is a flexible, Standalone, and 100% pure Java reporting tool for creating and presenting reports in opposition to data sources varying from typical business relational databases, to XML data sources, to in-memory Java objects. It is originated as a top-level project integrating with the Eclipse Foundation. Similarly icCube is a SaaS end to end BI platform, particularly to be ingrained in to the developed application[5][6]. It amalgamates smoothly with any application due to on-the-fly-authentication and authorization ability. icCube can be treated as a dream for any software developer who wants to present predicated dashboards or a solid web based self service BI solution, to their end-users. It is not Cost effective. Business Optimization Software Domos imports together the customers, the data, and the acumen business users demand to present a detailed view of what’s happening in the organization[7][8]. The Jaspersoft Business Intelligence Suite provides different ways for end customers to initiate interactive analysis. In the case of casual user, this might include simply changing a filter setting on a report to present various slice of data.This tool is generally helpful for data analyst to writing powerful, multi-dimensional expressions. Microsoft also provides Business Intelligence platform comprises of Analysis Services, Integration Services, Master Data Services, Reporting Services, and several client applications used for initiating or operating with analytical data. But this software is not able to make the dashboard attractive like other BI tools. This data is often travelled across various databases in multiple locations with different versions of database software. .Pentaho platform provides an easier way for preparing and blending any data and adds a spectrum of tools to easily analyze, visualize, explore, report and predict[9]. In the above section the paper has discussed some business intelligence tools which are earlier used for the business intelligence and business analysis processes. In the next section the paper has described how tableau is helpful for business intelligence and analysis purpose which plays an important role for decision making processes in the organisation.III.T OOL S TUDYTableau prepared its mark on the Field of BI by being one of the first companies to permit business customers the ability to achieve equitably arduous data visualization in a very interesting, drag and drop manner. Tableau’s data virtualization is head and shoulders above what traditional BI vendors offer[10]. Tableau occupied its mark on the world of BI by being one of the first companies to give business customers the ability to operate fairly complex data visualization in a very intuitive, drag and drop manner. In this platform visualization and analysis can be done without having proper knowledge in programming domain, The output analyzed results can be shown in an effective manner. In the below section the paper has described the how smoothly the forecasting process can be done by tableau tool by taking a business test case. Tableau clearly and beautifully visualizes your data. Tableau has the functionality to present reports on supreme large sets of data without enormously affecting network performance. someone can easily go from novice to expert level with proper assistance through this tool.IV.I MPLEMENTATIONThis section describes how the data is processed in tableau platform and how forecasting can be done with the collected dataset. The data which are collected for processing are from a sample store present in USA which comprises of different attributes or fields , In the below figure describes the excel format of data that is taken for processing in tableau platform. There are multiple ways to import the data set in tableau software, One of the biggest leverage of tableau software is, it allows the user to import the data in portable document format and perform different data analytic operation by utilizing the data.Tableau’s data virtualization is leader and shoulders above what conventional BI vendors offer. Tableau done its mark on the world of BI by being one of the first companies to give business users the propensity to perform fairly complex data visualization in a very visceral drag and drop manner.Tableau assimilates with most data types and provides out of the box integration with a variety of big data platforms, comprising Hadoop. Tableau assimilates with R, the business intelligence statistical language many data scientists use to dive deep into BI for statistical and advanced analytics,Tableau has a ample amount of partner and consultant base, as well as exhaustive online resources including guides, online training and forums. Plus, the Tableau community is well-known enthusiastic and engaging., Like most BI vendors, Tableau provides different software licensing options. There’s a nonpaid version of Tableau for personal use, but its scope is limited. To download Tableau to your desktop, you’ll pay in the range of $1000 and $2000 per year. Online or hosted access to Tableau costs $500 per person, per year. In the below paragraph the paper has described some cons of tableau server and toolHence, lot of organizations will need Tableau server. Based on what companies that have considered Tableau (or have purchased it) tell us, an entry-level server license is about $1000 per user (with a 10-user minimum).If data is in Excel or a CSV file format, you can upload it to Tableau and perform different data analytical operations Tableau occupied its mark on the world of BI by being one of the first companies to give business customers the ability to operate fairly complex data visualization in a very intuitive, drag and drop manner.. But, if you want to interact to a database, a developer skilled in SQL will have to create the SQL query to retrieve the dataset.With the Tableau server, there is no term of versioning. You build your reports and dashboards through your desktop and then publish them to the server. Once they’republished, there’s no alternate w ay to retrieve previous versions- once you overwrite there’s no pulling back options is available. , In the below figure [1] describes the excel format of data that is taken for processing in tableau platform.Fig.1. Original Data source in excel sheetThe below figure [2] describes the process of importing the original data source which is present in excel format to tableau-platform.Fig.2. Importing data set in to tableau frameworkAfter successfully importing the data in to tableau platform the data is divided in to two parts the numeric data are generally come in to the measure section and rest other data come to the dimension section. This division of data is generally done by the tableau itself. The a division of data in to dimension and measure section which is done by tableau internally, In the below figure[3] andFigure [4] the paper describes the data that is present on the original data source ,In the original data set profit and sale information about various, categories of products are present up to year 2017 and the paper has forecasted the profit and sale information on the forthcoming quarters of 2018.Fig.3. Profit Data Retrieve From Tableau ToolFig 4.Sales Data retrieve from tableau toolIn the below section the paper has described the estimated profit of different categories of product in forthcoming quarters. In Figure [5] the estimated profit for Furniture Category for forthcoming quarters are calculated ,In similar manner Figure[ 6] provides the estimate calculation of technology category product and Figure [7] represents the estimated calculation Office supplies product category, In tableau the forecast calculation is done on the basis of import data .Fig.5. Estimated Profit Calculation For Furniture CategoryFig.6. Estimated Profit Calculation For Technology CategoryFig.7. Estimated Profit Calculation For Office Supplies CategoryIn the below section the paper has described the estimated Sales of different categories of product in forthcoming quarters. In Figure [8] the estimated sale for Furniture Category for forthcoming quarters are calculated ,In similar manner Figure[ 9] provides the estimate sale calculation of technology category product and Figure [10] represents the estimated sale calculation of Office supplies product category, In tableau the forecast calculation is done on the basis of currently available sales data of different quarters. .Fig.8. Estimated Sale Calculation For Furniture CategoryFig.9. Estimated Sale Calculation For Technology CategoryFig.10. Estimated Sale Calculation For Office Supplies CategoryV.C ONCLUSIONDue to the increased market competition and increased data management an era has reached that needs more optimization technique to analysis the data. Big data technologies such as HADOOP proposes a framework for processing the data parallel y and after processing the data different visualization tools are used for representing the analyzed result in an effective manner which plays an important for decision making process in different business organizations[11]. Tableau will enhance decision making, add operational awareness, and increase performance throughout the organization[12]. The presented paper describes different tools used for business intelligence field and provides a depth knowledge regarding the tableau tool. Data visualization plays an important role for the business analytics in order to do different operation with data. Tableau analytics is one of the easiest and most powerful analytics tools today’s era[13].Tableau can assist to assemble sense of different types of data coming in from multiple sources and blend it into one unique platform so that everybody can make sense of it and utilize it[14].The Tableau Dashboard is an important feature of the Tableau Product that lets you allow to create unique data stories, It is constructed from the ground up for people who do not have any technical skills or coding experience for that matter. So anything can be done by anybody without any prior set of skills. This paper has explained the forecast methodologies in tableau framework and practically done the forecast by taking the dataset from business domain. There are many various types of visualization options available in Tableau which enhance the user experience. Also, Tableau is very easy to learn compared to Python, Business Objects and Domo, anyone without having knowledge of coding can easily learn Tableau. Tableau can operate millions of rows of data with ease. Various types of visualization can be initiated with a huge amount of data without impacting the performance of the dashboards. Also, there is an option available in Tableau where the user can make and can “live” to connections to different data sources like SQL etc and can perform multiple data manipulation operation [16] with the live data. Tableau Dashboard has a marvellous reporting feature that allows you to create personalize dashboard specifically for a convinced device such as a mobile phone or laptop. Tableau automatically figure out which device is the user is viewing the report on and do adjustments to ensure that the right report is delivered to the right device.Tableau has done a great job climb its way to the top of data visualization tools. So, Tableau has spent more than six years as a leader. However, with the increasing interest in data science, artificial intelligence, and machine learning, Tableau may be left behind if it doesn’t innovate quickly. Tableau does not support the aspect of automatic exhilarating of the reports with the help of scheduling. There is no other choice of scheduling in Tableau. Therefore, there is always some manual effort required when users need to update the data in the back-end. Tableau is not entirely an open tool. Just like other tools like Power BI, developers can create custom visuals that can be easily imported Tableau. So, any new visuals need to be recreated instead of imported. Tableau’s parameters are constant and always unique value can be preferred using a parameter. Whenever the data gets changed, these parameters need to be updated manually every time.VI.F UTURE S COPETableau is strictly a visualization tool. Tableau Desktop only permits you to perform very basic preprocessing, Which includes joining and blendingdata[17]. Also, you have the competence to change data types. In an ideal world, most data would be exported in perfect tables. However, data cleansing is a necessary step. In most cases, an analyst needs to build a data model with reappearing to format the data. This needs a tool such as Altyrex, Power BI, Python or even Excel to operate data prior to loading[18]. In 2018, introduced their own data preparation tool called Tableau Prep, Different researches are going on for optimizing the execution time and reduce the elapsed time for performing data analytics operation in tableau platform.R EFERENCES[1]Raghupathi W: Data Mining in Health Care. In HealthcareInformatics: Improving Efficiency and Productivity.Edited by Kudyba S. Taylor & Francis; 2010:211–223. [2] B. Jena, M. K. Gourisaria, S. S. Rautaray, and M. Pandey,\A surveywork on optimization techniques utilizing map reduce framework in hadoop cluster," International Journal of Intelligent Systems and Appli- cations, vol. 9, no. 4, p. 61, 2017.[3] B. Jena, M. K. Gourisaria, S. S. Rautaray and M. Pandey,"Name node performance enlarging by aggregator based HADOOP framework," 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, 2017, pp. 112-116.[4] B. Jena, M. K. Gourisaria, S. S. Rautaray and M. Pandey,"Improvising name node performance by aggregator aided HADOOP framework," 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, 2016, pp. 382-388.[5]Nages h HR, Guru Prasad “High PerformanceComputation of Big Data: Performance Optimization Approach towards a Parallel Frequent Item Set Mining Algorithm for Transaction Data based on Hadoop MapReduce Framework” International Journal of Intelligent Systems and Applications(IJISA), Vol.9, No.1, pp.75-84, 2017. DOI: 10.5815/ijisa.2017.01.08.[6]Siddharth S Rautaray, and Manjusha Pandey, “Single andMultiple Hand Gesture Recognition Systems: A Comparative Analysis”, I.J. Intelligent Systems and Applications, 6 (11), 57-65, 2014.[7]Rath Jairak, Prasong Praneetpolgrang, NivetChirawichitchai,"A Roadmap for Establishing Trust Management Strategy in E-Commerce Services Using Quality Based Assessment", IJIEEB, vol.6, no.5, pp.1-9, 2014. DOI: 10.5815/ijieeb.2014.05.01.[8]Jeffrey Dean and Sanjay Ghemawat , " Map Reduce:Simplified Data Processing on Large Clusters", IEEE Micro, 23(2):2228, April 2005.[9]Esma Yildirim, Engin Arslan, Jangyoung Kim, TevfikKosar. "Application-Level Optimization of Big Data Transfers through Pipelining, Parallelism and Concurrency", IEEE Transactions on Cloud Computing,2016[10]J. Archenaa, E.A. Mary Anita,” A Survey of Big DataAnalytics in Healthcare and Government”, Procedia Computer Science, Elsevier, Volume 50, 2015, Pages 408–413,Big Data, Cloud .[11]Gunjan Varshney1, D. S. Chauhan2, M. P. Dave,”Evaluation of Power Quality Issues in Grid Connected PV Systems”, International Journal of Electrical and Computer Engineering (IJECE), Vol. 6, No. 4, August 2016, pp. 1412~1420. [12]Ziv J., Lempel A., “A Universal Algorithm for SequentialData Compression,” IEEE Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343.[13]N.E. Ayat, M. Cheriet, C.Y. Suen ,“Automatic modelselection for the optimization of SVM kernels,” Artificial intelligence in medicine, vol. 38, no.10, pp. 1733-1745, 2005.[14]Hamid Bagheri , Abdusalam Abdullah Shaltooki., " BigData: Challenges, Opportunities and Cloud Based Solutions", International Journal of Electrical and Computer Engineering (IJECE),2015.[15]Sabyasachi Chakraborty, Kashyap Barua, ManjushaPandey, Siddharth Rautaray," A Proposal for High Availability of HDFS Architecture based on Threshold Limit and Saturation Limit of the Namenode", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.9, No.6, pp. 27-34, 2017. DOI: 10.5815/ijieeb.2017.06.04.[16]Mayank Bhushan , Monica Singh , Sumit K Yadav ,"Big Data query optimization by using Locality Sensitive Bloom Filter ",IJCT, 2015.[17]Liu, Yunxiang, and Jiongjun Du. "Parameter Optimizationof the SVM for Big Data", 2015 8th International Symposium on Computational Intelligence and Design (ISCID), 2015.[18]Lanchao Liu and Zhu Han , " Multi-Block ADMM forBig Data Optimization in Smart Grid " , IEEE, 2015. [19]Al-Madi, Nailah, Ibrahim Aljarah, and Simone A. Ludwig."Parallel glowworm swarm optimization clustering algorithm based on MapReduce", 2014 IEEE Symposium on Swarm Intelligence, 2014.[20] A. Ramaprasath, K. Hariharan, A. Srinivasan, “CacheCoherency Algorithm to Optimize Bandwidth in Mobile Networks”, Springer Verlag, Lecture Notes in Electrical Engineering, Networks and Communications, Chapter 24, Volume 284, 2014, pp 297-305.[21]Ziv J., Lempel A., “A Universal Algorithm for SequentialData Compression,” IEEE Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343[22] E. Yildirim, J. Kim, and T. Kosar, “Optimizing the samplesize for a cloud-hosted data schedulin g service,” in Proc.2nd Int. Workshop Cloud Computing. Sci. Appl., 2012. [23]Anitha P, Malini M. Patil," A Review on Data Analyticsfor Supply Chain Management: A Case study", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.10, No.5, pp. 30-39, 2018. DOI: 10.5815/ijieeb.2018.05.05[24]Abdus Satter, Nabil Ibtehaz," A Regression based SensorData Prediction Technique to Analyze Data Trustworthiness in Cyber-Physical System", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.10, No.3, pp. 15-22, 2018. DOI:10.5815/ijieeb.2018.03.03Author’s ProfileBibhudutta Jena, is a CSI AccreditedStudent. Completed M. Tech (ComputerScience and Engineering) at the School ofComputer Engineering, KIIT University,Bhubaneswar. His areas of interest DataAnalytics ,Data mining,Data visualizationetc .He has already published more than10 research papers in big data and analytics domain,He is currently pursuing as ansoftwareengineer in MPHASIS Limited. He can be reached atbibhudutta93@.How to cite this paper: Bibhudutta Jena, "An Approach for Forecast Prediction in Data Analytics Field by Tableau Software", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.11, No.1, pp. 19-26, 2019. DOI: 10.5815/ijieeb.2019.01.03。

相关文档
最新文档