高中数学-平面向量及常见题型
高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法单选题1、在△ABC 中,若AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ <0,则△ABC -定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 答案:C分析:根据向量的数量积的运算公式,求得cosA <0,得到A 为钝角,即可求解. 由向量的数量积的运算公式,可得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA <0,即cosA <0, 因为A ∈(0,π),所以A 为钝角,所以△ABC -定是钝角三角形. 故选:C.2、已知a ,b ⃗ 是不共线的向量,OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b ⃗ ,若A,B,C 三点共线,则实数λ,µ满足( )A .λ=μ−5B .λ=μ+5C .λ=μ−1D .λ=μ+1 答案:B解析:根据向量的线性运算方法,分别求得AB ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 再由AB⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,得到3−λ=−(2+μ),即可求解. 由OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b⃗ , 可得AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 若A,B,C 三点共线,则AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,可得3−λ=−(2+μ),化简得λ=μ+5. 故选:B.3、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ). A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9,即c 2−√3c −6=0,解得:c =−√3(舍),∴c =2√3.c故选:B.4、已知非零向量a →与b →共线,下列说法不正确的是( ) A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果. 非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确; 对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确; 对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确. 故选:A.5、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .6、已知f (x )=sin (ωx +π6)+cosωx (ω>0),将f (x )图象上的横坐标伸长到原来的2倍(纵坐标不变时),得到g (x )的图象.g (x )的部分图象如图所示(D 、C 分别为函数的最高点和最低点):其中CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,则ω=( )A .π4B .π2C .πD .2π 答案:C分析:先求出g (x )的解析式,再利用CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22得到cos∠ACB =12,进而求出|AB |=2,所以T =2×2=4,ω=π 由f (x )=√32sinωx +32cosωx =√3sin (ωx +π3),∴g (x )=√3sin (12ωx +π3),因为D 、C 分别为函数的最高点和最低点,所以DA =AC =CB ,由CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,即|CA ⃗⃗⃗⃗⃗ |2⋅cos∠ACB =|AD |22∴cos∠ACB =12,∴△ACB 为正三角形,又△ABC 的高为√3, ∴|AB |=2 ∴T =2×2=4, ∴即2π12ω=4πω=4,∴ω=π, 故选:C .7、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km,即向东北走3√2km.故选:B.8、在锐角△ABC中,角A,B,C的对边分别为a,b,c,S为△ABC的面积,且2S=a2−(b−c)2,则2b2+c2bc 的取值范围为()A.(4315,5915)B.[2√2,4315)C.[2√2,5915)D.[2√2,+∞)答案:C分析:根据余弦定理和△ABC的面积公式,结合题意求出sinA、cosA的值,再用C表示B,求出bc =sinBsinC的取值范围,即可求出2b2+c2bc的取值范围.解:在△ABC中,由余弦定理得a2=b2+c2−2bccosA,且△ABC的面积S=12bcsinA,由2S=a2−(b−c)2,得bcsinA=2bc−2bccosA,化简得sinA+2cosA=2,又A∈(0,π2),sin2A+cos2A=1,联立得5sin2A−4sinA=0,解得或sinA=0(舍去),所以bc =sinBsinC=sin(A+C)sinC=sinAcosC+cosAsinCsinC=45tanC+35,因为△ABC为锐角三角形,所以0<C<π2,B=π−A−C<π2,所以π2−A<C<π2,所以tanC>tan(π2−A)=1tanA=34,所以1tanC∈(0,43),所以bc∈(35,53),设bc =t,其中t∈(35,53),所以2b2+c2bc=2bc+cb=2t+1t=2(t+12t),由对勾函数单调性知y=2t+1t 在(35,√22)上单调递减,在(√22,53)上单调递增,当t=√22时,y=2√2;当t=35时,y=4315;当t=53时,y=5915;所以y∈[2√2,5915),即2b2+c2bc的取值范围是[2√2,5915).故选:C.小提示:关键点点睛:由2b2+c2bc =2bc+cb,所以本题的解题关键点是根据已知及bc=sinBsinC=sin(A+C)sinC=4 sin5AsinAcosC+cosAsinCsinC=45tanC+35求出bc的取值范围.多选题9、等边三角形ABC 中,BD →=DC →,EC →=2AE →,AD 与BE 交于F ,则下列结论正确的是( ) A .AD →=12(AB →+AC →)B .BE →=23BC →+13BA →C .AF →=12AD →D .BF →=12BA →+13BC →答案:AC分析:可画出图形,根据条件可得出D 为边BC 的中点,从而得出选项A 正确; 由EC →=2AE →可得出AE →=13AC →,进而可得出BE →=13BC →+23BA →,从而得出选择B 错误;可设AF →=12AD →,进而得出AF →=λ2AB →+3λ2AE →,从而得出λ=12,进而得出选项C 正确;由AF →=12AD →即可得出BF →=12BA →+14BC →,从而得出选项D 错误. 如图,∵BD →=DC →,∴D 为BC 的中点,∴AD →=12(AB →+AC →),∴A 正确; ∵EC →=2AE →,∴AE →=13AC →=13(BC →−BA →),∴BE →=BA →+AE →=BA →+13(BC →−BA →)=13BC →+23BA →,∴ B 错误;设AF →=λAD →=λ2AB →+λ2AC →=λ2AB →+3λ2AE →,且B ,F ,E 三点共线,∴λ2+3λ2=1,解得λ=12,∴AF →=12AD →,∴C 正确;BF →=BA →+AF →=BA →+12AD →=BA →+12(BD →−BA →)=BA →+14BC →−12BA →=12BA →+14BC →,∴D 错误. 故选:AC10、已知△ABC 是边长为2的等边三角形,D ,E 分别是AC,AB 上的点,且AE ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,BD 与CE 交于点O ,则( )A .OC ⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =0⃗B .AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0 C .|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√3D .ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为76 答案:BD解析:可证明EO =CE ,结合平面向量线性运算法则可判断A ;由AB⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 因为△ABC 是边长为2的等边三角形,AE⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ , 所以E 为AB 的中点,且CE ⊥AB ,以E 为原点如图建立直角坐标系,则E (0,0),A (−1,0),B (1,0),C(0,√3),由AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ 可得AD ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ =(23,2√33),则D (−13,2√33), 取BD 的中点G ,连接GE ,易得GE//AD 且GE =12AD =DC , 所以△CDO ≌△EGO ,EO =CO ,则O (0,√32), 对于A ,OC⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ≠0⃗ ,故A 错误;对于B ,由AB ⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 可得AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,故B 正确; 对于C ,OA ⃗⃗⃗⃗⃗ =(−1,−√32),OB ⃗⃗⃗⃗⃗ =(1,−√32),OC ⃗⃗⃗⃗⃗ =(0,√32),OD ⃗⃗⃗⃗⃗⃗ =(−13,√36), 所以OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(−13,−√33),所以|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=23,故C 错误; 对于D ,BC⃗⃗⃗⃗⃗ =(−1,√3),ED ⃗⃗⃗⃗⃗ =(−13,2√33), 所以ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为BC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗⃗ |BC⃗⃗⃗⃗⃗ |=13+22=76,故D 正确.故选:BD.小提示:关键点点睛:建立合理的平面直角坐标系是解题关键. 11、下列说法中错误的是( ). A .若a //b ⃗ ,b ⃗ //c ,c //d ,则a //d B .若|a |=|b ⃗ |且a //b ⃗ ,则a =b⃗ C .若a ,b ⃗ 非零向量且|a +b ⃗ |=|a −b ⃗ |,则a ⊥b ⃗ D .若a //b ⃗ ,则有且只有一个实数λ,使得a =λb ⃗ 答案:ABD分析:对于题中所给的条件与结论需要考虑周全,可以得出结论. A 选项,当b ⃗ ,c 中至少有一个0⃗ 时,a 与d 可能不平行,故A 错误; B 选项,由|a |=|b ⃗ |且a //b ⃗ ,可得a =b ⃗ 或a =−b⃗ ,故B 错误; C 选项,|a +b ⃗ |=|a −b ⃗ |,根据数量积规则,则两边平方化简可得a ⋅b ⃗ =0, ∴a ⊥b⃗ ,故C 正确; D 选项,根据向量共线基本定理可知当a ,b⃗ 都为非零向量时成立, a 为零向量时也成立(λ=0) ,若b ⃗ =0⃗ 时,λ 不存在,但b ⃗ //a (零向量与所有的向量共线),故D 错误; 故选:ABD.12、下列说法错误的是( )A .若a //b ⃗ ,则存在唯一实数λ使得a =λb⃗ B .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b⃗ 共线且反向C .已知a =(1,2),b ⃗ =(1,1),且a 与a +λb ⃗ 的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .在△ABC 中,BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,则△ABC 为等腰三角形 答案:AC分析:若a =b ⃗ =0⃗ 可判断A ;将已知条件两边平方再进行数量积运算可判断B ;求出a +λb ⃗ 的坐标,根据a ⋅(a +λb ⃗ )>0且a 与a +λb ⃗ 不共线求出λ的取值范围可判断C ;取AC 的中点D ,根据向量的线性运算可得CA ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0可判断D ,进而可得正确选项. 对于A :若a =b ⃗ =0⃗ 满足a //b⃗ ,则实数λ不唯一,故选项A 错误; 对于B :两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则(a −b ⃗ )2=(|a |+|b⃗ |)2, 所以a 2+b ⃗ 2−2a ⋅b ⃗ =|a |2+|b ⃗ |2+2|a ||b ⃗ |,可得2a ⋅b ⃗ =2|a ||b ⃗ |⋅cos 〈a ⋅b ⃗ 〉=−2|a ||b ⃗ |,cos 〈a ⋅b ⃗ 〉=−1,因为0≤〈a ⋅b ⃗ 〉≤π,所以〈a ⋅b ⃗ 〉=π,所以a 与b⃗ 共线且反向,故选项B 正确; 对于C :已知a =(1,2),b ⃗ =(1,1),所以a +λb ⃗ =(1+λ,2+λ),若a 与a +λb ⃗ 的夹角为锐角,则a ⋅(a +λb ⃗ )=1+λ+2(2+λ)>0,解得:λ>−53,当λ=0时,a +λb ⃗ =a ,此时a 与a +λb ⃗ 的夹角为0,不符合题意,所以λ≠0,所以λ的取值范围是(−53,0)∪(0,+∞),故选项C 不正确;对于D :在△ABC 中,取AC 的中点D ,由BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅2BD ⃗⃗⃗⃗⃗⃗ =0,故BD 垂直平分AC ,所以△ABC 为等腰三角形,故选项D 正确. 故选:AC .13、有下列说法,其中错误的说法为 A .若a //b ⃗ ,b ⃗ //c ,则a //cB .若2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S ΔAOC ,S ΔABC 分别表示ΔAOC ,ΔABC 的面积,则S ΔAOC :S ΔABC =1:6 C .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向D .若a //b ⃗ ,则存在唯一实数λ使得a =λb ⃗ 答案:AD分析:对每一个选项逐一分析判断得解.A. 若a //b ⃗ ,b ⃗ //c ,则a //c ,如果a ,c 都是非零向量,b ⃗ =0⃗ ,显然满足已知条件,但是结论不一定成立,所以该选项是错误的;B. 如图,D,E 分别是AC,BC 的中点,2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0⃗ ,∴2(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=0⃗ ,∴4OD ⃗⃗⃗⃗⃗⃗ +2OE ⃗⃗⃗⃗⃗ =0⃗ ,∴OE ⃗⃗⃗⃗⃗ =−2OD ⃗⃗⃗⃗⃗⃗ , 所以OD =16AB,则S ΔAOC :S ΔABC =1:6,所以该选项是正确的;C. 两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向,所以该选项是正确的;D. 若a //b ⃗ ,如果a 是非零向量,b ⃗ =0⃗ ,则不存在实数λ使得a =λb ⃗ ,所以该选项是错误的. 故选A,D小提示:本题主要考查平面向量的运算,考查向量的平行及性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 填空题14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b ⃗ ,且a ,b ⃗ 是不共线的向量,则向量PQ⃗⃗⃗⃗⃗ =___________. 答案:−12a −12b⃗ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b⃗ 所以PE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =−12a ,EQ ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =−12b ⃗ , 所以PQ ⃗⃗⃗⃗⃗ =PE ⃗⃗⃗⃗⃗ +EQ ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ =−12a −12b⃗ .所以答案是:−12a−12b⃗15、在△ABC中,若a=2,c=2√3,cosC=−12,M是BC的中点,则AM的长为____________.答案:√7分析:在△ABC中,由余弦定理求出b=2,进而,在△AMC中,由余弦定理可得AM.在△ABC中,由余弦定理c2=b2+a2−2abcosC得b2+2b−8=0,又b>0,所以b=2.在△AMC中,CA=b=2,CM=a2=1,由余弦定理得AM2=CA2+CM2−2CA⋅CM⋅cosC=22+12−2×2×1×(−12)=7,所以AM=√7.所以答案是:√7.16、在△ABC中,cos∠BAC=−13,AC=2,D是边BC上的点,且BD=2DC,AD=DC,则AB等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可.设DC=x,AB=y,因为BD=2DC,AD=DC,所以BC=3x,AD=DC=x,在△ADC中,由余弦定理可知:cosC=AC2+CD2−AD22AC⋅DC =4+x2−x24x=1x,在△ABC中,由余弦定理可知:cosC=AC2+CB2−AB22AC⋅BC =4+9x2−y212x,于是有4+9x2−y212x =1x⇒9x2−y2=8(1),在△ABC中,由余弦定理可知:cosA=AB2+CA2−CB22AB⋅AC =y2+4−9x24y=−13,⇒27x2−3y2−4y=12(2),把(1)代入(2)中得,y=3,所以答案是:3解答题17、记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2答案:(1)5π8;(2)证明见解析.分析:(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.18、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2OD令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5 ∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题。
高中数学-平面向量专题

第一部分:平面对量的概念及线性运算一.基础学问 自主学习1.向量的有关概念名称定义备注向量 既有 又有 的量;向量的大小叫做向量的 (或称 )平面对量是自由向量零向量 长度为 的向量;其方向是随意的 记作0单位向量 长度等于 的 向量非零向量a 的单位向量为±a|a |平行向量 方向 或 的非零向量0与任一向量 或共线 共线向量 的非零向量又叫做共线向量 相等向量长度 且方向 的向量 两向量只有相等或不等,不能比较大小相反向量长度 且方向 的向量 0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法 求两个向量和的运算(1)交换律: a +b =b +a . (2)结合律:(a +b )+c =a +(b +c ).减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差法则 a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向 ;当λ<0时,λa 的方向与a 的方向 ;当λ=0时,λa =0.λ(μa )=λμa ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb .3.共线向量定理 向量a (a ≠0)与b 共线的 条件是存在唯一一个实数λ,使得b =λa .二.难点正本 疑点清源1.向量的两要素向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区分向量平行包括向量共线(或重合)的状况,而直线平行不包括共线的状况.因而要利用向量平行证明向量所在直线平行,必需说明这两条直线不重合.三.基础自测1.化简OP →-QP →+MS →-MQ →的结果等于________.2.下列命题:①平行向量肯定相等;②不相等的向量肯定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量肯定共线.其中不正确命题的序号是_______.3.在△ABC 中,AB →=c ,AC →=b .若点D 满意BD →=2DC →,则AD →=________(用b 、c 表示).4.如图,向量a -b 等于( ) A .-4e 1-2e 2 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 25.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则肯定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D四.题型分类 深度剖析题型一 平面对量的有关概念 例1 给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c .其中正确的序号是________.变式训练1 推断下列命题是否正确,不正确的请说明理由.(1)若向量a 与b 同向,且|a |=|b |,则a>b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)若|a |=|b |,且a 与b 方向相同,则a =b ;(4)由于零向量的方向不确定,故零向量不与随意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反;(6)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等题型二 平面对量的线性运算例2 如图,以向量OA →=a ,OB →=b 为边作▱OADB ,BM →=13BC →,CN →=13CD →,用a 、b 表示OM →、ON →、MN →.变式训练2 △ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N .设AB →=a ,AC →=b ,用a 、b表示向量AE →、BC →、DE →、DN →、AM →、AN →.题型三 平面对量的共线问题例3 设e 1,e 2是两个不共线向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2.(1)求证:A 、B 、D 三点共线;(2)若BF →=3e 1-ke 2,且B 、D 、F 三点共线,求k 的值.变式训练3 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.五.思想与方法5.用方程思想解决平面对量的线性运算问题试题:如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b表示向量OM →.六.思想方法 感悟提高方法与技巧1.将向量用其它向量(特殊是基向量)线性表示,是非常重要的技能,也是向量坐标形式的基础.2.可以运用向量共线证明线段平行或三点共线问题.如AB →∥CD →且AB 与CD 不共线,则AB ∥CD ;若AB →∥BC →,则A 、B 、C 三点共线. 失误与防范1.解决向量的概念问题要留意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满意条件.要特殊留意零向量的特殊性.2.在利用向量减法时,易弄错两向量的依次,从而求得所求向量的相反向量,导致错误.七.课后练习1.给出下列命题:①两个具有公共终点的向量,肯定是共线向量;②两个向量不能比较大小,但它们的模能比较大小; ③λa =0 (λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( ) A .1 B .2 C .3 D .42.若A 、B 、C 、D 是平面内随意四点,给出下列式子:AB +CD →=BC +DA →;②AC +BD →=AD BC +;③AC -BD →=DC →+AB .其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3. 已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满意CB AC +2=0,则OC 等于( )A.OA 2-OB →B.OA -+2OB →C.OA 32-13OB →D.OA 31-+23OB →4.如图所示,在△ABC 中,BD =12DC →,AE →=3ED →,若AB =a ,AC =b ,则BE →等于( )A.13a +13b B .-12a +14b C.12a +14b D .-13a +13b 5. 在四边形ABCD 中,AB =a +2b,BC =-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形态是( )A .矩形B .平行四边形C .梯形D .以上都不对 6. AB =8,AC =5,则BC 的取值范围是__________. 7.给出下列命题:①向量AB 的长度与向量BA →的长度与向量BA →的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,肯定是共线向量;⑤向量AB 与向量CD →与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上. 其中不正确的个数为____________.8.如图,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N.若AB =mAM →,AC =nAN →,则m +n 的值为________.9.设a 与b 是两个不共线向量,且向量a +λb 与-(b -2a)共线,则λ=________.10.在正六边形ABCDEF 中,AB =a ,AF →=b ,求AD AC ,,AE →.11.如图所示,△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM的值.12.已知点G 是△ABO 的重心,M 是AB 边的中点.(1)求GA +GB →+GO →;(2)若PQ 过△ABO 的重心G,且AO =a, OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n=3.其次部分:平面对量的基本定理及坐标表示一.基础学问 自主学习1.两个向量的夹角定义范围已知两个 向量a ,b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图)向量夹角θ的范围是 ,当θ= 时,两向量共线,当θ= 时,两向量垂直,记作a ⊥b .2.平面对量基本定理及坐标表示(1)平面对量基本定理假如e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的随意向量a , 一对实数λ1,λ2,使a = .其中,不共线的向量e 1,e 2叫做表示这一平面内全部向量的一组 . (2)平面对量的正交分解及坐标表示把一个向量分解为两个 的向量,叫做把向量正交分解. (3)平面对量的坐标表示①在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,由平面对量基本定理可知,有且只有一对实数x ,y ,使a =xi +yj ,这样,平面内的任一向量a 都可由x ,y 唯一确定,把有序数对 叫做向量a 的坐标,记作a = ,其中 叫做a 在x 轴上的坐标, 叫做a 在y 轴上的坐标.②设OA →=xi +yj ,则向量OA →的坐标(x ,y )就是 的坐标,即若OA →=(x ,y ),则A 点坐标为 ,反之亦成立.(O 是坐标原点) 3.平面对量坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b = ,a -b = , λa = ,|a |= . (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →= ,|AB →|= . 4.平面对量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔ .二.难点正本 疑点清源1.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内随意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯一的. 2.向量坐标与点的坐标的区分在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应留意其表示形式的区分,如点A (x ,y ),向量a =OA →=(x ,y ).当平面对量OA →平行移动到O 1A 1→时,向量不变即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了改变.三.基础自测1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.2.已知向量a =(1,2),b =(-3,2),若ka +b 与b 平行,则k =________.3.设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,则向量d =____________.4.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为 ( )A.⎝⎛⎭⎫2,72B.⎝⎛⎭⎫2,-12 C .(3,2) D .(1,3)5.已知平面对量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于y 轴B .平行于第一、三象限的角平分线C .平行于x 轴D .平行于其次、四象限的角平分线四.题型分类 深度剖析题型一 平面对量基本定理的应用例1 如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.变式训练1 如图,P 是△ABC 内一点,且满意条件AP →+2BP →+3CP →=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用p 表示CQ →.题型二 向量坐标的基本运算例2 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满意a =mb +nc 的实数m ,n ;(3)求M 、N 的坐标及向量MN →的坐标.变式训练2 (1)已知点A 、B 、C 的坐标分别为A (2,-4)、B (0,6)、C (-8,10),求向量AB →+2BC →-12AC →的坐标;(2)已知a =(2,1),b =(-3,4),求:①3a +4b ;②a -3b ;③12a -14b .题型三 平行向量的坐标运算例3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题:(1)求满意a =mb +nc 的实数m ,n ;(2)若(a +kc )∥(2b -a ),求实数k ; (3)若d 满意(d -c )∥(a +b ),且|d -c |=5,求d .变式训练3 已知a =(1,0),b =(2,1).(1)求|a +3b |;(2)当k 为何实数时,ka -b 与a +3b 平行,平行时它们是同向还是反向?五.易错警示8.忽视平行四边形的多样性致误试题:已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.六.思想方法 感悟提高方法与技巧1.平面对量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理,从而向量可以解决平面解析几何中的很多相关问题. 3.在向量的运算中要留意待定系数法、方程思想和数形结合思想的运用. 失误与防范1.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.同时,a ∥b 的充要条件也不能错记为x 1x 2-y 1y 2=0,x 1y 1-x 2y 2=0等.七.课后练习1.已知向量a =(1,-2),b =(1+m,1-m ),若a ∥b ,则实数m 的值为( ) A .3 B .-3 C .2 D .-22.已知平面对量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)3.设向量a =(3,3),b 为单位向量,且a ∥b ,则b 等于( )A.⎝⎛⎭⎫32,-12或⎝⎛⎭⎫-32,12B.⎝⎛⎭⎫32,12C.⎝⎛⎭⎫-32,-12D.⎝⎛⎭⎫32,12或⎝⎛⎭⎫-32,-124.已知向量a =(1,-m ),b =(m 2,m ),则向量a +b 所在的直线可能为( ) A .x 轴 B .第一、三象限的角平分线 C .y 轴 D .其次、四象限的角平分线5.已知A(7,1)、B(1,4),直线ax y 21=与线段AB 交于C ,且=AC 2CB →,则实数a 等于( )A .2B .1C.45D.536.若三点A (2,2),B (a,0),C (0,b ) (ab ≠0)共线,则1a +1b的值等于________.7.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.8.若向量a )43,3(2--+=x x x 与AB 相等,其中A (1,2),B (3,2),则x =________.9.若平面对量a ,b 满意|a +b|=1,a +b 平行于y 轴,a =(2,-1),则b =______________. 10. a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行?平行时它们是同向还是反向?11.三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量m =(3c -b ,a -b ),n =(3a +3b ,c ),m ∥n.(1)求cos A 的值;(2)求sin(A +30°)的值.12.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知向量m =(a ,b ),向量n =(cos A ,cos B ),向量p =⎝⎛⎭⎫22sin B +C2,2sin A ,若m ∥n ,p 2=9,求证:△ABC 为等边三角形.第三部分:平面对量的数量积一.基础学问 自主学习1.平面对量的数量积已知两个非零向量a 和b ,它们的夹角为θ,则数量_______叫做a 和b 的数量积(或内积),记作________________. 规定:零向量与任一向量的数量积为____.两个非零向量a 与b 垂直的充要条件是 ,两个非零向量a 与b 平行的充要条件是 .2.平面对量数量积的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影_________的乘积.3.平面对量数量积的重要性质 (1)e ·a =a ·e = ;(2)非零向量a ,b ,a ⊥b ⇔ ; (3)当a 与b 同向时,a ·b = ;当a 与b 反向时,a ·b = ,a ·a =a 2,|a|=a·a ; (4)cos θ=a·b |a||b|;(5)|a ·b|____|a ||b |.4.平面对量数量积满意的运算律 (1)a·b = (交换律);(2)(λa )·b = = (λ为实数); (3)(a +b )·c = .5.平面对量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b = ,由此得到 (1)若a =(x ,y ),则|a |2= 或|a |= .(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=AB = . (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔ .二.难点正本 疑点清源1.向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,肯定要留意两向量夹角的范围. 2.数量积的运算只适合交换律、加乘安排律及数乘结合律,但不满意向量间的结合律,即(a ·b)c 不肯定等于a(b ·c).这是由于(a ·b)c 表示一个与c 共线的向量,而a(b ·c)表示一个与a 共线的向量,而c 与a 不肯定共线.三.基础自测1.已知向量a 和向量b 的夹角为30°,|a|=2,|b|=3,则向量a 和向量b 的数量积a·b =________.2.在△ABC 中,AB =3,AC =2,BC 10则AC AB ·=______.3.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.4.已知|a|=6,|b|=3,a·b =-12,则向量a 在向量b 方向上的投影是 ( ) A .-4 B .4 C .-2 D .25.已知向量a =(1,-1),b =(1,2),向量c 满意(c +b)⊥a ,(c -a)∥b ,则c 等于 ( ) A .(2,1) B .(1,0) C.⎝⎛⎭⎫32,12 D .(0,-1)四.题型分类 深度剖析题型一 求两向量的数量积例1 (1)在Rt △ABC 中,∠C =90°,AB =5,AC =4,求BC AB ·; (2)若a =(3,-4),b =(2,1),试求(a -2b)·(2a +3b).变式训练1 (1)若向量a 的方向是正南方向,向量b 的方向是正东方向,且|a|=|b|=1,则(-3a)·(a +b)=______.(2)如图,在△ABC 中,AD ⊥AB ,BC = 3 BD →,|AD |=1,则AD AC ·等于( ) A .2 3 B.32 C.33D.3题型二 求向量的模例2 已知向量a 与b 的夹角为120°,且|a|=4,|b|=2,求:(1)|a +b|;(2)|3a -4b|;(3)(a -2b)·(a +b).变式训练2 设向量a ,b 满意|a -b |=2,|a|=2,且a -b 与a 的夹角为π3,则|b|=________.题型三 利用向量的数量积解决夹角问题例3 已知a 与b 是两个非零向量,且|a|=|b|=|a -b|,求a 与a +b 的夹角.变式训练3 设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.题型四 平面对量的垂直问题例4 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π). (1)求证:a +b 与a -b 相互垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)变式训练4 已知平面内A 、B 、C 三点在同一条直线上,OA =(-2,m ),OB →=(n,1),OC =(5,-1),且OA →⊥OB →,求实数m ,n 的值.五.答题规范5.思维要严谨,解答要规范试题:设两向量e 1、e 2满意|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.六.思想方法 感悟提高方法与技巧1. 向量的数量积的运算法则不具备结合律,但运算律和实数运算律类似.如(a +b)2=a 2+2a·b +b 2;(λa +μb)·(s a +t b)=λs a 2+(λt +μs )a·b +μt b 2(λ,μ,s ,t ∈R).2.求向量模的常用方法:利用公式|a|2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法技巧.失误与防范1.(1)0与实数0的区分:0a =0≠0,a +(-a)=0≠0,a·0=0≠0;(2)0的方向是随意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系.2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a ⊥b.3.一般地,(a·b)c≠(b·c)a 即乘法的结合律不成立.因a·b 是一个数量,所以(a·b)c 表示一个与c 共线的向量,同理右边(b·c)a 表示一个与a 共线的向量,而a 与c 不肯定共线,故一般状况下(a·b)c≠(b·c)a.4.a·b =a·c(a≠0)不能推出b =c .即消去律不成立.5.向量夹角的概念要领悟,比如正三角形ABC 中,〈,AB BC 〉应为120°,而不是60°.七.课后练习1.设向量a =(1,0),b =(12,12),则下列结论中正确的是( ) A .|a |=|b | B .a·b =22C .a ∥bD .a -b 与b 垂直2.若向量a =(1,1),b =(2,5),c =(3,x ),满意条件(8a -b)·c =30,则x 等于( )A .6B .5C .4D .33.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与a +2b 的夹角等于( )A .150°B .90°C .60°D .30°4.平行四边形ABCD 中,AC 为一条对角线,若AB =(2,4),AC =(1,3),则⋅AD BD 等于( )A .6B .8C .-8D .-65.若e 1、e 2是夹角为π3的单位向量,且向量a =2e 1+e 2,向量b =-3e 1+2e 2,则a·b 等于( ) A .1 B .-4 C .-72 D.726.若向量a ,b 满意|a |=1,|b |=2且a 与b 的夹角为π3,则|a +b |=________. 7.已知向量a ,b 满意|a |=3,|b |=2,a 与b 的夹角为60°,则a·b =________,若(a -mb )⊥a ,则实数m =________.8.设a 、b 、c 是单位向量,且a +b =c ,则a·c 的值为________.9.(O 是平面α上一点,A 、B 、C 是平面α上不共线的三点.平面α内的动点P 满意),(AC AB OA OP ++=λ若λ=12时,()⋅+PA PB PC 的值为______. 10.不共线向量a ,b 的夹角为小于120°的角,且|a |=1,|b |=2,已知向量c =a +2b ,求|c |的取值范围.11.已知平面对量a =(1,x ),b =(2x +3,-x ),x ∈R.(1)若a ⊥b ,求x 的值;(2)若a ∥b ,求|a -b |.12.向量a =(cos 23°,cos 67°),向量b =(cos 68°,cos 22°).(1)求a·b ;(2)若向量b 与向量m 共线,u =a +m ,求u 的模的最小值.第四部分:平面对量应用举例一.基础学问 自主学习1.向量在平面几何中的应用平面对量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相像、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相像问题,常用共线向量定理:a ∥b ⇔ ⇔ .(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔ ⇔ .(3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b|=x 1x 2+y 1y 2x 21+y 21x 22+y 22(θ为a 与b 的夹角).2.平面对量在物理中的应用(1)由于物理学中的力、速度、位移都是 ,它们的分解与合成与向量的 相像,可以用向量的学问来解决.(2)物理学中的功是一个标量,这是力F 与位移s 的数量积.即W =F ·s =|F ||s|cos θ (θ为F 与s 的夹角).3.平面对量与其他数学学问的交汇平面对量作为一种运算工具,常常与函数、不等式、三角函数、数列、解析几何等学问结合,当平面对量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面对量平行或垂直的充要条件;二是利用向量数量积的公式和性质.二.难点正本 疑点清源1.向量兼具代数的抽象与严谨和几何的直观,向量本身是一个数形结合的产物.在利用向量解决问题时,要留意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合.2.要留意变换思维方式,能从不同角度看问题,要擅长应用向量的有关性质解题.三.基础自测1.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6).则D 点的坐标为________.2.已知平面对量α、β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.3.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方程为_______________.4.已知A 、B 是以C 为圆心,半径为5的圆上两点,且|AB |=5,CB AC ·等于 ( ) A .-52 B.52 C .0 D.5325.某人先位移向量a :“向东走3 km”,接着再位移向量b :“向北走3 km”,则a +b 表示 ( )A .向东南走3 2 kmB .向东北走3 2 kmC .向东南走3 3 kmD .向东北走3 3 km四.题型分类 深度剖析题型一 向量在平面几何中的应用例1 如图,在等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,D 为BC 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .变式训练1 在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线 的长;(2)设实数t 满意(AB →-tOC →)·OC →=0,求t 的值.题型二 平面对量在解析几何中的应用例2 已知点P (0,-3),点A 在x 轴上,点M 满意⋅PA AM =0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.变式训练2 已知圆C :(x -3)2+(y -3)2=4及点A (1,1),M 是圆上的随意一点,点N 在线段MA 的延长线上,且MA =2AN →,求点N 的轨迹方程.题型三 平面对量与三角函数例3 已知向量a =(sin x ,cos x ),b =(sin x ,sin x ),c =(-1,0).(1)若x =π3,求向量a 与c 的夹角; (2)若x ∈⎣⎡⎦⎤-3π8,π4,求函数f (x )=a·b 的最值; (3)函数f (x )的图象可以由函数y =22sin 2x (x ∈R)的图象经过怎样的变换得到?变式训练3 已知A (3,0),B (0,3),C (cos α,sin α).(1)若AC ·BC =-1,求sin ⎝⎛⎭⎫α+π4的值;(2) 若|OA +OC |=13,且α∈(0,π),求OB →与OC 的夹角.五.易错警示9.忽视对直角位置的探讨致误试题:已知平面上三点A 、B 、C ,向量BC =(2-k,3),AC =(2,4).(1) 若三点A 、B 、C 不能构成三角形,求实数k 应满意的条件;(2)若△ABC 为直角三角形,求k 的值.六.思想方法 感悟提高方法与技巧1. 向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合供应了前提,运用向量的有关学问可以解决某些函数问题.2. 以向量为载体,求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3. 有关线段的长度或相等,可以用向量的线性运算与向量的模.4.用向量方法解决平面几何问题的步骤(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,探讨几何元素之间的关系;(3)把运算结果“翻译”成几何关系.5.向量的坐标表示,使向量成为解决解析几何问题的有力工具,在证明垂直、求夹角、写直线方程时显示出了它的优越性,在处理解析几何问题时,须要将向量用点的坐标表示,利用向量的有关法则、性质列出方程,从而使问题解决.失误与防范1.向量关系与几何关系并不完全相同,要留意区分.例如:向量AB ∥CD →并不能说明AB ∥CD .2.加强平面对量的应用意识,自觉地用向量的思想和方法去思索问题.七.课后练习1.已知△ABC AC AB =,则肯定有( )A .AB ⊥AC B .AB =ACC .(AB +AC )⊥(AB -AC )D .AB +AC =AB -AC2.点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设起先时点P 的坐标为(-10,10),则5秒后质点P 的坐标为( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)3.平面上有四个互异点A 、B 、C 、D ,已知(2)()0+-⋅-=DB DC DA AB AC ,则△ABC 的形态是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形4.如图,△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7,则⋅AO BC 等于( )A.32B.52C .2D .35.平面上O 、A 、B 三点不共线,设b a ==OB OA ,,则△OAB 的面积等于( ) A.|a |2|b |2-(a ·b )2 B.|a |2|b |2+(a ·b )2 C.12|a |2|b |2-(a ·b )2 D.12|a |2|b |2+(a ·b )2 6.已知|a|=3,|b|=2,〈a ,b 〉=60°,则|2a +b|=________.7.河水的流速为2 m/s ,一艘小船想以垂直于河岸方向10 m/s 的速度驶向对岸,则小船的静水速度大小为________.8.已知△ABO 三顶点的坐标为A (1,0),B (0,2),O (0,0),P (x,y )是坐标平面内一点,且满意AP ·OA →≤0,BP →·OB →≥0,则OP →·AB 的最小值为________.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若AB ·AC =1⋅=BA BC ,那么c =________. 10.如右图,在Rt △ABC 中,已知BC =a,若长为2a 的线段PQ 以点A 为中心,问PQ 与BC →的夹角θ取何值时BP →·CQ的值最大?并求出这个最大值.11.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.12.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若BC BA AC AB ··==k (k ∈R).(1)推断△ABC 的形态;(2)若c =2,求k 的值.。
第13讲 平面向量十大题型总结(解析版)-2024高考数学常考题型

第13讲平面向量十大题型总结【题型目录】题型一:平面向量线性运算题型二:平面向量共线问题题型三:平面向量垂直问题题型四:平面向量的夹角问题题型五:平面向量数量积的计算题型六:平面向量的模问题题型七:平面向量的投影问题题型八:万能建系法解决向量问题题型九:平面向量中的最值范围问题题型十:平面向量中多选题【典型例题】题型一:平面向量线性运算【例1】在ABC △中,D 是AB 边上的中点,则CB =()A .2CD CA+ B .2CD CA- C .2CD CA- D .2CD CA+ 【答案】C【解析】:CA CD AC CD CD AC CD AD CD DB CD CB -=+=++=+=+=22【例2】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC-B .1344AB AC-C .3144+AB AC D .1344+AB AC 【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++ 1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【例3】在ABC 中,点P 为AC 中点,点D 在BC 上,且3BD DC = ,则DP =()A .1144AB AC+B .1144AB AC--C .1144AB AC-D .1144AB AC-+【答案】B【解析】∵点P 为AC 中点,∴12AP AC = ,∵3BD DC =,()3AD AB AC AD ∴-=- ,∴1344AD AB AC =+ ,∴113244DP AP AD AC AB AC =-=-- =1144AB AC --,故选:B.【例4】在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且EB AB AC λμ=+,则λ=________,μ=_________.【答案】3414-【解析】如下图所示:D Q 为BC 的中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,E 为AD 的中点,所以,()1124AE AD AB AC ==+,因此,()131444EB AB AE AB AB AC AB AC =-=-+=- ,即34λ=,14μ=-.故答案为:34;14-.【例5】如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 中点,点F 为线段BC 的中点,则FE =()A .2136AB AC+B .2136AB AC-+C .1263AB AC+D .1263AB AC-+点F 为线段BC 的中点,13BD BA AD BA BC BA =+=+=+ 又2BD FE = ,2136FE AB AC ∴=-+.【题型专练】1.设,,D E F 分别为ABC 的三边BC,CA,AB 的中点,则EB FC +=()A .ADB .12ADC .12BCD .BC【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选:A2.设D为△ABC所在平面内的一点,若3,AD BD CD CA CBλμ==+,则μλ=_____.【答案】3-【解析】如图所示:3CD CA AD CA BD=+=+,CA=+3(CD CB-),即有CD=﹣1322CA CB+,因为CD CA CBλμ=+,所以λ=﹣12,μ=32,则μλ=﹣3,故答案为:﹣3.3.在ABC中,4AC AD=,P为BD上一点,若13AP AB ACλ=+,则实数λ的值()A.18B.316C.16D.38【答案】C【解析】4AC AD=,14AD AC∴=,则14BD AD AB AC AB=-=-,1233BP AP AB AB AC AB AC ABλλ⎛⎫=-=+-=-⎪⎝⎭,由于P为BD上一点,则//BP BD,设BP k BD=,则21344kAC AB k AC AB AC k ABλ⎛⎫-=-=-⎪⎝⎭,所以423kkλ⎧=⎪⎪⎨⎪=⎪⎩,解得16λ=.4.在ABC 中,2AB =,4BC =,60ABC ∠=︒,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则λμ+=()A .13B .23C .38D .58【答案】D【解析】AD 是BC 边上的高,∴90ADB ∠=︒,在ADB △中,1cos 22BD BD ABD AB ∠===,解得1BD =, 4BC =,∴14BD BC =,∴14AD AB BD AB BC =+=+, O 为AD 中点,∴1111122428AO AD AB BC AB BC ⎛⎫==+=+ ⎪⎝⎭ , AO AB BC λμ=+ ,∴1128AB BC AB BC λμ+=+ ,∴12λ=,18μ=,∴115288λμ+=+=.5.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么()A .AO OD =B .2AO OD=C .3AO OD=D .4AO OD =【答案】A【解析】D 为BC 边中点,∴2OB OC OD +=,∵20OA OB OC ++=,∴0OA OD =+,即AO OD =.6.设D 为ABC 所在平面内一点,且满足3CD BD =,则()A .3122AD AB AC =-B .3122=+AD AB ACC .4133AD AB AC =-D .4133AD AB AC=+ ∴2CB BD =,即12BD CB = .()12123122AD AB BD ABCBAB AB ACAB AC ∴=+=+=+-=- 故选:A.题型二:平面向量共线问题【例1】已知向量()1,2a =- ,()sin ,cos b αα= ,若//a b,则tan α=()A .12-B .2-C .12D .2【例2】与模长为13的向量()12,5d =平行的单位向量为()A .1251313⎛⎫ ⎪⎝⎭,B .1251313⎛⎫-- ⎪⎝⎭,C .1251313⎛⎫ ⎪,或1251313⎛⎫-- ⎪,D .1251313⎛⎫- ⎪,或1251313⎛⎫- ⎪,【例3】已知向量()1,2AB =,(),7BC m =,()3,1CD =-,若A ,B ,D 三点共线,则m =________.【例4】设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ=___.【答案】21【解析】因向量λ+a b 与2+a b 平行,所以()b a b a ba μμμλ22+=+=+,所以⎩⎨⎧==μμλ21,解得⎪⎩⎪⎨⎧==2121μλ【例5】在ABC ∆中,点P 满足3BP PC = ,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ= ,()0,0AN AC μλμ=>>,则λμ+的最小值为()A .212+B .12+C .32D .52【答案】B【解析】如下图所示:3BP PC = ,即()3AP AB AC AP -=- ,1344AP AB AC∴=+ ,AM AB λ= ,()0,0AN AC μλμ=>> ,1AB AM λ∴=,1AC ANμ= ,1344AP AM ANλμ∴=+ ,M 、P 、N 三点共线,则13144λμ+=.()133********λμλμλμλμμλ⎛⎫∴+=++=++≥=+ ⎪⎝⎭,当且仅当μ=时,等号成立,因此,λμ+的最小值为312+,故选:B.【题型专练】1.已知非零向量a ,b ,c ,若(1)a x = ,,(41)b =- ,,且//a c ,//b c则x =()A .4B .4-C .14D .14-【答案】D【解析】:因非零向量c b a ,,,且//a c ,//b c ,所以a 与b 共线,所以()x 411=-⨯,所以41-=x 2.已知向量的(7,6)AB =,(3,)BC m =- ,(1,2)AD m =- ,若A ,C ,D 三点共线,则m =______.3.已知向量a ,b 是两个不共线的向量,且35OA a b =+,47OB a b =+,OC a mb =+,若A ,B ,C 三点共线,则m =()A .1B .1-C .2D .2-【答案】A【解析】法一:b a b a b a OB AO AB 27453+=++--=+=,()b m a b m a b a OC BO BC 7374-+-=++--=+=,因A ,B ,C 三点共线,所以AB 与BC 共线,所以()[]()b m a b m a b a 73732-+-=-+-=+λλλ,所以()⎩⎨⎧-=-=7231m λλ,解得⎪⎩⎪⎨⎧=-=131m λ法二:由,,A B C 三点共线,得(1)(4)(72)OC xOA x OB x a x b =+-=-+-,故41,72,x x m -=⎧⎨-=⎩解得1m =.4.设12e e,是两个不共线的向量,若向量12m e ke =-+(k ∈R )与向量212n e e =-共线,则A .0k =B .1k =C .2k =D .12k =【答案】D【解析】因为向量12=-+ m e ke (k ∈R )与向量212=-n e e 共线,所以存在实数λ,使得λ=m n ,所以有2211(2)λ-+=- e ke e e ,因此12k λλ=⎧⎨-=-⎩,解得12k =.5.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM = ,AC nAN =,则m n +=()A .1B .32C .2D .3【答案】C【解析】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+,M 、O 、N 三点共线,122m n∴+=,2m n ∴+=.故选:C.6.已知M 为ABC 的边AB 的中点,N 为ABC 内一点,且13AN AM BC =+ ,则AMNBCNS S =△△()A .16B .13C .12D .23【答案】B【解析】因为13AN AM BC =+,所以13MN BC = ,所以MN ∥BC ,又因为M 为边AB 的中点,所以点A 到MN 的距离等于点N 到BC 的距离,所以13AMNBCNMN S S BC== △△,题型三:平面向量垂直问题【例1】已知向量(1)(32)m =-,,=,a b ,且()+⊥a b b ,则m =()A .8-B .6-C .6D .8【答案】D【解析】:()()()2,42,3,1-=-+=+m m b a ,因()b b a ⊥+,所以()0=⋅+b b a ,即()()()022122,32,4=--=--m m ,所以8=m 【例2】已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:22k =.【例3】已知单位向量,a b 的夹角为60°,则在下列向量中,与b 垂直的是()A .b a 2+B .ba +2C .ba 2-D .ba -2【答案】D【思路导引】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【解析】由已知可得:11cos 601122⋅=︒=⨯⨯=a b a b .A :∵215(2)221022+⋅=⋅+=+⨯=≠a b b a b b ,∴本选项不符合题意;B :∵21(2)221202+⋅=⋅+=⨯+=≠a b b a b b ,∴本选项不符合题意;C :∵213(2)221022-⋅=⋅-=-⨯=-≠a b b a b b ,∴本选项不符合题意;D :∵21(2)22102-⋅=⋅-=⨯-=b b b a b b ,∴本选项符合题意.故选D .【例4】已知向量(2,1),(3,)a b m →→=-=,且()a b a →→→+⊥,则实数m =___________.【答案】1【分析】先求出+=(1,1)a b m →→+,再解方程1(2)1(1)0m ⨯-+⨯+=即得解.【详解】解:由题得+=(1,1)a b m →→+,因为()a b a →→→+⊥,所以()=0a b a →→→+g ,所以1(2)1(1)0,1m m ⨯-+⨯+=∴=.故答案为:1【例5】已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为()A .4B .–4C .94D .–94【答案】B 【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以2221|cos |3||t |||<,>|||=-=-=-⋅⋅⨯⨯n n n m n m n m n m n ||4334||3=-=-⨯=-n m .故选B .【例6】已知向量AB 与AC 的夹角120,且|AB |=3,|AC |=2,若AP AB AC λ=+ ,且AP BC ⊥ ,则实数λ的值为_____.【答案】712【解析】向量与的夹角为,且所以.由得,,即,所以,即,解得.【题型专练】1.ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ= a ,2ΑC =+a b ,则下列结论正确的是()A .1=b B .⊥a bC .1⋅=a b D .()4ΒC-⊥a b 【答案】D【解析】如图由题意,(2)2BC AC AB a b a b =-=+-= ,故||2b = ,故A 错误;|2|2||2a a ==,所以||1a = ,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=- ,故,B C 错误;设,B C 中点为D ,则2AB AC AD += ,且AD BC ⊥ ,所以()4C a b +⊥B ,故选D .2.已知1e ,2e 12-e 与12λ+e e 的夹角为60 ,则实数λ的值是.【答案】33【解析】解法一:因1e ,2e 11==,021=⋅e e所以221212112122)()λλλ-⋅+=+⋅-⋅-=-e e e e e e e e ,12|2-=e ,12||λ+===e e ,2cos60λ==,解得:33λ=.解法二:建立坐标系,设()()1,0,0,121==e e ()()λλ,1,1,3212=+-=-e e e ,所以()()2221213λ+=+=-+=)()λλ-=+-3212e e e所以由数量积的定义得︒⨯+⨯=-60cos 1232λλ,解得:33λ=.3.已知向量()(),2,1,1a m b ==,若()a b b +⊥ ,则m =__________.【答案】4-【分析】根据向量的坐标运算即可求解.【详解】由题意可得()1,3a b m +=+,则130m ++=,解得4m =-.故答案为:4-4.已知向量(,2),(2,4)m a a n a =+=- ,且()n m n ⊥-,则实数=a _____________.【答案】2【分析】根据向量坐标运算及向量垂直的坐标表示即得.【详解】因为(,2)(2,4)(2,2)m n a a a a -=+--=-,又()n m n ⊥- ,所以2(2)(2)40a a ⨯-+-⨯=,解得2a =.故答案为:2.5.在ABC 中,()1,2,3A k -,()2,1,0B -,()2,3,1C -,若ABC 为直角三角形,则k 的值为()A .23B .83C .-1D .325-题型四:平面向量的夹角问题【例1】已知平面向量a ,b满足||4,||1== a b ,()a b b -⊥ ,则cos ,a b 〈〉= ()A .14B .4C.4D .4【例2】已知(2,0)a = ,1,22b ⎛= ⎝⎭r ,则a b - 与12a b + 的夹角等于()A .150°B .90°C .60°D .30°【例3】已知向量a=(2,1),()3,1b =- ,则()A.若c =-⎝⎭ ,则a c ⊥B .向量a 在向量b 上的投影向量为12b-C .a 与a b -D .()//a b a+【例4】若向量a ,b 满足||a = ,(2,1)b =-,5a b ⋅=- ,则a 与b 的夹角为_________.【例5】已知向量a b ,满足566a b a b ==⋅=-,,,则cos ,a a b +=()A .3135-B .1935-C .1735D .1935【例6】若非零向量,a b 满足32a b a b ==+,则a 与b 夹角的余弦值为________.【例7】设向量(68)=-,a ,(34)=,b ,t =+c a b,t ∈R ,若c 平分a与b 的夹角,则t 的值为.【答案】2【解析】解法一:()t t b t a c 48,36++-=+=,所以()()t t t c a 14100488366+=+++--=⋅;()()1425484363+=+++-=⋅t t t c b 510==因c 平分a 与b 的夹角,所以=c b c a ==,所以()1425214100+=+t t ,解得2=t解法二:因c 平分a 与b的夹角,所以()()⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-=⎫⎛=58,054,3108,6λλλb a c ,又因()t t b t a c 48,36++-=+=,所以()()t t 3658480+-=+⨯,解得2=t 【例8】已知A B C △的三个顶点分别为(3(60)(5A B C ,,,,,求ACB ∠的大小.【答案】C【解析】()()3,1,0,2=-=CB CA()()()2312022222=+==+-=所以21223012cos -=⨯⨯+⨯-==∠CB CA ACB ,所以︒=∠120ACB 【题型专练】1.设非零向量、ab满足||2||,||||a b a b b =+= ,则向量a 与b的夹角为()A .30°B .60︒C .120︒D .150︒2.已知(2,1)a =-,||b =,且()10a b a +⋅= ,则,a b 〈〉= ___________.3.已知向量,a b 满足||1a =,||a b =+1)b =- ,则,a b 的夹角等于___________.4.若两个非零向量a 、b 满足2a b a b a +=-=,则a b - 与b 的夹角___________.5.已知单位向量a ,b 满足0a b ⋅=,若向量c =+,则sin ,a c =()A B C D6.已知向量,a b 满足()()3,4,·28a b a b a b ==+-=,则向量a 与b 所成的夹角为()A .π6B .π3C .π2D .2π37.已知向量a ,b 满足||2||2b a == ,|2|2a b -= ,则向量a ,b 的夹角为()A .30°B .45︒C .60︒D .90︒8.已知向量()PA =,(1,PB =,则APB ∠=A .30︒B .60︒C .120︒D .150︒【答案】D【解析】根据题意,可以求得2,2PA PB ===,所以333cos 222PA PB APB PA PB⋅∠===-⋅,结合向量所成角的范围,可以求得150APB ∠=︒,故选D .9.非零向量a ,b 满足:-=a b a ,()0⋅-=a a b ,则-a b 与b 夹角的大小为A .135︒B .120︒C .60︒D .45︒【答案】A【解析】 非零向量a ,b 满足()0⋅-=a a b ,∴2=⋅a a b,由-=a b a 可得2222-⋅+=a a b b a,解得=b ,()22cos 2θ-⋅⋅-∴===--a b ba b b a b ba b,θ为-a b 与b 的夹角,135θ∴= ,故选A .10.已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos,=a c ___________.【答案】23【解析】因为2=c a,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .11.已知向量(4,3),(1,2)a b =-=-,,a b的夹角为θ,则sin θ=__________.【答案】55【解析】依题意[]0,πθ∈,所以255cos ,sin 55||||a b a b θθ⋅===-== .故答案为.12.已知向量,a b 满足5,6,6==⋅=-a b a b ,则cos ,+=a a b ()A .3531-B .3519-C .3517D .3519【答案】D【思路导引】计算出()a ab ⋅+ 、a b + 的值,利用平面向量数量积可计算出cos ,a a b <+>的值.【解析】5a = ,6b = ,6a b ⋅=- ,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选D .题型五:平面向量数量积的计算【例1】(2021新高考2卷)已知向量0,||1,||||2,a b c a b c a b b c c a ++====⋅+⋅+⋅=_______.【答案】29-【解析】方法一:因为0=++c b a ,所以()02=++cb a ,即0222222=+++++c b c a b a c b a所以0222441=+++++c b c a b a ,所以9222-=++c b c a b a ,所以29-=++c b c a b a 方法二:因为0=++c b a ,所以c b a -=+,所以()()22c b a -=+,即2222cb a b a=++所以4241=++b a ,所以21-=b a ,同理b c a -=+,所以()()22b ca -=+,即2222b c a c a =++,所以4241=++c a ,所以21-=c a ,同理a c b -=+,所以()()22a c b -=+,即2222a c b c b =++,所以1244=++c b ,所以27-=⋅c b ,所以29-=++c b c a b a 【例2】在△ABC 中,6,AB O =为△ABC 的外心,则AO AB ⋅等于A B .6C .12D .18【答案】D【解析】试题分析:如图,过点O 作OD AB ⊥于D ,则()36018AO AB AD DO AB AD AB DO AB ⋅=+⋅=⋅+⋅=⨯+=,应选D.【例3】已知边长为3的正2ABC BD DC = ,,则AB AD ⋅=()A .3B .9C .152D .6【例4】已知ABC 为等边三角形,AB =2,设点P ,Q 满足AP AB λ=,(1)AQ AC λ=-,R λ∈,若2BQ CP ⋅=-,则λ=()A .12B .12C .12±D故选:A.【例5】在ABC 中,6A π=,||AB =||4AC =,3BD BC =,则AB AD ⋅=______.【答案】24-【分析】利用基底,AB AC 3AD AB BD AB BC =+=+ ,BC AC = 23AD AB AC ∴=-+ ,∴()232AB A AB AD AB AB C =⋅-+=-⋅ 【题型专练】1.如图,在△ABC 中,AD ⊥AB ,BC =,1AD = ,则AC AD ⋅=()A .B CD .3-2.在ABC 中,3AB AC ==,DC BD 2=﹒若4AD BC ⋅=,则AB AC ⋅=______.3.ABC 中,90C ∠=︒,2AC =,P 为线段BC 上任一点,则AP AC ⋅=()A .8B .4C .2D .64.已知ABC 为等边三角形,D 为BC 的中点,3AB AD ⋅=,则BC =()A BC .2D .45.如图,在ABC 中,3BAC ∠=,2AD DB =,P 为CD 上一点,且满足2AP mAC AB =+,若||3AC =,||4AB =,则AP CD ⋅的值为()A .-3B .1312-C .1312D .1126.在平行四边形ABCD 中,AC =6,AB AD ⋅=5,则BD =____________.【详解】AC AB BC AB AD =+=+ ,则2AC AB = 236226AD AB AD +=-⋅=,AD AB - ,则222BD AD AB AD =-⋅+ 7.已知在ABC 中,90C ∠=︒,4CA =,3CB =,D 为BC 的中点,2AE EB =,CE 交AD 于F ,则CE AD ⋅=_______【答案】73-##123-题型六:平面向量的模问题【例1】已知(1)t =,a ,(6)t =-,b ,则|2|+a b 的最小值为________.【答案】52【解析】:()()()40205362444462262,2222222+-=+-+++=-++=-+=+t t t t t t t t t t a对称轴2=t ,所以当2=t 时,524040202=+-=a 【例2】(2021新高考1卷)已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos(),sin())P αβαβ++,(1,0)A ,则:A .12||||OP OP = B .12||||AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α===== ,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC【例3】已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b =.【答案】324211244+⨯⨯⨯+====+3212==【例4】已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π)2p :||1+>a b ⇔θ∈(23π,π]3p :||1->a b ⇔θ∈[0,3π)4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B)1p ,3p (C)2p ,3p (D)3p ,4p 【答案】A【解析】由||1+>a b 得,221∙>a +2a b +b ,即∙a b >12-,即cos θ=||||∙a b a b >12-,∵θ∈[0,π],∴θ∈[0,23π),由||1->a b 得,22-1∙>a 2a b +b ,即∙a b <12,即cos θ=||||∙a b a b <12,∵θ∈[0,π],∴θ∈(3π,π],故选A .【例5】设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a b C .若||||||+=-a b a b ,则存在实数λ,使得λ=b a D .若存在实数λ,使得λ=b a ,则||||||+=-a b a b 【答案】C【解析】对于A b b a a2222-=⇒+-=+⋅+⇒=θ,所以1cos -=θ,所以︒=180θ,所以A 错,B 错;C 对,D 有可能为︒0【题型专练】1.设向量(10),a =,22()22=-b ,若t =+c a b (t ∈R),则||c 的最小值为A B .1C .2D .12【答案】C【解析】()⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=+=t t t b t a c 22,22122,220,12222221⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=t t 222122122121212222≥+⎪⎪⎭⎫ ⎝⎛+=++=+++=t t t t t t 2.已知向量(1,2)a =- ,(21,1)b m =- ,且a b ⊥,则|2|a b -= ()A .5B .4C .3D .23.已知向量a ,b满足1a =,2b =,a b -=,则2a b +=()A .B .C D4.已知[02π)αβ∈、,,(cos ,sin )a αα=r,(cos(),sin())b αβαβ=++,且23a b -=,则β可能为()A .π3B .2π3C .πD .4π3【答案】BD【分析】根据向量模的运算列方程,化简求得cos β的值,进而求得正确答案.5.平面向量a 与b 的夹角为60︒,(3,4),||1==a b ,则|2|a b += _____________.6.已知向量,a b 满足||2,(2,2)a b == ,且|2|6a b += ,则||a b += __________.7.设,a b 为单位向量,且||1+=a b ,则||a b -=______________.【解析】因为,a b为单位向量,所以1a b ==r r所以1a b +==,解得:21a b ⋅=-所以a b -==8.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a ab b 2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C .9.已知向量a ,b 夹角为045,且|a |=1,|2-a b |b |=.【答案】.【解析】∵|2-a b |=平方得224410-= a a b +b ,即260--=|b |b |,解得|b |=(舍)题型七:平面向量的投影问题【例1】已知向量(2,1),(1,1)a b =-= ,则a 在b上的投影向量的模为()A B .12C .2D .1【例2】已知6a =,3b =,向量a 在b 方向上投影向量是4e ,则a b ⋅ 为()A .12B .8C .-8D .2【例3】已知平面向量a ,b ,满足2a =,1b =,a 与b 的夹角为23π,2b 在a 方向上的投影向量为()A .1-B .12aC .12a - D .1【例4】已知平面向量a ,b 满足2=a ,()1,1b =,a b +=r r a 在b 上的投影向量的坐标为()A .22⎛ ⎝⎭B .()1,1C .()1,1--D .⎛ ⎝⎭【例5】已知O 为正三角形ABC 的中心,则向量OA 在向量AB 上的投影向量为()A .ABB C .12AB-D .12AB故选:C【例6】设向量a 在向量b 上的投影向量为m ,则下列等式一定成立的是()A .||a b m bb ⋅=⋅ B .2||a b m bb ⋅=⋅ C .m b a b⋅=⋅ D .ma b a⋅=⋅【题型专练】1.已知()1,2a = ,()1,2b =- ,则a 在b上的投影向量为()A .36,55⎛⎫- ⎪B .36,55⎛⎫- ⎪C .36,55⎛⎫-- ⎪D .36,55⎛⎫ ⎪2.如图,在平面四边形ABCD 中,120ABC BCD ∠=∠= ,AB CD =,则向量CD 在向量AB 上的投影向量为()A .2AB -B .12AB -C .12AB D .2AB 【答案】B【分析】根据图形求出向量AB 与CD的夹角,再根据投影向量的公式进行求解即可.【详解】延长AB ,DC 交于点E ,如图所示,3.已知向量()1,3a =,()2,4b =-,则下列结论正确的是()A .()a b a+⊥r r r B .2a b +=C .向量a 与向量b 的夹角为34πD .b 在a的投影向量是()1,34.已知()3,1a =-,()1,2b =,下列结论正确的是()A .与b同向共线的单位向量是⎝⎭B .a 与bC .向量a在向量b 上的投影向量为12,55⎛⎫ ⎪⎝⎭D .15a b b⎛⎫-⊥ ⎪ 5.关于平面向量,有下列四个命题,其中说法正确的是()A .若1,,120a b a b ===︒,则()2a b a+⊥r r r B .点()()1,1,3,2M N --,与向量MN同方向的单位向量为43,55⎛⎫- ⎪⎝⎭C .若20a b a b a +=-=≠ ,则+r r a b 与a b - 的夹角为60°D .若向量()()2,1,6,2a b =-= ,则向量b 在向量a 上的投影向量为2a-同方向的单位向量为6.己知空间向量||3,||2a b ==,且2a b ⋅=,则b 在a 上的投影向量为________.【答案】29a ##29a7.已知1a =,2b =,且()a ab ⊥+,则a 在b 上的投影向量为()A .b -B .bC .14b- D .14b【答案】C 【详解】因为()a a b ⊥+ ,所以()0a a b ⋅+= ,即220,0a a b a a b +⋅=+⋅= ,又因为1a = ,设,a b 的夹角为θ,所以1a b ⋅=-,a 在b 上的投影为:cos b a b a θ⋅=⋅ ,所以a 在b 上的投影向量为214cos b a b b b ba b θ⋅⋅=⋅=⋅- .故选:C8.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC.D.【答案】A【解析】AB =(2,1),CD =(5,5),则向量AB 在向量CD方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==CD AB AB θ9.若向量,a b满足22a a b =+= ,则a 在b 方向上投影的最大值是AB.CD.【答案】B【详解】由题意2,22a a b =+= ,所以2||4164b a b +⋅+=,设,a b 的夹角为θ,则2||8cos 120b b θ++= ,所以212cos 8b bθ+=- ,所以a 在b 方向上投影为2123cos 2()(48b b a bb θ+=⨯-=-+,因为3b b +≥cos a θ≤ ,故选B.题型八:万能建系法解决向量问题边长为a 的等边三角形已知夹角的任意三角形正方形矩形平行四边形直角梯形等腰梯形圆建系必备(1)三角函数知识cos ,sin x r y r q q ==;(2)向量三点共线知识(1)OC OB OAl l =+-(对面女孩看过来).【例1】如图,在等腰梯形ABCD 中,2,3,4AB BC CD BC BE ==== ,则CA DE ⋅=()A .43B .154-C .558-D .6516-3315,0,,0,1,D C A ⎛⎛⎫⎛⎫【例2】如图,正八边形ABCDEFGH 中,若AE AC AF λμ=+()R λμ∈,,则λμ+的值为________.正八边形的中心【详解】、HD BF 所在的直线分别为x y 、轴建立平面直角坐标系,正八边形的中心M 点,3608⎛∠=∠=∠=∠= ⎝AOB COB AOH EOD 18045135-= ,所以22.5∠= BAC ,13522.5112.5∠-∠=-= HAB CAB ,所以∠HAC y 轴,、AOM MOC 为等腰直角三角形,2,则2=====OD OF OE OA OC ,()0,2F ,2===OM MC ,所以()2,2--A ,(2,-C【点睛】本题主要考查了平面向量坐标法解决几何问题,建立坐标系是解题的关键,还考查了向量的加法运算,考查方程思想及转化思想,属于中档题.【题型专练】1.如图,在梯形ABCD 中,//AB DC ,10AB =,7BC =,2CD =,5AD =,则AC BD ⋅=___________.则5,02A ⎛⎫- ⎪⎝⎭,532,2C ⎛⎫ ⎪ ⎪⎝⎭,15,02B ⎛⎫ ⎪⎝⎭,530,2D ⎛ ⎝953,22AC ⎛⎫∴= ⎪ ⎪⎝⎭ ,1553,22BD ⎛⎫=- ⎪ ⎪⎝⎭,AC BD ∴⋅ 故答案为:15-.2.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD = _________;PB PD ⋅=_________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.题型九:平面向量中的最值范围问题【例1】如下图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,3BCD π∠=,CB CD ==M 为边BC 上的动点,则AM DM ⋅的最小值为()A .83B .214C .114-D .133-【例2】ABC 是边长为4的等边三角形,点D 、E 分别在边AC 、BC 上,且DE BC ⊥,则DA DE ⋅的最小值为()AB .C .3D .-3则(0,0),(2,23),(4,0)C A B【例3】四边形ABCD 中,4AB =,60A B ∠=∠=︒,150D ∠=︒,则DA DC ⋅的最小值为()AB .C .3D .-3∴90,60DCB E ∠=︒∠= ,设CE x =,则3,DC x DA =∴()423cos150DA DC x x ⋅=-⋅⋅ 所以当1x =时,DA DC ⋅的最小值为【例4】如图,在梯形ABCD 中,//AD BC ,2AD =,9BC =,5AB =,cos 5B =,若M ,N 是线段BC上的动点,且1MN = ,则DM DN ⋅的最小值为()A .134B .132C .634D .352//AD BC ,32AD =,9BC =,5AB =(9,0)C ∴,∴3cos 5A xB AB ==,3,4A A x y ==9(3,4),(,4)2A D ∴,【例5】已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足2BE EC =,3AE BD ⋅=-,则AF BE⋅的最小值为()A .0B .23C .43D .2【例6】已知向量a,b,c共面,且均为单位向量,0a b⋅=,则ab c++的最大值是()A B C1D1【例7】骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A (前轮),圆DABE △,BEC △,ECD 均是边长为4的等边三角形.设点P 为后轮上的一点,则在骑动该自行车的过程中,AC BP ⋅的最小值为()A .12B .24C .36D .18故选:A【例8】已知AB AC ⊥ ,1AB t = ,AC t = ,若点P 是ABC ∆所在平面内一点,且4AB AC AP AB AC=+ ,则PB PC ⋅的最大值等于()A .13B .15C .19D .21【答案】A【解析】以题意,以点A 为坐标原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立如图所示的平面直角坐标系,所以点(1,4)P ,1(,0)B t,(0,)C t ,所以11(1,4)(1,4)(1)(1)4(4)PB PC t t t t ⋅=----=-⨯--⨯- =1174t t --17-≤=13(当且仅当14t t =,即12t =时取等号),所以PB PC ⋅ 的最大值为13.故选A .【题型专练】1.已知梯形ABCD 中,3B π∠=,2AB =,4BC =,1AD =,点P ,Q 在线段BC 上移动,且1PQ =,则DP DQ ⋅的最小值为()A .1B .112C .132D .1142.在ABC 中,902A AB AC ∠=== ,,点M 为边AB 的中点,点P 在边BC 上运动,则AP MP ⋅的最小值为___________.【答案】78【分析】建立平面直角坐标系,利用数量积的坐标运算求出3.ABC 为等边三角形,且边长为2,则AB 与BC 的夹角大小为120,若1BD =,CE EA =,则AD BE ⋅的。
高中数学平面向量中的常见问题解析

高中数学平面向量中的常见问题解析在高中数学中,平面向量是一个重要的概念,也是许多学生在学习中遇到的难题。
本文将对高中数学平面向量中的常见问题进行解析,帮助学生更好地理解和应用该知识点。
一、向量的表示和运算在解析几何中,向量可以用有序数对表示。
例如,向量AB可以表示为向量→AB或者向量a,其中→AB=(x,y)或者a=(x,y)。
向量的运算包括加法、减法、数乘等。
向量的加法满足交换律和结合律,即若→AB+(→CD+→EF)=→AB+→CD+→EF。
二、向量的数量积向量的数量积也叫点积,用符号·表示。
数量积满足交换律和分配律,即→AB·→CD=→CD·→AB。
数量积的计算方法为:→AB·→CD=|→AB||→CD|cosθ,其中|→AB|和|→CD|分别表示向量→AB和→CD的模,θ表示两个向量的夹角。
三、向量的向量积向量的向量积也叫叉积,用符号×表示。
向量积的结果是一个向量,它的模长等于被乘向量的模与夹角的正弦乘积。
向量积的计算方法为:→AB×→CD=|→AB||→CD|sinθn,其中|→AB|和|→CD|分别表示向量→AB和→CD的模,θ表示两个向量的夹角,n为单位法向量。
四、平面向量的应用平面向量在几何中有广泛的应用。
常见的问题包括:向量共线、向量垂直、向量平行和向量的投影等。
1. 向量共线问题若两个向量的方向相同或者相反,则它们是共线的。
可以通过判断两个向量的比例关系来确定它们是否共线。
2. 向量垂直问题若两个向量的数量积为零,则它们是垂直的。
可以通过计算两个向量的数量积来判断它们是否垂直。
3. 向量平行问题若两个向量的方向相同或者相反,则它们是平行的。
可以通过判断两个向量的比例关系来确定它们是否平行。
4. 向量的投影问题向量的投影表示一个向量在另一个向量上的投影长度。
可以通过计算向量的数量积和模长来求解向量的投影。
五、解题技巧和注意事项在解决高中数学平面向量中的问题时,有一些技巧和注意事项可以帮助学生更好地理解和应用知识点。
高中数学高一平面向量常见题型分类总结

平面向量常见题型题型一、利用平面向量待定系数求参数值(平面向量基本定理的应用)例题1: 在正方形中, 分别是的中点,若,则的值为( )变式1: 如图,两块斜边长相等直角三角板拼在一起.若AD →=xAB →+yAC →,则x =___y =___题型二、向量基本定理与不等式,、三角函数相结合例题2: 在Rt ABC ∆中,090A ∠=,点D 是边BC 上的动点,且3AB =,4AC =,(0,0)AD AB AC λμλμ=+>>,则当λμ取得最大值时, AD 的值为变式2: 已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC −−= 则221a ba b b+++的最小值是___________变式3: 给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以ABCD ,M N ,BC CD AC AM BN λμ=+λμ+O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______.变式4:变式5: 若非零向量a b 、满足a b b −=,则下列不等式恒成立的为( ) A. 22b a b >− B. 22b a b <− C. 22a a b >− D. 22a a b <−题型三、坐标系法处理平面向量的数量积在处理向量数量积问题时,若几何图形特殊(如正方形,等边三角形等),易于建系并写出点的坐标,则考虑将向量坐标化解1. 数量积的定值问题例2.在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则AD BE ⋅=____变式6: 如图,在矩形ABCD中,2AB BC ==,点E 为BC 中点,点F 在边CD 上,若2AB AF ⋅=AE BF ⋅的值是____________变式7: 如图,平行四边形ABCD 的两条对角线相交于M ,点P 是MD 的中点,若2AB =,1AD =,且60BAD ∠=,则AP CP ⋅=_________2. 数量积的最值问题例3.平面向量,,a b c 满足1,2,2,1a e b e a b e ⋅=⋅=−==,则a b ⋅最小值是______变式8.已知点M 为等边三角形ABC 的中心,2AB =,直线l 过点M 交边AB 于点P ,交边AC 于点Q ,则BQ CP ⋅的最大值为 .3. 数量积的范围问题例题3: 如图,在直角三角形ABC中,1AC BC ==,点,M N 分别是,AB BC 的中点,点P 是ABC 内及边界上的任一点,则AN MP ⋅的取值范围是_______变式8: 如图,四边形ABCD 是半径为1的圆O 的外切正方形,PQR 是圆O 的内接正三角形,当PQR 绕着圆心O 旋转时,AQ OR ⋅的取值范围是变式9: 在平面上,12AB AB ⊥ ,12121,OB OB AP AB AB ===+,若12OP <,则OA 的取值范围是题型四、平面向量的投影问题数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题。
高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。
思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。
证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。
图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。
∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。
∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。
又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。
绿色通道:1。
向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。
这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。
高考平面向量常考题型

高考平面向量常考题型平面向量是高中数学中重要的一部分,在高考中也是常考的题型之一。
本文将介绍高考中常见的平面向量题型及解题方法,帮助学生更好地掌握这一知识点。
1. 向量的基本概念向量可以表示为一个有方向的线段,用符号“→”表示。
向量有大小和方向两个属性,可以用坐标表示。
在平面直角坐标系中,一个向量可以表示为 (x,y)。
2. 向量的加减法向量的加减法可以通过将向量的坐标相加减实现。
例如,向量 A = (2,3) 和向量 B = (4,-1),则 A + B = (2+4,3-1) = (6,2),A -B = (2-4,3+1) = (-2,4)。
3. 向量的数量积向量的数量积也称为点积,可以用以下公式表示:A·B =|A||B|cosθ,其中 A 和 B 分别为向量,|A| 和 |B| 分别为它们的长度,θ为 A 和 B 之间的夹角。
4. 向量的向量积向量的向量积也称为叉积,可以用以下公式表示:A×B =|A||B|sinθn,其中 A 和 B 分别为向量,|A| 和 |B| 分别为它们的长度,θ为 A 和 B 之间的夹角,n 为垂直于 A 和 B 所在平面的单位向量。
5. 平面向量的模长平面向量的模长可以通过勾股定理求得,即 |A| = √(x+y),其中 A = (x,y)。
6. 向量共线、垂直的判定两个向量共线的条件是它们的夹角为 0 或 180 度,可以用向量的数量积判断。
若 A·B = 0,则 A 和 B 垂直,可以用向量的向量积判断。
7. 向量的投影向量的投影是一个向量在另一个向量上的投影。
可以用以下公式求得:projA B = (A·B/|B|)B,其中 A 和 B 分别为向量,projA B 为 A 在 B 上的投影。
8. 高维向量高维向量是指超过两个维度的向量。
它们的处理方法与平面向量类似,只是需要用更多的坐标表示。
以上就是高考平面向量常考题型的介绍。
高考平面向量题型归纳总结

高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-平面向量及常见题型向量知识点☆零向量:长度为o 的向量,记为0 ,其方向是任意的, 0与任意向量平行☆单位向量:模为1个单位长度的向量向量a 0为单位向量I a 0 I = 1☆平行向量(共线向量) :方向相同或相反的非零向量 平行向量也称为共线向量uuu uuu uuu☆向量加法AB BC = AC 向量加法有“三角形法则”与“平行四边形法则”: uuu LUUTuuur uuu uuu uuuAB BC CD L PQQR AR ,但这时必须“首尾相连”.☆实数与向量的积:①实数入与向量a 的积是一个向量,记作入a ,它的长度与方向规定如下: (】)a a ;(n )当 0时,入a 的方向与a 的方向相同;当 0时,入a 的方向与a 的方向相反;当 0时,a 0, 方向是任意的 ☆两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数,使得b = a☆平面向量的基本定理:如果e i ,e 2是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数i ,2使:ai02e 2,其中不共线的向量 e n e2叫做表示这一平面内所有向量的一组基底☆平面向量的坐标运算:uun⑵若 A X i , 2i , B X 2, 22,则 AB X 2 X i ,y 2 y⑶若 a =(x,y ),贝u a =(x, y)☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质ra若r by2r bra则y2Xy2 %X2X r brax i y 2 X 2 y irX>, y 2,则 a//br by1ra 若o2 y卷^1Xra则y2X2,r by2ra若5)☆两个向量的数量积:a ?b _ x 1x 2 y 1y 2a l ?b腐—y7 抚2r r ra 与b 同方向时,e =00,当且仅当a 与b 反方向时e =1800,同时0与其它任何非零向量之间不谈夹角这一问题补充: 线段的定比分点设P 1 x 1 , y 1 , P 2 x 2, y 2,分点P x , y ,设R 、P 2是直线I 上两点,P 点在I 上且不同于R 、 P 2,右存在一头数 , 使RPPF 2,则叫做P 分有向线段RP 2所成的比(0, P 在线段P 1P 2内,0 , P 在 RP 2 外) ,且X iX 2XX 1 X 2X21 ,P 为RP 2中点时,y i yy 1 y 2 y1y 2如:ABC , A X i , y i , B X 2, y 2 , C X 3, y 3已知两个非零向量a 与b ,它们的夹角为 I cos叫做a 与b 的数量积(或内积)规定0 a 0☆向量的投影:丨b☆数量积的几何意义: R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 的长度与b 在a 方向上的投影的乘积☆向量的模与平方的关系:2|a|☆乘法公式成立:r 2ar r 2r 2 r r a b a 2a br 2r rr a 2a bb☆向量的夹角:已知两个非零向量um r ,作 O A = a , uuu rOB = b ,则/ AOB =(o 01800)叫做向量a 与b 的夹角cos = COS当且仅当两个非零向量 II I 2a aa ra1 2 , 2a b 2 b 2贝y ABC 重心G 的坐标是 勺一仝一乞,X —竺一y 33 3经典例题---- ----------- -------------!H* .^i例1 •已知:是 J 一'一所在平面内一点, 匸为占二边中点, 且-i ■ - - U ,那么( )命题意图:本题考查能够结合图形进行向量计算的能力 解.2OA¥OB^OC^2刃+ 蠢+更)亠(而+55)二6両二-药.2OA + 2OD = 0,.: AO = OD 故选 A例2•在平行四边形中,AB^a,AD^h,AN^3NC , M 为BC 的中点,则曲7 = __________________________________ .(用広石表 示)命题意图:本题主要考查向量的加法和减法 ,以及实数与向量的积湎劲一(舌十丄£)二一1$+】百4'、2 '4 4例3.如图所示,D 是厶ABC 的边AB 上的中点,则向量 J 」()命题意图:本题主要考查向量的加法和减法运算能力A . AQ= 0DE. A0=2OD c. A0 = 30DD . 2AO=OD由」*亠厂得1 「一「厂'—~ - 1 —AM = a +—b2五-丄扇(B )(C )旋+2竝(D ) 二点评:巧妙解法巧在取'i -,使问题简单化.本题也可通过画图,利用数形结合的方法来解决可二尋+药二-丽+丄芮解: - ,故选A.例4.设平面向量 I 、J 、工的和■-1\ 】—.如果向量一丄、〔、I ,满足且,顺时针旋转」「后与-同向,其中二,则( )命题意图:本题主要考查向量加法的几何意义及向量的模的夹角等基本概念^—-IMb-fc*-~~常规解法:•.•二 V 二—,.....「.「匚| . - I 故把2七(i=i,2,3),分别按顺时针旋转 30后与S 重合,故',;| '- ”,应选 D.巧妙解法:令'-~,则r --【,由题意知〔—■ -■,从而排除B ,C,同理排除A ,故选D.S +扱+鸟二o(A )12例5 .设向量 的夹角为且', ,命题意图:本题主要考查平面向量的坐标运算和平面向量的数量积解:设心(“),由肚一归2(初)73,加0-3很厂习珂71)得 L "-Xi二+巧O一工』y-y^二1叼«_工訂所以过抛物线上 A 、B 两点的切线方程分别是 -,-,以及用平面向量的数量积处理有关角度的问3xH-3x23历字十头沖十2丁,故填丄例6•已知抛物线'一「的焦点为F ,A 、B 是抛物线上的两动点,且 丄」 •「二 ),a A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明丄〜为定值;")设厶ABM 的面积为S ,写岀’ 「-的表达式,并求 S 的最小值.命题意图:本小题主要考查平面向量的计算方法、 和圆锥曲线方程,以及函数的导数的应用等基本知识,考查推理和运算能力.解:(I )由已知条件,得 --,■■- ■ - '■设川心”),巩孔莎),则才=^71由-丄,得(一心1一”)“(也心一1)即[1-乃i 仇一 1)⑵ 将(1)式两边平方并把',V代入得I 二(3)解(2)( 3)式得一_ 1乃二了,且有監內二_鬼宀山二-4,抛物线方程为,求导得/=rCQ S1 1 3 1 1 y= — x.x-—Xi y ————JT即.严+吃心E)(厲+呵_[)解岀两条切线的交点M的坐标为丄- 即二所以X」二;“」1 所以一‘亠-二为定值,其值为0.刖门M(宁.一1)(n )由(I )知在△ ABM中,FM! AB,-S = -\A£\\FM\ 因而 -I MF|= J(互尹尸+(_刁;「拧+斗+号+仁J兀乜十#+4因为|AF|、|BF|分别等于A、B到抛物线准线y = - 1的距离,| 朋冃HF |4| 5F|= ^+7^+2=兄 +丄+2 = +所以一一二E胡血T|M|二十韦卡于是JI十令王2由' 知S>4,且当入=1时,S取得最小值4.向量常见题型类型(一):向量的夹角问题1. 平面向量a,b,满足a 1,b 4且满足a.b 2,则a与b的夹角为 ______________2. 已知非零向量a, b满足a b ,b (b 2a),则a与b的夹角为 ________3. 已知平面向量a,b满足(a b).(2a b) 4且a 2,b| 4且,贝U a与b的夹角为______________4. 设非零向量a、b、c满足|a||b| |c|,a b c,则a,b _________________5. 已知a 2,|b 3, a b J7,求a与b的夹角。
类型(二):向量共线问题1.已知平面向量a (2,3x),平面向量b ( 2, 18),若a // b,则实数x ________________2.设向量a(2,1),b(2,3)若向量 a b与向量c (4, 7)共线,则3.已知向量a(1,D,b(2, x)若a b与4b 2a平行,则实数x的值是( )A. -2B.0 C . 1 D . 24已知向量OA (k,12),0B (4,5),OC ( k,10),且A,B,C三点共线,则k ______■—►■—b ■—I- —b- —¥5 •已知a= (1 , 2), b= (-3 , 2 )若k a+2 b与2 a-4 b共线,求实数k的值;6 .已知a, c是同一平面内的两个向量,其中 a = (1, 2)若c 2丁5,且a // c,求c的坐标类型(三):向量的垂直问题1 •已知向量a (x,1),b (3,6)且a b,则实数x的值为__________2 •已知a= (1 , 2), b= (-3 , 2 )若k a+2 b与2 a-4 b垂直,求实数k的值■—■3 •已知a (4,2),求与a垂直的单位向量的坐标。
4. 已知向量a ( 3,2),b ( 1,0)且向量a b与a 2b垂直,则实数的值为_________________5. a (3,1),b (1,3),c (k,2),若(a c b,则k _____6. a (1,2),b (2, 3),若向量c满足于(c a) / b, c (a b),则c ____________ 类型(四)投影问题c :③a.(b c ) 0 ④b 在a 方向上的投影等于 c 在a类型(五)求向量的模的问题4, a 与b 的夹角,则向量b 在向量a 上的投影为 _________2 .在 Rt △ ABC 中,C , AC 24,则 AB.AC _____3 .关于a.b a.c 且a有下列几种说法:方向上的投影:⑤b a :⑥b c 其中正确的个数是 ()(A ) 4 个 (B ) 3 个(C ) 2 个(D )11 •若a :=(1, 1),b =( 1 , -1— ),c = (-1 ,-2 ),则c 等于 ()1 3,-1 _(A) a b (B) a b2 22 23 - 1 - 3 - 1 /(C) a b (D) a b2 22 22.已知a(1,0),b (1,1) ,c (1,0),求和的值,使c a类型(六)平面向量基本定理的应用问题 是平面向量的一组基底, 时,则当12(A)e 1 (0,0)e(1, 2)(B)8 (1,2), f(C) e(3,5), 02(6,10)(D)e1(2, 3),—b-5. a (1,1),b ( 1,1),c (42) ,则 c () —Fb(B)3a b(C)—F —*a 3b i 4.下列各组向量中,可以作为基底的是( )(D) e2e 2(5,7)a 3b①a (b c );②1. 已知零向量a(2,1), a.b 10, a b52,2. 已知向量 a,b 满足同1,b 2, a b2,则a3.已知向量 a (1, 3) , b(2,0),则4 •已知向量a (1,sin ),b(1,cos ),则 a 的最大值为 6.设向量a , b 满足alb1 及 4a 3b求3a 5b|的值类型(七)平面向量与三角函数结合题ir x x r x —IT r1.已知向量m (2sin ,cos_), n (cos-, 3),设函数f(x) m n4 2 4⑴求函数f(x)的解析式(2 )求f (x)的最小正周期;(3 )若0 x ,求f (x)的最大值和最小值.2. 已知ABC的三个内角A、B、C所对的三边分别是a、b、c,平面向量m (1,sin(B A)),平面向量n (s inC si n(2A),1).(l)如果c 2,C ,且ABC的面积S 3,求a的值;3(II )若m n,请判断ABC的形状.23. 已知向量a (2,sin x), b (sin x,2cosx),函数f(x) a b(1)求f (x)的周期和单调增区间;⑵若在ABC中,角代B,C所对的边分别是a,b,c, C,2a c)cosB bcosC,求f (A)的取值范围。