数字图像处理学习报告

合集下载

数字图像处理实习报告

数字图像处理实习报告

数字图像处理实习报告在当今数字化的时代,数字图像处理技术在众多领域中发挥着至关重要的作用,从医疗诊断到卫星遥感,从娱乐产业到工业检测,其应用无处不在。

通过这次数字图像处理实习,我对这一领域有了更深入的了解和实践经验。

实习的初始阶段,我主要进行了相关理论知识的学习。

数字图像处理涵盖了众多概念,如图像的数字化表示、像素、灰度值、分辨率等。

了解这些基础知识是后续处理图像的基石。

同时,我还学习了常见的图像格式,如 JPEG、PNG、BMP 等,以及它们的特点和适用场景。

在掌握了一定的理论基础后,我开始接触图像处理的基本操作。

图像增强是我最先实践的部分,通过调整图像的对比度和亮度,能够使原本模糊不清或暗淡的图像变得更加清晰和易于观察。

例如,对于一张曝光不足的照片,增加亮度可以让隐藏在黑暗中的细节显现出来;而提高对比度则可以使图像中的不同区域更加分明,突出重点。

图像滤波是另一个重要的环节。

均值滤波可以有效地去除图像中的噪声,但在一定程度上会使图像变得模糊;中值滤波则能够在去除噪声的同时较好地保留图像的边缘细节。

我通过对不同类型和程度的噪声图像进行滤波处理,直观地感受到了它们的效果差异。

图像的几何变换也是实习中的关键内容。

图像的平移、旋转和缩放操作看似简单,但其背后涉及到复杂的数学计算。

在实际操作中,需要准确地计算变换矩阵,以确保图像在变换后的准确性和完整性。

实习过程中,我还深入研究了图像分割技术。

这是将图像分成不同区域或对象的过程,以便进行后续的分析和处理。

阈值分割是一种常见且简单的方法,通过设定一个阈值,将图像中的像素分为两类。

然而,对于复杂的图像,这种方法往往效果不佳,这时就需要更高级的分割算法,如基于边缘检测的分割或基于区域生长的分割。

在进行数字图像处理的过程中,我也遇到了一些挑战和问题。

例如,在处理大规模图像数据时,计算资源的限制可能导致处理速度缓慢;在选择图像处理算法时,需要根据具体的图像特点和需求进行权衡,否则可能无法达到理想的效果。

数字图像处理学习总结

数字图像处理学习总结

数字图像处理学习总结这个学期学习了数字图像处理这门课程,主要学习了图像的点运算、几何变换、空间域图像增强、频率域图像增强、形态学图像处理、图像分割(边缘检测)、纹理方向等方面的知识。

(1) 图像的点运算。

○1灰度直方图 灰度直方图描述了一幅图像的灰度级统计信息,一般用于图像分割和图像灰度变换等的处理过程中。

从数学角度来说,图像直方图描述图像各个灰度级的统计特征,它是图像灰度级的函数,统计一幅图像中各个灰度级出现的次数或频率。

从图形上来说,灰度直方图是一个二维图,横坐标为图像中各个像素的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或频率。

○2直方图的均衡化 直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。

从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉比较协调。

因此将原图像直方图通过T(r)调整为均匀分布的直方图,这样修正后的图像能满足人眼视觉要求。

因为归一化假定()1()()r P s d s p r dr==两边积分得0()()rr s T r p r dr ==⎰上式表明,当变换函数为r 的累积直方图函数时,能达到直方图均衡化的目的。

对于离散的数字图像,用频率来代替概率,则变换函数T (rk)的离散形式可表示为:直方图均衡化的步骤:(1)求原直方图。

()H s [0,255]s ∈ (2)求累加值(原直方图) ()F s (3)将累加值乘以255 (4)变换(,)((,))()I i j F I i j r T r →→○3直方图规定化 直方图规定化增强处理的步骤如下: ①对原始图像作直方图均衡化处理;②按照希望得到的图像的灰度概率密度函数p z(z),求得变换函数G(z); ③用步骤①得到的灰度级s 作逆变换z= G-1(s)。

经过以上处理得到的图像的灰度级将具有规定的概率密度函数p z(z)。

计算机图像处理学习报告

计算机图像处理学习报告

主要学习内容1.数字图像处理( Digital Image Processing )又称为计算机图像处理, 它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程, 以提高图像的实用性, 从而达到人们所要求的预期结果。

例如: 对照片反差进行变换;对被噪声污染的工业电视图像去除噪声;从卫星图片中提取目标物特征参数等等。

与人类对视觉机理着迷的历史相比, 数字图像处理还是一门相对年轻的学科。

但在其短短的历史中, 它却以程度不同的成功被应用于几乎所有与成像有关的领域。

由于其表现方式(用图像显示)所固有的魅力, 它几乎吸引了从科学家到平民百姓太多的注意。

几个新的技术发展趋势将进一步刺激该领域的成长: 包括由低价位微处理器支持的并行处理技术;用于图像数字化的低成本的电荷耦合器件(CCD);用于大容量、低成本存储阵列的新存储技术;以及低成本、高分辨的彩色显示系统。

另一个推动力来自于稳定涌现出的新的应用。

在商业、工业、医学应用中, 数字成像技术的使用持续增长。

尽管军费在削减, 在遥感成像中却更多地使用了数字图像处理技术。

低成本的硬件加上正在兴起的几个非常重要的应用, 我们可以预料到数字图像处理在将来会发挥更重要的作用。

2.图像增强技术图像增强是指按特定的需要突出一幅图像中的某些信息, 同时, 削弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强技术主要包含直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。

空间域平滑技术为了抑制噪声改善图像质量所进行的处理称为图像平滑或去噪。

它可以在空间域或频率域中进行。

此处介绍空间域的几种平滑方法。

(1)局部平滑法局部平滑发又称邻域平均法或移动平均法。

它是利用像素邻域内的各像素的灰度平均值代替该像素原来的灰度值, 实现图像的平滑。

邻域平均法是将当前像素邻域内各像素的灰度平均值作为其输出值的去噪方法。

其作用相当于用这样的模板同图像卷积。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。

在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。

2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。

3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。

以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。

4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

数字像处理实训学习总结像处理算法与像识别

数字像处理实训学习总结像处理算法与像识别

数字像处理实训学习总结像处理算法与像识别数字图像处理实训学习总结数字图像处理是计算机科学领域中的重要研究方向,它主要研究如何对数字图像进行操作和处理,从而提取出图像中的有用信息。

在数字图像处理实训学习过程中,我学习了像处理算法和像识别技术,并在实践中深化了对数字图像处理原理和方法的理解。

在本文中,我将总结我在数字图像处理实训中所学到的知识和经验。

1. 图像处理算法图像处理算法是数字图像处理的核心内容,它们可以对图像进行增强、压缩、分割等操作。

在实训中,我学习了常用的图像处理算法,如直方图均衡化、滤波、边缘检测等。

这些算法可以有效地改善图像的质量,使得图像更加清晰、亮度均衡。

例如,通过直方图均衡化,我可以提高图像对比度,使细节更加清晰可见。

2. 像素操作像素操作是图像处理中的基本操作,它涉及到对图像中每个像素点的处理。

通过修改像素的数值,可以改变图像的亮度、对比度等特征。

在实训中,我学习了如何使用像素操作实现图像的二值化、灰度转换等功能。

通过设置适当的阈值,可以将图像转换为黑白图像或者灰度图像,并突出显示图像中的目标区域。

3. 图像滤波图像滤波是一种常用的图像处理方法,通过对图像进行滤波操作,可以去除图像中的噪声,平滑图像并增强图像特征。

在实训中,我学习了线性和非线性滤波算法,如均值滤波、中值滤波等。

这些滤波算法可以有效地减少图像中的噪声,并提高图像的质量。

4. 图像分割与边缘检测图像分割是指将图像分割成若干个子区域的过程,而边缘检测是指寻找图像中物体边缘的过程。

在实训中,我学习了图像分割和边缘检测的方法,如阈值分割、边缘检测滤波器等。

这些方法可以帮助我们在图像中提取出感兴趣的目标,并进行后续的分析和处理。

5. 像识别技术像识别技术是数字图像处理的一个重要应用领域,它将图像处理和模式识别相结合,以实现对图像中目标的自动识别和分类。

在实训中,我学习了基于特征提取和分类器设计的像识别方法。

通过提取图像的特征并训练分类器,可以实现对图像中物体的自动识别。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理学习报告
在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。

在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。

图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。

图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。

数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程.数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。

数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。

其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。

目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。

在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。

1. 数字图像处理需用到的关键技术
由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。

数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。

图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。

图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要
求。

图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易
分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。

图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的
退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。

图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。

图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。

图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。

2. 数字图像处理的特点
数字图像处理的特点主要表现在以下几个方面:
1)数字图像处理的信息大多是二维信息,处理信息量很大。

因此对计算机的计算速度、存
储容量等要求较高。

2)数字图像处理占用的频带较宽。

与语言信息相比,占用的频带要大几个数量级。

所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。

这就对频
带压缩技术提出了更高的要求。

3)数字图像中各个像素不是独立的,其相关性大。

在图像画面上,经常有很多像素有相同
或接近的灰度。

所以,图像处理中信息压缩的潜力很大。

4)数字图像处理后的图像受人的因素影响较大,因为图像一般是给人观察和评价的。

3. 数字图像处理的优点
数字图像处理的优点主要表现在4个方面。

1)再现性好。

数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或
复制等一系列变换操作而导致图像质量的退化。

只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。

2)处理精度高。

将一幅模拟图像数字化为任意大小的二维数组,主要取决于图像数字化设
备的能力.
3)适用面宽。

图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像。

只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法
适用于任何一种图像。

4)灵活性高。

图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每
一部分均包含丰富的内容。

4. 数字图像处理的应用领域
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生
活和工作的方方面面,随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩
大。

航天和航空技术:在飞机遥感和卫星遥感技术中用配备有高级计算机的图像处理系统来判读分析,既节省人力又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。

生物医学工程:除了CT技术之外,还有对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。

通信工程:当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。

在一定意义上讲,编码压缩是这些技术成败的关键。

除了已应用较广泛
的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。

工业和工程领域:图像处理技术有着广泛的应用,如自动装配线中检测零件的质量并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。

军事方面:图像处理和识别主要用于导弹的精确末制导
各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。

文化艺术:电视画面的数字编辑、动画的制作、电子图像游戏、纺织工艺品设计、服装设计与制作、发型设计、文物资料照片的复制和修复、运动员动作分析和评分等等。

视频和多媒体系统:电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。

电子商务:图像处理技术在电子商务中也大有可为,如身份认证、产品防伪、水印技术等。

在这门课程的最后,代课老师给我们讲授了数字视频处理,让我们了解到数字视频就是以数字形式记录的视频,和模拟视频相对的。

数字视频有不同的产生方式,存储方式和播出方式。

比如通过数字摄像机直接产生数字视频信号,存储在数字带,P2卡,蓝光盘或者磁盘上,从而得到不同格式的数字视频。

然后通过PC,特定的播放器等播放出来。

了解了数字视频发展过程和视频压缩的概念和分类等。

我们这门课程主要是上理论课,其中有很复杂的数学原理,专业术语多,基础知识要求高,理解起来有些困难。

当初选择这门课是希望能有一些具体软件的教学。

就我了解,视频处理的软件有MAYA、Premiere、绘声绘影、windows自带的MOVE MAKER;处理数字图像的软件主要有matlaB、photoshop、ImageJ (java图像处理程序)。

其中,matlaB和PS 很具有教学性,这两个软件也运用的很广。

MATLAB全称是MatrixLaboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。

实际运用MATLAB中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了MATLAB在处理数字图像上的独特优势。

理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。

Photoshop是Adobe公司旗下最为出名的图像处理软件之一,集图像扫描、编辑修改、图像制作、广告创意,图像输入与输出于一体的图形图像处理软件,深受广大平面设计人员和电脑美术爱好者的喜爱。

如果能理论和实践相结合,相信我们会把数字图像处理理解的跟透彻,同时也锻炼了大家的动手能力。

希望老师能多开设实际动手的课程。

相关文档
最新文档