Zemax中的点列图的分析方法
Zemax中的点列图的分析方法

点列图的原理就是显示光学系统在IMA面上的成像。
换句话说,它就就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。
为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。
显然如果光学系统就是完美的光学系统,那么这些点成像点为一个理想的点。
但对于实际的光学系统,就会成像为一个弥散斑。
那么这个弥散斑在IMA面上的像,就就是Spot Diagram。
同理,在非轴上点,也可以参照主光线的角度与位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。
如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。
如果您发现弥散斑足够小,满足您对光学系统最小弥散斑的要求(spot diagram的单位就是微米)那么您的光学系统就完全可以进行实际的加工了。
换句话说,就就是您的光学系统已经可以设计完成了。
如何才知道您的光学系统足够的好?这里有个参考,就就是airy 斑的参考。
airy斑就是物理光学的一个概念。
它指出在形成的弥散斑直径在2、44*F*(主波长)以内的时候,该光学系统可以认为就是理想(完美)光学系统。
这样当您在Spot Diagram图中,在setting 菜单中,设置显示airy斑。
然后发现您的点列图完全都在airy斑环之内,您就可以认为您的光学系统设计已经完美。
但实际上,很少有光学系统,可以满足符合airy斑直径的要求。
那么说明您的光学系统有像差。
究竟就是哪种像差在起主要作用?主要的像差有,球差,慧差,像散,场曲,畸变。
这些像差在spot diagram上的表现各不相同。
但由于一个光学系统通常就是各种像差的混合。
因此需要您对spot diagram的形状进行判断。
确认就是主要就是哪种像差,然后通过修改玻璃,或者曲率以及光阑的位置等加以调整。
zemax手把手教程

ZEMAX手把手教程课程1:单透镜(a singlet)你将要学到的:开始ZEMAX,输入波长和镜片数据,生成光线特性曲线(ray fan),光程差曲线(OPD),和点列图(Spotdiagram),确定厚度求解方法和变量,进行简单的优化。
假设你需要设计一个F/4的镜片,焦距为100mm,在轴上可见光谱范围内,用BK7玻璃,你该怎样开始呢?首先,运行ZEMAX。
ZEMAX主屏幕会显示镜片数据编辑(LDE)。
你可以对LDE窗口进行移动或重新调整尺寸,以适合你自己的喜好。
LDE由多行和多列组成,类似于电子表格。
半径、厚度、玻璃和半口径等列是使用得最多的,其他的则只在某些特定类型的光学系统中才会用到。
L DE中的一小格会以“反白”方式高亮显示,即它会以与其他格子不同的背景颜色将字母显示在屏幕上。
如果没有一个格子是高亮的,则在任何一格上用鼠标点击,使之高亮。
这个反白条在本教程中指的就是光标。
你可以用鼠标在格子上点击来操纵LDE,使光标移动到你想要停留的地方,或者你也可以只使用光标键。
LDE的操作是简单的,只要稍加练习,你就可以掌握。
开始,我们先为我们的系统输入波长。
这不一定要先完成,我们只不过现在选中了这一步。
在主屏幕菜单条上,选择“系统(System)”菜单下的“波长(Wavelengths)”。
屏幕中间会弹出一个“波长数据(Wavelength Data)”对话框。
ZEMAX中有许多这样的对话框,用来输入数据和提供你选择。
用鼠标在第二和第三行的“使用(Use)”上单击一下,将会增加两个波长使总数成为三。
现在,在第一个“波长”行中输入486,这是氢(Hydrogen)F谱线的波长,单位为微米。
Z EMAX全部使用微米作为波长的单位。
现在,在第二行的波长列中输入587,最后在第三行输入656。
这就是ZEMAX中所有有关输入数据的操作,转到适当的区域,然后键入数据。
在屏幕的最右边,你可以看到一列主波长指示器。
ZEMAX光学设计软件操作说明详解_光学设计

ZEMAX光学设计软件操作说明详解_光学设计.txt9母爱是一滴甘露,亲吻干涸的泥土,它用细雨的温情,用钻石的坚毅,期待着闪着碎光的泥土的肥沃;母爱不是人生中的一个凝固点,而是一条流动的河,这条河造就了我们生命中美丽的情感之景。
ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
分析点列图

Zemax中的点列图的分析方法(2011-03-12 21:22:48)分类:光学设计Zemax标签:zemax光学设计资料来源:Zemax manual,网络点列图的原理是显示光学系统在IMA面上的成像。
换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。
为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。
显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。
但对于实际的光学系统,就会成像为一个弥散斑。
那么这个弥散斑在IMA面上的像,就是Spot Diagram。
同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。
如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。
如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram的单位是微米)那么你的光学系统就完全可以进行实际的加工了。
换句话说,就是你的光学系统已经可以设计完成了。
如何才知道你的光学系统足够的好?这里有个参考,就是airy斑的参考。
airy斑是物理光学的一个概念。
它指出在形成的弥散斑直径在2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。
这样当你在Spot Diagram图中,在setting菜单中,设置显示airy斑。
然后发现你的点列图完全都在airy斑环之内,你就可以认为你的光学系统设计已经完美。
但实际上,很少有光学系统,可以满足符合airy斑直径的要求。
那么说明你的光学系统有像差。
究竟是哪种像差在起主要作用?主要的像差有,球差,慧差,像散,场曲,畸变。
这些像差在spotdiagram上的表现各不相同。
实验二ZEMAX中的像质评价方法

实验二ZEMAX中的像质评价方法实验二ZEMAX 中的像质评价方法一、实验目的了解ZEMAX的各种像质评价方法。
二、ZEMAX的像质评价方法ZEMAX提供丰富的像质评价指标,现结合D=0.5,相对孔径1/4、视场94°的1/6英寸CCD 广角物镜色合计参数,将主要评价结果介绍如下。
表3-1 广角物镜结构参数序号半径R 间隔d 玻璃外径D1 ∞0.6 K9 1.62 1.109 0.6 0.93 3.448 1.0 LAK3 1.14 -18.705 0.5 1.15 光阑0.1 0.356 -2.89 1.0 LAK3 0.417 -1.7 0.1 1.18 2.29 1.0 K9 1.19 -1.7378 0.6 ZF7 1.110 -14.791 1.11、几何像差曲线(1)球差曲线(Longitudinal Aberration)纵坐标是孔径,横坐标是球差(色球差)。
(2)焦点色位移(Focal Shift)表示的是系统工作波长范围内不同波长的色光近焦距位移。
横坐标表示焦点位移,纵坐标为不同色光的波长,整个图形以主波长的近轴焦点为参考基准。
(3)轴外细光束像差曲线(Field Curv/Dist)左图为像散场曲曲线,右图为畸变曲线,纵坐标为视场,左图横坐标是场曲,右图是畸变的百分比值。
(4)子午光束与弧矢光束垂轴像差曲线(Ray Fan)横坐标表示光束孔径高度,纵坐标表示垂轴像差,EY表示δy′(子午),EX表示δz′(弧矢)。
(5)垂轴色差(倍率色差)(Lateral Color)横坐标表示不同色光与参考色光像高的像差,纵坐标表示视场。
图中两条AIRY表示的曲线为艾里斑范围。
2、点列图(Spot Diagram)点列图下方给的数可以看出每个视场的RMS RADIUS(均方根半径值)、AIRY光斑半径、GEO RADIUS为几何半径(最大半径),值越小成像质量越好。
另外根据分布图形的形状也可了解系统的各种几何像差的影响,如是否有明显像散或彗差特征,几种色斑的分开程度如何等。
点列图看图方式

spot diagram的看图方式说明光学设计程序zemax中有个很常用的评测光学系统质量的分析工具-spot diagram,中文翻译就是点图,借助它可以形象的对光学系统成像进行很好的描述。
这里写下本人对spot diagram的体会和认识。
可以通过多种方式在zemax中显示点图,方式一:直接点击在屏幕菜单工具栏中的“Spt”按钮;方式二:选择菜单Analysis-Spot Diagrams-Standard。
点图的原理是显示光学系统在IMA面上的成像。
换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。
为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,zemax就模拟在无限远有若干个发光点,这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。
显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。
但对于实际的光学系统,就会成像为一个弥散斑。
那么这个弥散斑在IMA面上的像,就是Spot Diagram。
同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。
如何通过spot diagram看光学设计的质量,简单说,这个弥散斑越小越好。
如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram 的单位是微米)那么你的光学系统就完全可以进行实际的加工了。
换句话说,就是你的光学系统已经可以设计完成了。
如何才知道你的光学系统足够的好?这里有个参考,就是airy斑的参考。
airy 斑是物理光学的一个概念。
它指出在形成的弥散斑直径在2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。
这样当你在spot diagram 图中,在setting菜单中,设置显示airy斑。
然后发现你的点图完全都在airy 斑环之内,你就可以认为你的光学系统设计已经完美。
学习:ZEMAX序列工作模式

ZEMAX的序列工作模式简介本资料的主要内容包括:∙ Layouts (外形图)∙ Spot Diagrams (点列图)∙ Ray and Optical Path Difference (OPD) Fans (光线及光程差曲线)∙ MTF (调制传递函数)的计算∙扩展光源的仿真∙离轴系统∙系统孔径,视场,及波长数据一、什么是序列光线追迹在用光学软件模拟光通过光学系统的传播时,做光线追迹是一种常用的方法。
通过光线追迹来模拟光的传播通常称为几何光学。
所谓的序列光线追迹,就是对光学面事先定义一个顺序,光线的传播按照从物面到像面的顺序进行,如按图1中的箭头方向。
按照已定义好的顺序,光线与每个面只相交一次。
这些按顺序排好的光学面可以充分反映成像系统的性质。
序列光线追迹方法的数值运算速度非常块,特别适用于对系统的设计、优化和容差分析。
这种方法还可以给出系统的ray fan plots(光线扇曲线),做衍射计算,以及计算波前像差。
图1 序列模式下光线的有序传播很多传统的光学系统都属于成像系统,包括摄影物镜、摄远镜头、显微镜、望远镜、中继透镜和光谱仪。
二、ZEMAX的图形用户界面第一次打开ZEMAX(无论是演示版还是完整的注册版),用户看到的是main menu bar(主菜单栏),button bar (按钮栏),和Lens Data Editor (LDE,透镜数据编辑器)。
ZEMAX的所有功能都可以通过main menu bar上的各个菜单访问。
其中的大部分功能可通过main menu bar下面的按钮栏访问,所指定的按钮可通过"File > Preferences"操作来改变。
按钮栏的下面是Lens Data Editor,其窗口可以移动,窗口大小也可变化。
Lens Data Editor有Comments(注释), Radius(半径), Thickness(厚度), Glass(玻璃),and Semi-Diameter(半口径,即径向无遮挡部分的口径),和Conic constant(二次曲面系数),其中后5项用于描述光学元件的主要特征。
[整理版]zemax手把手教程
![[整理版]zemax手把手教程](https://img.taocdn.com/s3/m/4982d38a767f5acfa0c7cd5c.png)
[整理版]zemax手把手教程ZEMAX手把手教程课程1:单透镜(a singlet)你将要学到的:开始ZEMAX,输入波长和镜片数据,生成光线特性曲线(ray fan),光程差曲线(OPD),和点列图(Spotdiagram),确定厚度求解方法和变量,进行简单的优化。
假设你需要设计一个F/4的镜片,焦距为100mm,在轴上可见光谱范围内,用BK7玻璃,你该怎样开始呢,首先,运行ZEMAX。
ZEMAX主屏幕会显示镜片数据编辑(LDE)。
你可以对LDE窗口进行移动或重新调整尺寸,以适合你自己的喜好。
LDE由多行和多列组成,类似于电子表格。
半径、厚度、玻璃和半口径等列是使用得最多的,其他的则只在某些特定类型的光学系统中才会用到。
LDE中的一小格会以“反白”方式高亮显示,即它会以与其他格子不同的背景颜色将字母显示在屏幕上。
如果没有一个格子是高亮的,则在任何一格上用鼠标点击,使之高亮。
这个反白条在本教程中指的就是光标。
你可以用鼠标在格子上点击来操纵LDE,使光标移动到你想要停留的地方,或者你也可以只使用光标键。
LDE 的操作是简单的,只要稍加练习,你就可以掌握。
开始,我们先为我们的系统输入波长。
这不一定要先完成,我们只不过现在选中了这一步。
在主屏幕菜单条上,选择“系统(System)”菜单下的“波长(Wavelengths)”。
屏幕中间会弹出一个“波长数据(Wavelength Data)”对话框。
ZEMAX中有许多这样的对话框,用来输入数据和提供你选择。
用鼠标在第二和第三行的“使用(Use)”上单击一下,将会增加两个波长使总数成为三。
现在,在第一个“波长”行中输入486,这是氢(Hydrogen)F谱线的波长,单位为微米。
ZEMAX全部使用微米作为波长的单位。
现在,在第二行的波长列中输入587,最后在第三行输入656。
这就是ZEMAX中所有有关输入数据的操作,转到适当的区域,然后键入数据。
在屏幕的最右边,你可以看到一列主波长指示器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点列图的原理是显示光学系统在IMA面上的成像。
换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。
为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。
显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。
但对于实际的光学系统,就会成像为一个弥散斑。
那么这个弥散斑在IMA面上的像,就是Spot Diagram。
同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。
如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。
如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram的单位是微米)那么你的光学系统就完全可以进行实际的加工了。
换句话说,就是你的光学系统已经可以设计完成了。
如何才知道你的光学系统足够的好?这里有个参考,就是airy 斑的参考。
airy斑是物理光学的一个概念。
它指出在形成的弥散斑直径在2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。
这样当你在Spot Diagram图中,在setting菜单中,设置显示airy斑。
然后发现你的点列图完全都在airy斑环之内,你就可以认为你的光学系统设计已经完美。
但实际上,很少有光学系统,可以满足符合airy斑直径的要求。
那么说明你的光学系统有像差。
究竟是哪种像差在起主要作用?主要的像差有,球差,慧差,像散,场曲,畸变。
这些像差在spot diagram上的表现各不相同。
但由于一个光学系统通常是各种像差的混合。
因此需要你对spot diagram的形状进行判断。
确认是主要是哪种像差,然后通过修改玻璃,或者曲率以及光阑的位置等加以调整。
不同的像差有不同的像表现,同时随着像差的大小不同,这个像,也叫斑点的大小也不一样,显然像差越小的光学系统,其斑点也越小。
衡量这个斑点大小有个定义,就是RMS半径定义,另外还有一个就是几何半径的定义。
RMS是均方根半径,可以定量的反映这个系统实际的斑点大小。
在Spot Diagram中还有几个参数可以参考,RMS RADIUS,均平方根半径是一个重要的半径参数,它是弥散斑各个点坐标,参考中心点,进行的坐标平方和后,除以点数量,然后开方的值,这个值的半径可以反映一个典型的弥散斑的大小,以定量的反映这个系统实际的斑点大小。
但它不是全部弥散斑的直径,全部弥散斑的直径是GEO RADIUS。
RMS RADIUS是重要的反映弥散质量的参数,它和在优化中和MF的值极大的吻合。
(就是说MF的某个视场最后值就是RMS的半径)
需要说明的是:不同的射入入瞳的光线排列会对最后的RMS半径等有影响,但并不大。
关键影响RMS半径的是,每个airy斑的中心点参考点的选择:一种选择的方式是根据主光线的位置做为斑点中心光线的中点。
另外一种方式是采用斑点的实际重心做为斑点中点。
对于一个轴对称系统,在轴上,显然主光线中心和斑点重心是一点没有差别,但在轴外点成像。
主光线的中心计算出来的RMS显然要比斑点重心计算的RMS半径要大。
其实,通常采用的是斑点重心的参考中点方式。
Spot Diagram与Ray Fan的区别:
Spot Diagram的形成,我们也可以在轴外子午面上选择一点做为发光点。
这个点同样将光线射向系统的入瞳和光阑位置。
和Ray Fan 不同的就是,这次我们考虑的更全面些。
这一束光线不是Ray Fan 的一个子午面方式,而是一个面阵的方式发散。
而是全面的射入入瞳。
为了计算和比较,有几种布置光线的方式可以选择,比如随机点方式,矩形方式,圆形方式,还有三角方式等等。
目的是能尽量保证平衡射入这个系统
如有侵权请联系告知删除,感谢你们的配合!。