大学物理第6章真空中的静电场课后习题与答案
大学物理第六章静电场中的导体习题课

.
1
一、静电场中的导体
1.静电平衡条件: 导体内部场强为0。
2.静电平衡时导体为等势体,导体表面为 等势面。
3.静电平衡时导体内无净电荷,所有电荷分 布于导体表面。
4.孤立导体电荷面密度与导体表面的曲率 有关,曲率越大,面密度越大.
5.静电平衡时,场强方向与导体表面垂直。
.
2
本章小结与习题课
6.静电平衡时,导体表面的场强大小为
E 0
7. 空腔内无电荷:空腔内表面无电荷全部
电荷分布于外表面,空腔内场强 E = 0。空腔
导体具有静电屏蔽的作用。
8. 空腔原带有电荷 Q:将 q 电荷放入空腔
内,内表面带有 -q 电荷,外表面带有 Q + q
电荷。接地可屏蔽内部电场变化对外部电
场的影响。
.
S
.
x 14
5(08)、一平行板电容器,两板相距d,对它充电后断开,然 后把两板间距增大到2d,如果电容器内电场边缘效应忽略不计, 则 (A)电容器的电容增大一倍 (B)电容器所带的电量增大一倍 (C)电容器两极间的电场强度增大一倍 (D)储存在电容器中的电场能量增大一倍
we1 2E2或 we1 20E2
(1)球壳内外表面上的电荷 (2)球心O处,由球壳内表面上电荷产生的电势 (3)球心O处的总电势
qO a r
Q
b
.
11
解: (1)由静电感应,金属球壳内表面有感应电荷-q,外 表面上带电荷q+Q
(2)无论球壳内表面上的感应电荷-q是如何分布的,因
为任一电荷元离O点距离都是a,所以由这些电荷在O
点产生的电势为:
3
本章小结与习题课
二、电介质中的场强 1.介质中的场强 EE0E'
四川大学大学物理练习册答案第六章 静电场中的导体与电介质

(2) 如用导线将球和球壳连接起来,则 壳的内表面和球表面的电荷会完全中和 而使这两个表面不带电,二者之间的电 场也变为0,二者成为等势体,球壳外表 面上的电荷仍保持为 q 3 , 并均匀分布, 它外面的电场分布也不变,仍为
B
A
o
q3
q3 B R3 E 2 2 4πε0 r r
R3 R2
R
同理,在导体表面上距O点 为 r 的P点附近的P处场强也应为 零。沿 x 轴分量为
a
P r O
X
由此得
由对称性分析,感应电荷应呈以O点为中心的圆对称分布。 在导体表面取 r—r+dr 的细圆环,则环面上的感应电荷为
整个导体表面的感应电荷总量为
q0
+ + + + + + + ++
尖端放电现象 带电导体尖端附 近的电场特别大,可 使尖端附近的空气发 生电离而成为导体产 生放电现象. 电 风 实 验
+++ ++
σE
+ +
+ + +
尖端放电有弊有利。
避雷针的工作原理
+ +
-
+ + +
+ +
-- - - -
(二) 空腔导体 空腔内无电荷时
0
B
q
+
三
静电屏蔽
静电屏蔽——在静电场中,因导体的存在使某些特 定的区域不受电场影响的现象。
大学物理第6章真空中的静电场课后习题及答案

⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。
试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。
3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。
求该直线段受到的电场⼒。
解:先求均匀带电圆环在其轴线上产⽣的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。
+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。
在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。
大学物理(第四版)课后习题及答案 静电场

证2:如图所示,取无限长带电细线为微元,各微元在点P激发的电场强 度dE在Oxy平面内且对x轴对称,因此,电场在y轴和z轴方向上的分量之 和,即Ey、Ez均为零,则点P的电场强度应为
积分得 电场强度E的方向为带电平板外法线方向。 上述讨论表明,虽然微元割取的方法不同,但结果是相同的。
(2)由于正、负电荷分别对称分布在y轴两侧,我们设想在y轴上能 找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上 等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电 荷中心。等效正负电荷中心一定在y轴上并对中心O对称。由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。 解:(1)将圆环沿y轴方向分割为一组相互平行的元电偶极子,每一元 电偶极子带电
行,对电场强度通量贡献为零。整个高斯面的电场强度通量为 由于,圆柱体电荷均匀分布,电荷体密度,处于高斯面内的总电荷 由高斯定理可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得 题7.16:一个内外半径分别R1为R2和的均匀带电球壳,总电荷为Q1,球 壳外同心罩一个半径为 R3的均匀带电球面,球面带电荷为Q2。求电场 分布。电场强度是否是场点与球心的距离r的连续函数?试分析。
题7.16分析:以球心O为原点,球心至场点的距离r为半径,作同心球面 为高斯面。由于电荷呈球对称分布,电场强度也为球对称分布,高斯面 上电场强度沿径矢方向,且大小相等。因而,在确定高斯面内的电荷 后, 利用高斯定理 即可求的电场强度的分布 解:取半径为r的同心球面为高斯面,由上述分析 r < R1,该高斯面内无电荷,,故
E=0 在距离圆孔较远时x>>r,则 上述结果表明,在x>>r时。带电平板上小圆孔对电场分布的影响可以忽 略不计。 题7.15:一无限长、半径为R的圆柱体上电荷均匀分布。圆柱体单位长 度的电荷为,用高斯定理求圆柱体内距轴线距离为r处的电场强度。
7.真空中的静电场 大学物理习题答案

l
xd x
2
k l a ( ln ) 4 0 a la
方向沿 x 轴正向。
7-4 一半径为 R 的绝缘半圆形细棒,其上半段均匀带电量+q,下半段均匀带电量-q,如图 7-4 所示,求半 圆中心处电场强度。 解:建立如图所示的坐标系,由对称性可知,+q 和-q 在 O 点电场强度沿 x 轴的分量之和为零。取长为 dl 的线元,其上所带电量为
大学物理练习册—真空中的静电场
库仑定律 7-1 把总电荷电量为 Q 的同一种电荷分成两部分, 一部分均匀分布在地球上, 另一部分均匀分布在月球上, 24 使它们之间的库仑力正好抵消万有引力, 已知地球的质量 M=5.98l0 kg, 月球的质量 m=7.34l022kg。 (1)求 Q 的最小值; (2)如果电荷分配与质量成正比,求 Q 的值。 解: (1)设 Q 分成 q1、q2 两部分,根据题意有 k
x
d 时 2
1 E d S 2 E1S 2 xS , E1 x 1 S 0 0
28
大学物理练习册—真空中的静电场
x
d 时 2
1 d d E d S S 2 2 E 2 S 0 2 2 S , E 2 0
r R sin , x R cos
x
d E
sin cos d 2 0
因为球面上所有环带在 O 处产生的电场强度方向相同, E 2 0
2 0
sin cos d i i 4 0
7-6 一无限大均匀带电薄平板,面电荷密度为 ,平板中部有一半径为 R 的圆孔, 如图 7-6 所示。求圆孔 中心轴线上的场强分布。 (提示:利用无穷大板和圆盘的电场及场强叠加原理) 解:利用补偿法,将圆孔看作由等量的正、负电荷重叠而成,即等效为一个 完整的带电无穷大平板和一个电荷面密度相反的圆盘叠加而成。 R 无穷大平板的电场为
大连理工大学大学物理作业6(静电场六)与答案详解

作业6静电场六1.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则 它们的静电能之间的关系是[]。
A.球体的静电能等于球面的静电能B.球体的静电能大于球面的静电能C.球体的静电能小于面的静电能D.球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能答案:【B 】解:设带电量为Q 、半径为R ,球体的电荷体密度为。
由高斯定理,可以求得两种电荷分布的电场强度分布S EdS2r 2EQ 0 0, E Q 0 2r 0 2对于球体电荷分布:43 r 2r 3 E0,(rR ); 122r300Q E ,(rR )。
222r对于球壳电荷分布:/ E0,(rR ); 1Q/ E ,(rR )。
222r可见,球外:两种电荷分布下,电场强度相等;球内:球体电荷分布,有电场,球壳电荷分 布无电场。
静电场能量密度1 2 E2 两球外面的场强相同,分布区域相同,故外面静电能相同;而球体(并不是导体)内部也有电 荷分布,也是场分布,故也有静电能。
所以球体电荷分布时,球内的静电场能量,大于球面 电荷分布时,球内的静电场能量;球体电荷分布时,球外的静电场能量,等于球面电荷分布 时,球外的静电场能量。
2. C 和C 2两空气电容器串联起来接上电源充电,然后将1电源断开,再把一电介质板插入 []。
C 中,如图6-1所示,则1A. C 两端电势差减少,C 2两端电势差增大1B. C 两端电势差减少,C 2两端电势差不变1C. C 两端电势差增大,C 2两端电势差减小1D. C 两端电势差增大,C 2两端电势差不变1答案:【B 】解:电源接通时,给两个串联的电容器充电。
充电量是相同的,是为Q 。
则两个电容器的 电压分别为Q U , 1 C 1U 2Q C 2电源断开后,C1插入电介质,两个电容器的电量不变,仍然都是Q。
但C1的电容增大,因此C1两端的电压降低;而C2不变,因此,C2两端的电压不变。
大学物理第六章静电场习题答案

第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。
6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。
设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。
解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。
(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。
试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。
解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。
华南理工大学大学物理各章节习题及答案汇编

习题一 真空中的静电场院 系: 班 级:_____________ 姓 名:___________ 学 号:____________________一 选择题(共30分)1.如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为:[ C ] (A)204y q επ. (B)202y q επ. (C)302y qa επ. (D) 304yqa επ.2.半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ B ]3.如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: [ C ](A) a qQ 023επ . (B) a qQ 03επ. (C) a qQ 0233επ. (D) aqQ 032επ.4.图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:[ D ] (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C .E Or(D) E ∝1/r 23q2q5.半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: [ B ]6.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为: (A)2012a Q επ. (B) 206a Q επ. (C) 203a Q επ. (D) 20aQεπ. [C ]7.图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的. (A) 半径为R 的均匀带电球面. [ B ](B) 半径为R 的均匀带电球体.(C) 半径为R 的、电荷体密度为=A r (A 为常数)的非均匀带电球体. (D) 半径为R 的、电荷体密度为=A/r (A 为常数)的非均匀带电球体.8.选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302r U R . (B) R U 0. (C) 20r RU . (D) r U 0. [ C ]9. 设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[C ]10. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ B ]E O rE ∝1/rE Or(D) E ∝1/rR E Or(C) E ∝1/rE Or(A) E ∝1/rO R rE E ∝1/r 2OxE (A)OxE (C)OxE (B)OxE (D)E ∝1/|x|E ∝x11.如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd的电场强度通量等于:(A) 06εq . (B) 012εq . (C) 024εq . (D) 048εq. [ C ]二 填空题1.电荷分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U =___________ . ()32102281q q q R++πε2.图中所示以O 为心的各圆弧为静电场的等势(位)线图,已知U 1<U 2<U 3,在图上画出a 、b 两点的电场强度的方向,并比较它们的大小.E a = E b (填<、=、>).3.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为_____________ .d 211λλλ+4.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________.10 cm5.已知某静电场的电势函数U =a ( x 2+ y ),式中a 为一常量,则电场中任意点的电场强度分量E x =-2ax ,E y = -a ,E z = 0.6.如图所示.试验电荷q ,在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点的过程中电场力作功为 0 ;从d 点移到无穷远处的过程中,电场力作功为qQ / (4πε0R ).7.一个带电荷q 、半径为R 的金属球壳,壳内是真空,壳外是介电常量为ε 的无限大各向同性均匀电介质,则此球壳的电势U =________________.Rqεπ48.在点电荷q 的电场中,把一个-1.0×10-9C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功 1.8×10-5 J ,则该点电荷q =-2×10-7库伦.(真空介电常量0=8.85×10-12C 2·N -1·m -2)A b caq2 q 1 q 3OOU 1U 2U 3abλ2a d 12q 1 q 2 r 1r 2+Q R q d∞三 计算题1.厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ.试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.解:选坐标如图.由高斯定理,平板内、外的场强分布为:E = 0 (板内) )2/(0εσ±=x E (板外)1、2两点间电势差⎰=-2121d x E U U x x x d b d d d a d 2d 22/2/02/)2/(0⎰⎰+-+-+-=εσεσ )(20a b -=εσ 2.一环形薄片由细绳悬吊着,环的外半径为R ,内半径为R /2,并有电荷Q 均匀分布在环面上.细绳长3R ,也有电荷Q 均匀分布在绳上,如图所示,试求圆环中心O 处的电场强度(圆环中心在细绳延长线上).解:先计算细绳上的电荷在O 点产生的场强.选细绳顶端作坐标原点O ,x 轴向下为正.在x 处取一电荷元 d q = d x = Q d x /(3R ) 它在环心处的场强为 ()20144d d x R qE -π=ε ()20412d x R R xQ -π=ε 整个细绳上的电荷在环心处的场强()203020116412RQx R dx R Q E R εεπ=-π=⎰ 圆环上的电荷分布对环心对称,它在环心处的场强E 2=0由此,合场强 i R Qi E E20116επ== 方向竖直向下.3.电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0 )的点电荷,求带电细棒对该点电荷的静电力. 解:沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强: ()()20204d 4d d x a xx a q E -π=-π=ελε 3分 ()⎰--π=2/2/204d L L x a xE ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ 4分 方向沿x 轴正向. 点电荷受力:==qE F ()2204πL a qQ-ε 方向沿x 轴正方向. 3分1σda1σd abxOO R 3RR /2E 1xR3R x xOPL+Q OaP O L/2L/2d x d q a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。
3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。
E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。
在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。
直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。
4.一个半径为R的均匀带电半圆环,电荷线密度为。
求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。
解:(1)在半圆环上取dqdlRd,它在O点产生场强大小为dqdEd24π4RπR00 ,方向沿半径向外根据电荷分布的对称性知,E0ydE xdEsinsin4πRdE x sind042ππR0 0 R故E Ex2 π0 R,方向沿x轴正向。
(2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。
5.如图所示,真空中一长为L的均匀带电细直杆,总电量为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度。
q解:建立图示坐标系。
在均匀带电细直杆上取dqdxdx,dq在P点产生的场强大小为LdqdxdE,方向沿x轴负方向。
2240x4x故P点场强大小为EdEPq dd L4d xx2xLqPOd4 ddL方向沿x轴负方向。
6.一半径为R的均匀带电半球面,其电荷面密度为,求球心处电场强度的大小。
解:建立图示坐标系。
将均匀带电半球面看成许多均匀带电细圆环,应用场强叠加原理求解。
2在半球面上取宽度为dl的细圆环,其带电量dqdS2rdl2Rsind ,dq在O 点产生场强大小为(参见教材中均匀带电圆环轴线上的场强公式)xdqdE,方向沿x轴负方向322240(xr)x利用几何关系,xRcos ,rRsin 统一积分变量,得xdq dE2240(xr)32 rd l41Rcos2 2R3 R 0sindOR220sincosd因为所有的细圆环在在O点产生的场强方向均沿为x轴负方向,所以球心处电场强度的大小为/2EdEsincosd2040方向沿x轴负方向。
7.一“无限大”平面,中部有一半径为R的圆孔,设平面上均匀带电,电荷面密度为,如图所示。
试求通过小孔中心O并与平面垂直的直线上各点的场强。
解:应用补偿法和场强叠加原理求解。
若把半径为R的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为一个完整的“无限大”带电平面和一个电荷面密度为的半径为R的带电圆盘,由场强叠加原理知,P点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的矢量和。
“无限大”带电平面在P点产生的场强大小为σE,方向沿x轴正方向12半径为R、电荷面密度的圆盘在P点产生的场强大小为(参见教材中均匀带电圆盘轴线上的场强公式)xE(1)2222Rx 故P点的场强大小为,方向沿x轴负方向RPOxxxE E1 E222Rx2方向沿x轴正方向。
8.(1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电场强度通量是多少?解:(1)由高斯定理 Es dSq求解。
立方体六个面,当q在立方体中心时,每个面上电通量相等,所以通过各面电通量为qe6(2)电荷在顶点时,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心,则q通过边长2a的正方形各面的电通量e6对于边长a的正方形,如果它不包含q所在的顶点,则qe,如果它包含q所在顶点,24则0e。
9.两个无限大的平行平面都均匀带电,电荷的面密度分别为1和2,试求空间各处场强。
解:如图所示,电荷面密度为1的平面产生的场强大小为1E,方向垂直于该平面指向外侧20 1 E12电荷面密度为2的平面产生的场强大小为E232E,方向垂直于该平面指向外侧2由场强叠加原理得1两面之间,E(),方向垂直于平面向右E1E212211面左侧,E1E(),方向垂直于平面向左E212212面右侧,EE1E(),方向垂直于平面向右21224.如图所示,一球壳体的内外半径分别为R和1 R,电荷均匀地分布在壳体内,电荷体密度2为(0)。
试求各区域的电场强度分布。
解:电场具有球对称分布,以r为半径作同心球面为高斯面。
由高斯定理 ES1d S qi得21E4rqi当r R时,q0,所以1iE0当4433RR1rR时,)q i(r,所以21333(rR1E23r3)当4433rR时,2R)q i,所以(R2133E(R323rR123)5.有两个均匀带电的同心带电球面,半径分别为R和R2(R2R1),若大球面的面电荷密1度为,且大球面外的电场强度为零。
求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。
解:(1)电场具有球对称分布,以r为半径作同心球面为高斯面。
由高斯定理 ES1d S qi得21E4rqi0 当22r时,E0,440Ri,所以qR2R21(RR2)12(2)当r R时,q0,所以1iE0当R1rR时, 222q i4R14R,所以2E(Rr2) 24负号表示场强方向沿径向指向球心。
12.一厚度为d的无限大的带电平板,平板内均匀带电,其体电荷密度为,求板内外的场强。
解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底面圆到平板中心的距离均为x,底面圆的面积为S。
由高斯定理 ES1d S qi得E S dSESES01qi当dx时(平板内部),q i2x S,所以2xE当dx(平板外部),q i dS,所以2dE213.半径为R的无限长直圆柱体均匀带电,体电荷密度为,求其场强分布。
解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l,底面圆半径为r,应用高斯定理求解。
E S1d S E2πrlqi2(1)当rR时,q i rl,所以rE22,所以(2)当rR时,qRli2RE2r14.一半径为R的均匀带电圆盘,电荷面密度为,设无穷远处为电势零点,求圆盘中心O点的电势。
解:取半径为r、dr的细圆环dqdS2rdr,则dq在O点产生的电势为dqdrdV40r2圆盘中心O点的电势为RRVdVdr0220015.真空中两个半径都为R的共轴圆环,相距为l。
两圆环均匀带电,电荷线密度分别是和。
取两环的轴线为x轴,坐标原点O离两环中心的距离均为l2,如图所示。
求x轴上任一点的电势。
设无穷远处为电势零点。
解:在右边带电圆环上取dq,它在x轴上任一点P产生的的电势为dqdV240(xl/2)R2右边带电圆环在P产生的的电势为5VdV410(xl/2) 22Rdq R220(xl/2)R2 同理,左边带电圆环在P 产生的电势为R V220(x l/2)R2 由电势叠加原理知,P 的电势为VVV2 R 0 ((x l/ 1 2)22R (x l /1 2 )2R 2) 16.真空中一半径为R 的球形区域内均匀分布着体电荷密度为的正电荷,该区域内a 点离球1 心的距离为R 32 ,b 点离球心的距离为R3。
求a 、b 两点间的电势差 U ab 解:电场分布具有轴对称性,以O 为球心、作半径为r 的同心球面为高斯面。
由高斯定理E S 1 d S qi得 当rR 时,14 23 E4rr ,所以3 0rE3 0a 、b 两点间的电势差为Ub abEdrarR 2R/3 dr /318 R32 017.细长圆柱形电容器由同轴的内、外圆柱面构成,其半径分别为a 和3a ,两圆柱面间为真空。
电容器充电后内、外两圆柱面之间的电势差为U 。
求:(1)内圆柱面上单位长度所带的电量;(2)在离轴线距离r2a 处的电场强度大小。
解:(1)电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r , 应用高斯定理求解。
E S1 d S E2πrlq 0i 内、外两圆柱面之间,qli ,所以E2r内、外两圆柱面之间的电势差为3a3a UEd r drln3aa 2r200内圆柱面上单位长度所带的电量为2 0Uln3(2)将代人场强大小的表达式得,Er U l n3在离轴线距离r2a 处的电场强度大小为6UE2aln36.如图所示,在A,B两点处放有电量分别为+q,-q的点电荷,AB间距离为2R,现将另一正试验点电荷q从O点经过半圆弧移到C点,求移动过程中电场力作的功。
解:O点的电势为V O4 qπ0 R 4πq0RC点的电势为V Cqqq 403R4πRRπ403R4πRR6π电场力作的功为Aq 0 (VO VC)qo6πqR19.如图所示,均匀带电的细圆环半径为R,所带电量为Q(Q0),圆环的圆心为O,一质量为m,带电量为q(q0)的粒子位于圆环轴线上的P点处,P点离O点的距离为d。
求:(1)粒子所受的电场力F的大小和方向;(2)该带电粒子在电场力F的作用下从P点由静止开始沿轴线运动,当粒子运动到无穷远处时的速度为多大?解:(1)均匀带电的细圆环在P点处产生的场强大小为(参见教材中均匀带电圆环轴线上的场强公式)E 1Qdx,方向沿OP向右342220(R d)粒子所受的电场力的大小qQdFqE x,方向沿OP向右322240(R d)(2)在细圆环上取dq,dq在P点产生的电势为dqdqdV4r224RdP点的电势为VdV4 0 1R22ddqQ24Rd212 由动能定理得,Aq(V0)m02qQ222mRd7。