四川省成都市八年级上学期数学期末考试试卷

合集下载

(北师大版)四川省成都市高新区八年级数学上册期末试卷及答案

(北师大版)四川省成都市高新区八年级数学上册期末试卷及答案

(2)当 P 在 A 左侧时,AP=2OA=3,P( 9 ,0 )(6 分) 2
∴ S BOP
27 4
(7 分)
3 当 P 在 A 右侧时,AP=20A=3,P( ,0 ) (9 分)
2
∴ S BOP
9 4
(10 分)
20. (本小题满分 10 分)
解答:(1)因为 △ABD 是等边三角形,E 是 AB 中点
21. 如图,∠AOE=∠BOE=22.5°,EF∥OB,EC⊥OB,若 EC=1,则 EF=

22. 点 P(3, a )、Q( 7 , b )在一次例函数 y 1 x c 的图象上,则 a与b 的大小关系 3


23.实数 a、b、c 在数轴上的位置如图所示,化简下列代数式的值
a 2 (c a b)2 b c 3 b3 =
时内(含 3 小时)的同学共有多少人?
19. (本小题满分 10 分)
如图,直线 y 2x 3 与 x 轴相交于点 A,与 y 轴相交于点 B.
⑴ 求 A、B 两点的坐标; 来源:/tiku/
⑵ 过 B 点作直线 BP 与 x 轴相交于 P,且使 AP=2OA, 求 ΔBOP 的面积.
4544 2 2 2 2
(3 分)
59 2 2
(6 分)
x 1 y 2 (2)解方程: 2
2x y 0
①×2 得:2x-y=-4 ③ ③+②得:4x=-4 ∴x=-1 把 x=-1 代入②得,y=2
(1 分) (3 分)
(5 分)
x 1
∴原方程组的解为
y
2
(6 分)
16.(本小题满分 7 分)
(友情提醒:在解题过程中可以直接运用以下结论:在直角三角形中,300 的角所对的直角边 的长等于斜边长的一半)

四川省成都市青羊区成都市石室联合中学2022-2023学年八年级上学期期末数学试题

四川省成都市青羊区成都市石室联合中学2022-2023学年八年级上学期期末数学试题

四川省成都市青羊区成都市石室联合中学2022-2023学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .B .C .D .二、填空题三、计算题13.计算:(1)()11231622+-+(2)()0322023π-+++14.计算题:(1)解方程组:324x y x y -=⎧⎨+=⎩(2)解不等式组4125102(23)3(1)12x x x x -≥-⎧⎨--+≥-⎩(并把解集在数轴上表示出来).四、问答题15.如图,在四边形ABCD 中,∠B =90°,AB =20,BC =15,CD =7,DA =24,求此四边形ABCD 的面积.五、作图题16.如图,在平面直角坐标系中,()0,1A ,()3,2B ,()2,3C .(1)在图中作出ABC 关于x 轴对称的111A B C △;(2)在图中作出ABC 绕点O 逆时针旋转90︒的图形222A B C △,并写出2B 的坐标;(3)求ABC 的面积.六、应用题17.习近平总书记指出,“红色是中国共产党、中华人民共和国最鲜亮的底色”,要用好红色资源,赓续红色血脉,为引导广大青少年相立正确的世界观、人生观、价值观,但承红色基因,某校组织了一次以“赓续红色血脉·强国复兴有我”为主题的演讲比赛,比赛成绩分为以下5个等级:A .100分、B .90分、C .80分、D .70分、E .60分,比赛结束后随机抽取部分参赛选手的成绩,整理并绘制成如下统计图,请你根据统计图解答下列问题:(1)所抽取学生比赛成绩的众数是______分,中位数是______分;(2)求所抽取学生比赛成绩的平均数;(3)若参加此次比赛的学生共100名,且学校计划为比赛成绩进入A、B两个等级的学生购买奖品,请估计学校共需要准备多少份奖品?七、问答题(1)点C的坐标为______;八、填空题22.如图,在直角坐标系中,直线y =-B 分别在y 、x 轴上,且30B ∠=︒,AB =与直线MN 平行时点A 的坐标为23.如图,在平面直角坐标系中,1A B V 角三角形,且123C C C ∠==∠=∠∠⋯=123n B B B B ⋯,,,,分别在正比例函数y =的横坐标分别为1,2,3,…,n ,线段图中所反映的规律,n n n A B C 的顶点n C九、问答题24.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案;(3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m 元,要使(2)中所有方案获利相同,则m 的值应为多少?25.如图:已知()2,0A ,直线BC 解析式为33y x =+与x 、y 轴交于C ,B 两点.(1)求直线AB 的解析式;(2)如图1,点E 在线段BC 上,D 在线段CB 的延长线上,且CE BD =,M 为线段AB 上一点,当点M ,E ,D 构成以M 为直角顶点的等腰直角三角形时,求点D 的坐标;(3)如图2,以点A 为中心,顺时针旋转OAB 得AHQ ,点O ,B 分别对应点H ,Q ,N 为线段AB 的中点,请直接写出NHQ V 面积的最大值.26.如图,在ABC 中,AB AC =,过点A 作MN BC ∥,点D 在MN 上,作BDP BAC ∠=∠,DP 交AC 延长线于点P .(1)证明:ABD APD ∠=∠;(2)证明:BD DP =;(3)如图2,当120BAC ∠=︒,BD 为ABC ∠角平分线,4AB AC ==,将PD 绕点P 顺时针旋转60︒得线段PQ ,求QAD 面积.。

2022-2023学年四川省成都市武侯区八年级(上)期末数学试卷

2022-2023学年四川省成都市武侯区八年级(上)期末数学试卷

2022-2023学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)在﹣,,﹣3.2,,这五个数中,无理数的个数为()A.2B.3C.4D.52.(4分)成都市某一周内每天的最高气温为:6,8,10,10,7,8,8(单位:℃),则这组数据的极差为()A.2B.4C.6D.83.(4分)将直角三角形的三条边长同时扩大3倍,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.无法判断4.(4分)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b<0B.k<0,b<0C.k<0,b>0D.k>0,b>05.(4分)举反例是一种证明假命题的方法,为说明命题“若m>n,则>1”是假命题,所举反例正确的是()A.m=6,n=3B.m=0.2,n=0.1C.m=2,n=1D.m=1,n=﹣16.(4分)射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭全部射完后,两人的成绩如图所示,根据图中信息,估计小明和小华两人中为新手的是()A.小明B.小华C.都为新手D.无法判断7.(4分)已知一次函数y=3x﹣1与y=2x图象的交点是(1,2),则方程组的解为()A.B.C.D.8.(4分)中国象棋历史悠久,战国时期就有关于它的正式记载,观察如图所示的象棋棋盘,我们知道,行“马”的规则是走“日”字对角(图中向上为进,向下为退),如果“帅”的位置记为(5,1),“马2退1”后的位置记为(1,4)(表示第2列的“马”向下走“日”字对角到达第1列的位置),那么“马8进7”后的位置可记为()A.(8,4)B.(7,4)C.(7,3)D.(7,2)二、填空题(本大題共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)计算:()3=.10.(4分)已知,都是方程ax﹣y=b的解,则a=,b=.11.(4分)如图是某灯具的镜面反射示意图,从光源点P处发出的光线PA,PB经弯曲的镜面反射后射出,且满足反射光线AC∥BD,若∠PAC=40°,PA⊥PB于点P,则∠PBD的度数为.12.(4分)若点A(x1,y1),B(x2,y2)在直线y=﹣3x+2上,且满足x1>x2,则y1y2(选填“>”或“<”).13.(4分)如图,在正方形ABCD的外面分别作Rt△ABE和Rt△BEF,其中∠AEB=∠EFB=90°,∠BEF =∠BAE=30°,BF=3,则正方形ABCD的面积是.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:(1+)(3﹣);(2)解方程组:.15.(8分)某校组织广播操比赛,打分项目(每项满分10分)包括以下几项,服装统一、进退场有序、动作规范,其中甲、乙两个班级的各项成绩(单位:分)分别如下:项目服装统一进退场有序动作规范班级甲班1088乙班899(1)填空:根据表中提供的信息,甲、乙两个班级各项成绩的这6个数据的众数是,中位数是;(2)如果将服装统一、进退场有序、动作规范这三项得分依次按30%,30%,40%的比例计算各班的广播操的比赛成绩,试问甲、乙两个班级哪个班的广播操比赛成绩较高?16.(8分)如图,在平面直角坐标系xOy中,点A的坐标为(2,4),点B的坐标为(5,2).(1)请在图中画出点B关于x轴的对称点B′,则点B′的坐标为;(2)在(1)的条件下,连接AB′交x轴于点C,则点C的坐标为;(3)在(2)的条件下,连接OA,BC,求证:OA∥BC.17.(10分)已知一次函数y=﹣x+4的图象分别与x轴,y轴相交于A,B两点.(1)分别求A,B两点的坐标;(2)点C在线段AB上,连接OC,若直线OC将△AOB的面积分成1:3两部分,求点C的坐标.18.(10分)在四边形ABCD中,∠BAD=90°,AB=AD.(1)如图1,若AB=2,BC=,CD=.i)连接BD,试判断△BCD的形状,并说明理由;ii)连接AC,过A作AE⊥AC,交CD的延长线于点E,求△ACE的面积;(2)如图2,若∠BCD=135°,BC=2,四边形ABCD的面积为,求CD的长.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知x,y满足则这个方程组的解为.20.(4分)估算﹣2.7的结果的整数部分是.21.(4分)如图,在数轴上,点A表示的数是1,点B表示的数是3,在数轴的上方作Rt△ABC,且∠ABC =90°,BC=1,以点A为圆心,AC的长为半径画弧,交数轴于D,E两点(其中点D在A的右侧),现将点D表示的数记为x,点E表示的数记为y,则代数式x2﹣2xy+y2的值为.22.(4分)古希腊几何学家海伦在他的著作《度量》中,给出了计算三角形面积的海伦公式,若一个三角形三边长分别为a、b、c,记p=,三角形的面积为S=.如图,在△ABC中,AC=5,BC=3,过C作CD⊥AC,且满足CD=AC(点D和B居于直线AC的异侧),连接AD,BD,若BD=2,则△ABC的面积为.23.(4分)定义:对于平面直角坐标系xOy中的不在同一条直线上的三点P,M,N,若满足点M绕点P 逆时针旋转90°后恰好与点N重合,则称点N为点M关于点P的“垂等点”.请根据以上定义,完成下列填空:(1)若点M在直线y=3x﹣3上,点P与原点O重合,且点M关于点P的“垂等点”N刚好在坐标轴上,则点N的坐标为;(2)如图,已知点A的坐标为(3,0),点C是y轴上的动点,点B是点A关于点C的“垂等点”,连接OB,AB,则OB+AB的最小值是.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)已知某景点的门票价格如表:购票人数/人1~5051~100100以上每张门票价/元12108某校八年级(一)、(二)两个班共102人去游览该景点,其中(二)班人数多于(一)班人数,且(一)班人数不少于(二)班人数的一半,如果两个班以班为单位各自购票,那么两个班要支付的总费用为1118元.(1)请通过列二元一次方程组的方法,分别求两个班的学生人数;(2)如果两个班合在一起统一购票,试问此时两个班需要支付的总费用将比以班为单位各自购票的方式节约多少呢?25.(10分)在Rt△ABC中,∠ACB=90°,点D为边AC上的动点,连接BD,将△ABD沿直线BD翻折,得到对应的△A′BD.(1)如图1,当AD⊥A′D于点D时,求证:BC=DC;(2)若BC=a,AC=2a.i)如图2,当B,C,A′三点在同一条直线上时,求AD的长(用含a的代数式表示);ii)连接AA′,A′C,当A′C=a时,求的值.26.(12分)如图,在平面直角坐标系xOy中,直线y=﹣x+4分别交x轴,y轴于点A,B,点C在x轴的负半轴上,且OC=OB,点P是线段BC上的动点(点P不与B,C重合),以BP为斜边在直线BC 的右侧作等腰Rt△BPD.(1)求直线BC的函数表达式;=S△ABC时,求点P的坐标;(2)如图1,当S△BPD(3)如图2,连接AP,点E是线段AP的中点,连接DE,OD.试探究∠ODE的大小是否为定值,若是,求出∠ODE的度数;若不是,请说明理由.。

2023-2024学年四川省成都市温江区八年级(上)期末数学试卷及答案解析

2023-2024学年四川省成都市温江区八年级(上)期末数学试卷及答案解析

2023-2024学年四川省成都市温江区八年级(上)期末数学试卷一、选择题:本大题共8个小题,每小题4分,共32分。

在每小题给出的四个选项中,1.(4分)下列各式:①,②,③,④,⑤中,最简二次根式有()A.1个B.2个C.3个D.4个2.(4分)在平面直角坐标系中,点A的坐标是(﹣2,3),点A关于y轴对称的点A'的坐标()A.(﹣2,﹣3)B.(2,﹣3)C.(3,﹣2)D.(2,3)3.(4分)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如下表,则这些被调查学生睡眠时间的众数和中位数分别是()时间/小时78910人数3764A.8,8B.8,8.5C.9,8.5D.9,94.(4分)一次函数y=kx+b与y=x﹣2的图象如图所示,则关于x,y的方程组的解是()A.B.C.D.5.(4分)如图,AB∥DF,AC⊥CE于点C,BC与DF交于点E,若∠A=23°,则∠CED =()A.57°B.63°C.67°D.73°6.(4分)如图,已知圆柱底面的周长为6m,圆柱高为3m,BC为底面圆的直径,一只蚂蚁在圆柱的表面上从点A爬到点C的最短距离为()m.A.B.C.D.7.(4分)《九章算术》是中国古代第一部数学专著,在其方程章中有一道题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.甲、乙持钱几何?”.题意大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50.如果乙得到甲所有钱的,那么乙也共有钱50.甲、乙两人各带了多少钱?若设甲带钱为x,乙带钱为y,则可列方程组()A.B.C.D.8.(4分)已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是()A.B.C.D.二、填空题:本大题共5个小题,每小题4分,共20分。

9.(4分)如图,数字代表所在正方形的面积,则A所代表的正方形的边长为.10.(4分)果农小明随机从甲、乙、丙三个品种的枇杷树中各选20棵,每棵产量的平均数(单位:千克)及方差(单位:千克2)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.甲乙丙404039s2 2.3 2.7 2.311.(4分)如图,BD和CD是△ABC的角平分线,∠BDC=120°,则∠A=.12.(4分)在平面直角坐标系中,点O为坐标原点,点A(3,4),点B(0,5),直线y =kx+5恰好将△OAB平均分成面积相等的两部分,则k的值是.13.(4分)如图,在直角坐标系中,长方形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为(﹣2,4),将矩形沿对角线AC翻折,B点落在D点的位置,那么点D的坐标为.三、解答题:本大题共5个小题,共48分。

四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

八年级上期期末数学测试卷(天府卷)(满分:150分时间:120分钟)班级________ 姓名________ 学号________ 得分A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.9的算术平方根是()A.81B.-81C.3D.-32.在平面直角坐标系中,点A关于原点对称的点在第三象限,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,计算正确的是()A. B.C. D.4.下列各组数中,是勾股数的是()A.5,6,7B.3,4,5C.1,2,D.0.6,0.8,15.在某促销活动前期,商场卖鞋商家对市场进行了一次调研,那么商家应最重视鞋码的()A.方差B.众数C.中位数D.平均数6.如图,由下列条件能判定的是()A. B.C. D.7.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发日,乙出发日后甲、乙相逢,则所列方程组正确的是()A. B.C. D.8.关于一次函数,下列结论正确的是()A.图象不经过第二象限B.图象与轴的交点是(0,3)C.将一次函数的图象向上平移3个单位长度后,所得图象的函数表达式为D.点和在一次函数的图象上,若,则第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.比较大小:3_________.(填“>”“<”或“=”)10.若有意义,则的取值范围是________.11.平面直角坐标系中,点A在第二象限,且到x轴的距离是2,到y轴的距离是3,则点A 的坐标是_________.12.如图,直线:与直线:相交于点,则关于x,y的方程组的解为_________.13.如图,在中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D和E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;③作射线BF交AC于点G;④过点G作交AB于点H.若,则的度数是___________.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图,在平面直角坐标系中,各顶点的坐标分别为,,.(1)作出与关于轴对称的图形;(2)已知点,直线轴,求点P的坐标.16.(本小题满分8分)2022年11月29日23时08分,随着“神舟十五号”成功发射,拥有“三室三厅”的中国“天宫”也创下首次同时容纳6名航天员的纪录.对此,天府新区某学校想了解本校八年级学生对中国空间站相关知识的了解情况,组织开展了“中国空间站知多少”知识竞赛,现随机抽取部分学生的成绩分成五个等级(A:90~100分;B:80~89分;C:70~79分;D:60~69分;E:59分及以下)进行统计,并绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查共抽取了_________名学生的成绩;(2)补全条形统计图;(3)若该校有800名学生参加此次竞赛,竞赛成绩为80分及其以上为优秀,请估计该校竞赛成绩为优秀的学生共有多少名.17.(本小题满分10分)如图,已知正方形ABCD,分别以AB,CD为斜边在正方形ABCD 内作直角和直角,且.(1)求证:;(2)连接EF,猜想线段EF与线段BC之间的位置关系,并说明理由.18.(本小题满分10分)如图,在平面直角坐标系中,点M,N的坐标分别为(2,0),(0,6),在x轴的负半轴上有一点A,且满足,连接MN,AN.(1)求直线AN的函数表达式.(2)将线段MN沿y轴方向平移至,连接,'.①当线段MN向下平移2个单位长度时(如图所示),求的面积;②当为直角三角形时,求点的坐标.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知关于x,y的二元一次方程组为则的值为_________.20.已知x,y是实数,且,则_________.21.如图是由五个边长为1的小正方形组成的十字形,小明说只剪两刀就可以拼成一个没有缝隙的大正方形,则剪完后拼成的大正方形的边长是_________.22.如图,中,,分别以AC,AB为直角边在外作等腰直角和等腰直角,且,连接DE.若,,则的面积为__________.23.如图,AE和AD分别为的角平分线和高线,已知,且,,则AC的长为_________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)随着疫情防控“新十条”出台,连日来,全国多地优化完善疫情防控措施,成都宣布不再按行政区域开展全员核酸检测,鼓励家庭自备抗原试剂盒.某公司为员工集体采购了一批抗原试剂盒以保证每个员工恰好都能检测一次,采购的抗原试剂盒信息如下:名称规格销售价格抗原试剂盒A25支/盒200元/盒抗原试剂盒B20支/盒180元/盒已知该公司共有员工5000人,花费42500元.(1)该公司采购了抗原试剂盒A和抗原试剂盒B各多少盒?(2)若抗原试剂盒B在原价的基础上打九折销售,该公司打算再次采购1000盒抗原试剂盒,其中抗原试剂盒A有m盒,采购费用为W元,请写出W关于m的函数关系式.25.(本小题满分10分)已知和都是等腰直角三角形,,且A,D,E三点在同一条直线上.(1)当与在如图1所示位置时,连接CE,求证:;(2)在(1)的条件下,判断AE,CE,BD之间的数量关系,并说明理由;(3)当与在如图2所示的位置时,连接CE,若BE平分,,求的面积.26.(本小题满分12分)如图,在平面直角坐标系中,直线:交x轴于点A,交y轴于点B,点在直线上,直线经过点C和点.(1)求直线的函数表达式;(2)Q是直线上一动点,若,求点Q的坐标;(3)在x轴上有一动点E,连接CE,将沿直线CE翻折后,点D的对应点恰好落在直线上,请求出点E的坐标.八年级上期期末数学测试卷(天府卷)A卷1.C2.A3.D4.B5.B6.C7.D8.C9.< 10.11.12.13.110°14.(1)解:原式.(2)解:化简,得②×3+①,得.解得.将代入②,得.解得.∴原方程组的解为15.解:(1)如图,即为所求.(2)∵,点与点B关于x轴对称,∴.∵,轴,∴点P的纵坐标为1,∴,∴,∴,∴点的坐标为.16.解:(1)100(2)C等级的学生为100×20%=20(名).故B等级的学生为100-26-20-10-4=40(名).补全条形统计图如图所示:(3)(名),即估计该校竞赛成绩为优秀的学生共有528名.17.(1)证明:∵四边形ABCD是正方形,∴.在和中,∴,∴.在正方形ABCD中,∵,∴,∴.在和中,∴.(2)解:.理由如下:由(1)可知,,∴,,∴,∴,∴.∵,∴,∴,∴,∴.∵四边形ABCD是正方形,∴,∴.18.解:(1)∵,∴.∵,∴.又∵点A在x轴的负半轴上,∴.设直线AN的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.(2)①∵将线段MN向下平移2个单位长度,∴,.由,,可得直线的函数表达式为.设直线与y轴相交于点C,则.∴.②设将线段MN沿y轴方向平移m个单位长度至,则,.∴,,.当时,,解得,此时,;当时,,解得,此时,;当时,不成立.综上所述,点的坐标为或.B卷19.7解:①+②,得.20.1解:由题意知,,,∴且,∴,∴,∴,∴.21.解:由题意知,五个边长为1的小正方形组成的十字形的面积为1×1×5=5.∵小明只剪两刀就可以将其拼成一个没有缝隙的大正方形,∴拼成的大正方形的面积为5,∴拼成的大正方形的边长为.22.30解:如图,过点D作AB的垂线交BA的延长线于点H,交DE于点F,则.又∵,∴,∴.又∵,∴,∴,.在中,,,∴,∴.∵是等腰直角三角形,∴,,∴,,∴.又∵,∴,∴,∴.∵,∴.23.解:如图,在AD上截取AG,使,则,∴.∵,∴.设,,则,.在中,由勾股定理,得,即,化简,得.由AD是的高线,,易得,即,∴.联立解得∴,∴,,∴.在中,.设点E到直线AB的距离为h,则,∴.∵AE是的角平分线,∴点E到直线AC的距离为.设,则.∵,∴,解得或(舍去),∴.24.解:(1)设该公司采购了抗原试剂盒A x盒,抗原试剂盒B y盒.由题意,得,解得故该公司采购了抗原试剂盒A100盒,抗原试剂盒B125盒.(2)由题意,得.即W关于m的函数关系式为.25.(1)证明:∵和都是等腰直角三角形,∴.如图1,记BC与AE相交于点O,则,∴在和中,.(2)解:.理由如下:如图1,过点C作于点F.∵,∴.由(1)知,,∴,即.在和中,∴,∴,.在等腰直角中,,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴,即.(3)解:如图2,过点C作交AE的延长线于点F.∵,∴.在和中,∴,∴,.又∵,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴.∵平分,而在等腰直角中,,∴,∴,∴,∴,∴,∴.∵,∴,∴.在中,.∴.26.解:(1)∵点在直线:上,∴,∴,∴.设直线的函数表达式为.∵点,在直线上,∴,解得∴直线的函数表达式为.(2)由直线:,可知,如图1,分以下两种情况讨论:①当点Q在线段DC的延长线上时,∵,∴,∴,∴.②当点Q在线段DC上时,在y轴上取一点M,使得,则.∵,∴点Q在直线AM上.设,则.在中,,∴,解得.∴.由,,可得直线AM的函数表达式为.联立解得∴.综上所述,点的坐标为或.(3)①当点E在点A的左侧时,如图2所示.∵,,,∴,,,∴,∴为直角三角形,且.∵将沿直线翻折得到,∴.以为直角边作等腰直角,交射线CE于点F,构造,使,可得.设直线CF的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.②当点E在点A的右侧时,如图3所示.同理可得:.以为直角边作等腰直角,交直线CE于点F,构造,使,可得.设直线的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.综上所述,点的坐标为或.。

四川省成都市新都区2023-2024学年八年级上学期期末考试数学试题

四川省成都市新都区2023-2024学年八年级上学期期末考试数学试题

四川省成都市新都区2023-2024学年八年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________A .()3052535x y x y =+⎧⎨+=-⎩B .()3052535x y x y =-⎧⎨+=+⎩C .()302535x y x y =⎧⎨+=+⎩D .()3052535x y x y =-⎧⎨+=-⎩二、填空题三、解答题(1)画出ABC V 关于x 轴对称的图形A B C '''V ,并写出顶点B '的坐标;(2)在y 轴上求作一点P ,使PC PB +的值最小,并求出最小值.16.杨升庵,四川新都人,明代文学家、学者、官员,他的著作数量之繁多,范围之广博,内容之丰富,在整个中国文化史上都鲜有人比肩,堪称是一位百科全书式的学者.某校开展了“弘扬升庵精神,学习传统文化”读书活动,为了解学生课外阅读中国古代文学作品情况,随机调查了50名同学平均每周课外阅读用时,如图是根据调查所得的数据绘制的统计图的一部分,请根据以上信息,解答下列问题(1)补全条形统计图;(2)在这次调查的数据中,平均每周课外阅读所用时间的众数是小时,中位数是小时;(3)若该校共有1600名学生,根据以上调查结果估计该校全体学生平均每周课外古诗词阅读用时不低于3小时的同学共有多少人?17.如图,已知CF AE ⊥,AB AE ⊥,180ABC DFC ∠+∠=︒(1)求证∶DF BC ∥;(2)若CF 平分BCE ∠,3EF CD == ,求CF 的长度18.如图,直线3y kx =+经过点()1,4B -和点()5,A m ,与x 轴交于点C(1)求k ,m 的值;(2)求AOB V 的面积;(3)若点P 在x 轴上,当PBC V 为等腰三角形时,直接写出此时点P 的坐标四、填空题23.如图,在平面直角坐标系中,ABC V 的顶点坐标分别为()4,1A -,()0,5B ,()0,1C ,点D 与点A 关于y 轴对称,连接BD ,在边AB 上取一点E ,在BD 的延长线上取一点F ,并且满足AE DF =,连接EF 交边AD 于点G ,过点G 作EF 的垂线交y 轴于点H ,则点H 的坐标为五、解答题24.“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售;据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元;3辆A 型汽车、2辆B 型汽车的进价共计95万元(1)求A ,B 两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划购进以上两种型号的新能源汽车(两种型号的汽车均购买)共20辆,且A (型汽车不超过6辆,根据市场调查,销售1辆A 型汽车可获利0.8万元,销售1辆B 型汽车可获利0.5万元,请问怎么安排采购方案获利最大?25.如图,在平面直角坐标系中,直线l 与x 轴交于点()4,0A -,与y 轴交于点()0,2B ,已如点()2,0C -.(1)求直线l 的表达式;(2)点P 是直线l 上一动点,且BOP △和COP V 的面积相等,求点P 坐标;(3)在平面内是否存在点Q ,使得ABQ V 是以AB 为底的等腰直角三角形?若存在,请求出所有符合条件的点Q 的坐标;若不存在,请说明理由. 26.在ABC V 中,,90AB BC ABC =∠=o ,点D 是边AC 上一点,连接DB ,过点C 作直线BD 的垂线,垂足为点E(1)如图1,若AF BD ⊥于点F ,求证:CE BF =;(2)如图2,在线段EC 上截取EG EB =,连接AG 交BD 于点H ,求证:2CG EH =;(3)如图3,若点D 为AC 的中点,点M 是线段BC 延长线上的一点,连接DM ,求CM ,BM ,DM 的数量关系。

四川省成都市金牛区八年级(上)期末数学试卷

四川省成都市金牛区八年级(上)期末数学试卷

四川省成都市金牛区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)4的平方根是()A.±2B.﹣2C.2D.162.(3分)实数π,,﹣3.,,中,无理数有()个.A.1B.2C.3D.43.(3分)要使式子有意义,则x的取值范围是()A.x>2B.x>﹣2C.x≥2D.x≥﹣24.(3分)下列各组数中不能作为直角三角形三边长的是()A.,,B.7,24,25C.6,8,10D.1,2,35.(3分)如图所示,点A(﹣1,m),B(3,n)在一次函数y=kx+b的图象上,则()A.m=n B.m>nC.m<n D.m、n的大小关系不确定6.(3分)下列命题为真命题的是()A.若a2=b2,则a=bB.等角的余角相等C.同旁内角相等,两直线平行D.=,S A2>S B2,则A组数据更稳定7.(3分)抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20B.30,20C.30,30D.20,308.(3分)如图所示,直线y=kx+b(k≠0)与x轴交于点(﹣5,0),则关于x的方程kx+b =0的解为x=()A.﹣5B.﹣4C.0D.19.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.10.(3分)园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.65平方米D.80平方米二、填空题(每小题4分,共16分)11.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2017的值是.12.(4分)在平面直角坐标系内,一个点的坐标为(2,﹣3),则它关于x轴对称的点的坐标是.13.(4分)如图,已知一次函数y1=k1x+b1和y2=k2x+b2的图象交于点P(2,4),则关于x的方程k1x+b1=k2x+b2的解是.14.(4分)如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=.三、解答题(本大题共6个小题,共54分)15.(10分)计算下列各题(1)+|1﹣|+()﹣1﹣20170(2)×﹣(﹣1)2.16.(12分)解方程(不等式)组(1)解方程组:(2)解不等式组:,并把解集在数轴上表示出来.17.(6分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠ACB的度数.18.(8分)某校为了进一步改进本校八年级数学教学,提高学生学习数学的兴趣,校教务处在八年级所有班级中,每班随机抽取了部分学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢“、“B﹣比较喜欢“、“C﹣不太喜欢“、“D﹣很不喜欢“,针对这个题目,问卷时要求被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校八年级共有1000名学生,请你估计该年级学生对数学学习“不太喜欢”的有多少人?19.(8分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车载满货物一次可分别运货多少吨?(2)某物流公司现有货物若干吨要运输,计划同时租用A型车6辆,B型车8辆,一次运完,且恰好每辆车都满载货物,请求出该物流公司有多少吨货物要运输?20.(10分)在平面直角坐标系xOy中,一次函数的图象经过点A(4,1)与点B(0,5).(1)求一次函数的表达式;(2)若P点为此一次函数图象上一点,且S△POB=S△AOB,求P点的坐标.一、填空题(每小题4分,共20分)21.(4分)已知0≤x≤3,化简=.22.(4分)如图,圆柱体的高为12cm,底面周长为10cm,圆柱下底面A点除有一只蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm.23.(4分)如图,直线y=﹣x+m与y=nx+5n(n≠0)的交点横坐标为﹣3,则关于的不等式﹣x+m>nx+5n>0的整数解是.24.(4分)如图,点P的坐标为(2,0),点B在直线y=x+m上运动,当线段PB最短时,PB的长度是.25.(4分)如图,平面直角坐标系中,已知直线y=x上一点P(2,2),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q,当△OPC ≌△ADP时,则C点的坐标是,Q点的坐标是.二、解答题26.(8分)春天来了,小明骑自行车从家里出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)直接写出小明开始骑车的0.5小时内所对应的函数解析式.(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早12分钟到达乙地,求从家到乙地的路程.27.(10分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连结EF,试猜想EF、BE、DF之间的数量关系.(1)思路梳理把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,由∠ADG=∠B=90°,得∠FDG=180°,即点F、D、G共线,易证△AFG≌,故EF、BE、DF之间的数量关系为.(2)类比引申如图2,点E、F分别在正方形ABCD的边CB、DC的延长线上,∠EAF=45°,连结EF,试猜想EF、BE、DF之间的数量关系为,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠BAD+∠EAC =45°,若BD=3,EC=6,求DE的长.28.(12分)如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).四川省成都市金牛区八年级(上)期末数学试卷参考答案一、选择题(每小题3分,共30分)1.A;2.B;3.C;4.D;5.C;6.B;7.C;8.A;9.C;10.A;二、填空题(每小题4分,共16分)11.1;12.(2,3);13.x=2;14.20°;三、解答题(本大题共6个小题,共54分)15.;16.;17.;18.比较喜欢;19.;20.;一、填空题(每小题4分,共20分)21.2x﹣3;22.13;23.﹣4;24.+m;25.(0,4+2);(2+2,2+2);二、解答题26.y=20x;27.△AFE;EF=DF+BE;EF=DF﹣BE;28.;。

2023-2024学年四川省成都市高新区八年级(上)期末数学试卷(含答案)

2023-2024学年四川省成都市高新区八年级(上)期末数学试卷(含答案)

2023-2024学年四川省成都市高新区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,属于无理数的是()A.B.C.D.0.572.(4分)下列运算正确的是()A.B.C.D.3.(4分)下面4组数值中,是二元一次方程3x+y=10的解是()A.B.C.D.4.(4分)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系以正东方向为x轴的正方向,以正北方向为y轴的正方向,并且综合楼和教学楼的坐标分别是(﹣4,﹣1)和(1,2)则食堂的坐标是()A.(3,5)B.(﹣2,3)C.(2,4)D.(﹣1,2)5.(4分)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是()A.甲B.乙C.丙D.丁6.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD是斜边的高,则CD 的长为()A.B.C.5D.107.(4分)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=80°,城市规划部门想新修一条道路CE,要求CF=EF,则∠C的度数为()A.30°B.40°C.50°D.80°8.(4分)关于一次函数y=﹣2x+4,下列说法正确的是()A.函数值y随自变量x的增大而减小B.图象与x轴交于点(4,0)C.点A(1,6)在函数图象上D.图象经过第二、三、四象限二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)一块面积为3m2的正方形桌布,其边长为m.10.(4分)在平面直角坐标系xOy中,点A的坐标是(2,3),若AB∥x轴,且AB=4,则点B的坐标是.11.(4分)下表是小明参加一次“青春风采”才艺展示活动比赛的得分情况:项目书法舞蹈演唱得分859070总评分时,按书法占40%,舞蹈占30%,演唱占30%考评,则小明的最终得分为.12.(4分)若直线y=x向上平移m个单位长度后经过点(3,5),则m的值为.13.(4分)如图,有两棵树,一棵高12米,另一棵高7米,两树相距12米,一只小鸟从一棵树的树梢A飞到另一棵树的树梢B,则小鸟至少要飞行米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解方程组:.15.(8分)学校组织七、八年级学生参加体育综合素质评价测试,已知七、八年级各有160人,现从两个年级分别随机抽取8名学生的测试成绩(单位:分)进行统计.七年级:89,87,91,91,93,98,94,97八年级:98,84,92,93,95,95,88,95整理如下:年级平均数中位数众数七年级92.5x91八年级92.594y根据以上信息,回答下列问题:(1)填空:x=,y=;(2)甲同学说:“这次测试我得了93分,位于年级中等偏上水平”,你认为甲同学在哪个年级,并简要说明理由;(3)若规定测试成绩不低于90分为“优秀”,估计该学校这两个年级测试成绩达到“优秀”的学生总人数.16.(8分)在平面直角坐标系xOy中,△ABC的顶点A(1,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画△ABC关于y轴的对称图形△A1B1C1;(2)已知点D的坐标为(3,﹣3),判断△ABD的形状,并说明理由.17.(10分)某单位准备购买一种水果,现有甲、乙两家超市进行促销活动,该水果在两家超市的标价均为13元/千克.甲超市购买该水果的费用y(元)与该水果的质量x(千克)之间的关系如图所示;乙超市该水果在标价的基础上每千克直降3元.(1)求y与x之间的函数表达式;(2)现计划用290元购买该水果,选甲、乙哪家超市能购买该水果更多一些?18.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.点D是△ABC所在平面内一点,且∠ADB=90°.(1)如图1,当点D在BC边上,求证:AD=CD;(2)如图2,当点D在△ABC外部,连接CD,若AB=5,AC=CD,求线段BD的长;(3)如图3,当点D在△ABC内部,连接CD,若∠ADC=∠BDC,AD=3,求点D到BC的距离.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,数轴上的点A表示的实数是.20.(4分)已知直线y=﹣3x与y=x+n(n为常数)的交点坐标为(1,m),则方程组的解为.21.(4分)如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(0,3),B(0,1),C(﹣4,0),点D在y轴右侧,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.22.(4分)在Rt△ABC中,∠BAC=90°,BD=AD=2,在BC的延长线上有一点E使得AE=AD,过点E作AC的垂线,垂足为F,若∠FEA=67.5°,则CE =.23.(4分)定义:若三个正整数a,b,c满足a<b,a2+b2=c2,且c﹣b=2,则称(a,b,c)为“偶差”勾股数组.例如:(6,8,10),(8,15,17)都是“偶差”勾股数组.令m=a+b+c,将m从小到大排列,分别记为m1,m2,m3,…,m n(n为正整数),则m20的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2023年12月4日至10日,国际乒联混合团体世界杯在四川成都举行,在此期间,成都某酒店对三人间及双人间客房进行优惠大酬宾,优惠方案为:三人间为每天每间360元,双人间为每天每间300元,一个40人的旅游团于2023年12月4日在该酒店入住,住了一些三人间及双人间客房,且每个客房正好住满.(1)若旅游团一天共花去住宿费5100元,求该旅行团租住了三人间、双人间各多少间?(2)设有x人住三人间,这个团一天共花去住宿费y元,请求出y与x的函数表达式.25.(10分)如图1,在边长为2的正方形ABCD中,点E是射线BC上一动点,连接AE,以AE为边在直线AE右侧作正方形AEFG.(1)当点E在线段BC上,连接DG,求证:BE=DG;(2)当点E是线段BC的中点,连接CF,求线段CF的长;(3)如图2,点E在线段BC的延长线上,连接BG,若ED的延长线恰好经过BG的中点P,求线段EP的长.26.(12分)如图,直线l1:y=﹣x+3与x轴,y轴分别交于A,B两点,点C坐标为(﹣5,﹣2),连接AC,BC,点D是线段AB上的一动点,直线l2过C,D两点.(1)求△ABC的面积;(2)若点D的横坐标为1,直线l2上是否存在点E,使点E到直线l1的距离为,若存在,求出点E的坐标,若不存在,请说明理由;(3)将△BCD沿直线CD翻折,点B的对应点为M,若△ADM为直角三角形,求线段BD 的长.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.C;2.D;3.D;4.B;5.C;6.A;7.B;8.A;二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.;10.(6,3)或(﹣2,3);11.32.16;12.2;13.13;三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)4;(2).;15.92;95;16.(1)见解答.(2)△ABD为直角三角形,理由见解答.;17.(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.;18.(1)证明见解析.(2);(3).;一、填空题(本大题共5个小题,每小题4分,共20分)19.1+; 20.;21.(4,4)或(4,0);22.2﹣2;23.1012;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(1)此旅游团住了三人间客房10间,住了双人间客房5间;(2)y与x的函数表达式为y=﹣30x+6000.;25.(1)证明见解答;(2)线段CF的长为;(3)EP=3.;26.(1)S△ABC=15;(2)存在,点E的坐标为或;(3)BD的长为或﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市八年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)(2018·遵义模拟) 等式(x+4)0=1成立的条件是()
A . x为有理数
B . x≠0
C . x≠4
D . x≠-4
2. (2分)(2018·玄武模拟) 下列运算正确的是()
A . 2a+3b=5ab
B . (-a2)3=a6
C . (a+b)2=a2+b2
D . 2a2·3b2=6a2b2
3. (2分)(2020·拉萨模拟) 下列图案中是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .
4. (2分)(2018·正阳模拟) 俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()
A . 3.9×10﹣8
B . ﹣3.9×10﹣8
C . 0.39×10﹣7
D . 39×10﹣9
5. (2分)(2019·西安模拟) 一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()
A . 35°
B . 30°
C . 25°
D . 15°
6. (2分)如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为()
A . 4
B . 8
C . -8
D . ±8
7. (2分) (2018八上·阳新月考) 若十边形的每个外角都相等,则一个外角的度数为
A .
B .
C .
D .
8. (2分) (2019八上·周口期中) 点D在△ABC的边BC上,△ABD和△ACD的面积相等,则AD是()
A . 中线
B . 高线
C . 角平分线
D . 中垂线
9. (2分)如果是随机投掷一枚骰子所得的数字(1,2,3,4,5,6),则关于的一元二次方程
有两个不等实数根的概率P=()
A .
B .
C .
D .
10. (2分)(2017·市北区模拟) 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;
③DE=EF;④S△AOE:S四边形DGOF=2:7.其中正确结论的个数是()
A . 4个
B . 3个
C . 2个
D . 1个
二、填空题 (共6题;共6分)
11. (1分)(2017·江阴模拟) 分解因式:x2y﹣2xy+y=________.
12. (1分) (2019八上·凤山期末) 当x=________时,分式的值为0.
13. (1分)若x2+8x+k是一个多项式的完全平方,则k的值为________.
14. (1分) (2019九下·徐州期中) 如图,△ABC是边长为4的等边三角形,D是BC上一动点(与点B、C 不重合),以AD为一边向右侧作等边△ADE,H是AC的中点,线段HE长度的最小值是________.
15. (1分)如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:________ ,使得AC=DF.
16. (1分)如图,在△ABC中,AB=AC , D、E是△ABC内两点,AD平分∠BAC ,∠EBC=∠E=60º,若
BE=6 cm,DE=2cm,则BC=________.
三、解答题 (共9题;共65分)
17. (5分) (2019八下·长春月考) 解方程:
(1);
(2).
18. (5分)如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.
19. (10分) (2016七上·庆云期末) 计算及解方程:
(1)化简:(5a2﹣ab)﹣2(3a2﹣ ab)
(2)解方程:﹣ =1
(3)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣ x2y)+xy],其中x=3,y=﹣.
20. (5分) (2015八下·罗平期中) 先化简,再求值,其中a= ,b= .
21. (5分) (2019八下·简阳期中) 如图,已知等边△ABC,点D是AB的中点,过点D作DF⊥AC,垂足为点
F.过点F作FE⊥BC,垂足为点E.若等边△ABC的边长为4,求BE的长.
22. (5分) (2016八上·泸县期末) 已知:如图,BE⊥CD于点E,BE=DE,BC=DA.判断DF与BC的位置关系,并说明理由.
23. (10分)(2017·辽阳) 近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A,B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3
万元购买A种设备和花7.2万元购买B种设备的数量相同.
(1)求A种、B种设备每台各多少万元?
(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?
24. (10分) (2019八上·泰州月考) 已知:在△ABC中,∠ABC=60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C.D重合),且∠EAC=2∠EBC.
(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=________°,∠AEC=________°.
(2)如图2,①求证:AE+AC=BC;
②若∠ECB=30°,且AC=BE,求∠EBC的度数。

25. (10分) (2017七下·南平期末) 如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点。

(1)
求证:AF⊥CD;
(2)
在你连结BE后,还能得出什么新的结论?请写出三个(不要求证明)
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共9题;共65分)
17-1、17-2、
18-1、19-1、
19-2、
19-3、20-1、21-1、22-1、
23-1、
23-2、24-1、
25-1、
25-2、
第11 页共11 页。

相关文档
最新文档