标量场梯度的定义与计算

合集下载

1.4标量场的梯度

1.4标量场的梯度
其中, 其中,
el = ex cos α + e y cos β + ez cos γ
cos α , cos β , cos γ 是 el 的方向余弦: 的方向余弦:
dx dy dz cos α = , cos β = , cos γ = dl dl dl
3、方向导数的性质 方向导数是标量场在点P处沿方向 对距离的变化率。 方向导数是标量场在点 处沿方向 el 对距离的变化率。 标量场中,在给定点 处沿不同方向 的方向导数不相同。 标量场中,在给定点P处沿不同方向 el 的方向导数不相同。 二、梯度 1、梯度的定义 是一个矢量, 标量场 u (r ) 的梯度 gradu :是一个矢量,其方向为标量场 变化率最大的方向、大小则等于其最大变化率, u (r ) 变化率最大的方向、大小则等于其最大变化率,即
§1.4 标量场的梯度
用一个标量函数来表示,在直角坐标系中表示为: 标量场: 标量场 u (r ) 用一个标量函数来表示,在直角坐标系中表示为: 一、等值面 1、等值面 标量场中量值相等的点构成的面,称为标量场的等值面。 标量场中量值相等的点构成的面,称为标量场的等值面。 例如,在温度场中,由温度相同的点构成等温面;在电位场中, 例如,在温度场中,由温度相同的点构成等温面;在电位场中, 由电位相同的点构成等位面。 由电位相同的点构成等位面。 2、等值面方程
3、梯度的性质 标量场的梯度是一个矢量场。 标量场的梯度是一个矢量场。
标量场在给定点处沿某方向的方向导数等于梯度在该方向上的投影。 标量场在给定点处沿某方向的方向导数等于梯度在该方向上的投影。
标量场中某点处的梯度,垂直于过该点的等值面, 标量场中某点处的梯度,垂直于过该点的等值面,且指向
u (r ) 增加的方向。 增加的方向。

矢量场,标量场,散度,梯度,旋度的理解教学内容

矢量场,标量场,散度,梯度,旋度的理解教学内容

矢量场,标量场,散度,梯度,旋度的理解1.梯度 gradient设体系中某处的物理参数(如温度、速度、浓度等)为w,在与其垂直距离的dy 处该参数为w+dw,则称为该物理参数的梯度,也即该物理参数的变化率。

如果参数为速度、浓度或温度,则分别称为速度梯度、浓度梯度或温度梯度。

在向量微积分中,标量场的梯度是一个向量场。

标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。

更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。

在这个意义上,梯度是雅戈比矩阵的一个特殊情况。

在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。

梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。

可以通过取向量梯度和所研究的方向的点积来得到斜度。

梯度的数值有时也被成为梯度。

在二元函数的情形,设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一点P(x,y)∈D,都可以定出一个向量(δf/x)*i+(δf/y)*j这向量称为函数z=f(x,y)在点P(x,y)的梯度,记作gradf(x,y)类似的对三元函数也可以定义一个:(δf/x)*i+(δf/y)*j+(δf/z)*k 记为grad[f(x,y,z)]2.散度气象学中指:散度指流体运动时单位体积的改变率。

简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。

用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。

表示辐合、辐散的物理量为散度。

微积分学→多元微积分→多元函数积分中:设某量场由 A(x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P、Q、R 具有一阶连续偏导数,∑是场内一有向曲面,n 是∑在点 (x,y,z) 处的单位法向量,则∫∫A·ndS 叫做向量场 A 通过曲面∑向着指定侧的通量,而δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A,即 div A = δP/δx + δQ/δy + δR/δz。

2.2数量场的方向导数和梯度.

2.2数量场的方向导数和梯度.

3)在球面坐标系中:
3、 梯度的性质
1) 标量场的梯度是矢量场,它在空间某点
的 方向表示该点场变化最大(增大)的 方向,其数值表示变化最大方向上场的空 间变化率。
2) 标量场在某个方向上的方向导数,是梯
度在该方向上的投影。
3)标量场的梯度垂直
于通过该点的等值 面(或切平面)
4、梯度运算的基本公式
5.
梯度的重要性质
0
证:
ˆ x x x ˆ y y y
标量场梯度的旋度恒等于零。
ˆ z z z
2 2 2 2 2 ˆ( ˆ( ˆ( x F F) y F F) z F F) yz zy zx xz xy yx
2.2 标量场的方向导数和梯度
一、方向导数 1、定义:在实际应用中不仅需要宏观上了解场在空间 的数值,还需要知道场在不同方向上场变化的情况。应 用方向性导数可以描述标量场在空间某个方向上变化的 情况。
方向性导数表示场沿 l 方向的空间变化率。
u u lim | l M l 0 l
l
3、梯度的运算
1)在直角坐标系中:
u u u u ex ey ez x y z u 1 u u u er e ez r r z u 1 u 1 u u er e e r r r sin
2)在柱面坐标系中:
=0
例题:
若 R r r ' ,R R
在处理相对坐标的函数的 梯度运算时,算子 与算 子 ' 可以互换,但改变 其前的正负号。
证明:
1 1 ( ) '( ) R R
ex ey ez 说明: x y z ' ex ey ez x ' y ' z '

1.3标量函数的梯度

1.3标量函数的梯度

en
gradu gradu
记忆!!
(三)哈密顿(Hamilton)算子
➢ 引入一个算子
ex x ey y ez z 称为哈密顿算子。 读作“del(德尔)”或
“nabla(那勃拉)”
直角坐标下的具体实例
u
(ex
x
ey
y
ez
)u z
u x
ex
u y
ey
u z
ez
gradu u
(四) 梯度运算基本公式
函数u(x,y,z) 沿其中哪 个方向的 变化率最 大?
G
u x
ex
u y
ey
u z
ez
u l
G el
G
cos G, el
u G l max
u(x,y,z)沿G方向变化率最大 矢量G的模也正好就是该最大变化率。
(二)梯度的性质 ➢ 一个标量函数(标量场)的梯度是一个矢量函数。
在给定点,梯度的方向就是函数变化率最大的方 向,它的模恰好等于函数在该点的最大变化率的 数值。又因函数沿梯度方向的方向导数
22
cos
1
1
12 22 22 3
cos 2 cos 23
3
u (u , u , u )(cos, cos , cos )
l x y z = 1 1 0 2 1 2 1 23 3 23 2
三、梯度(Gradient)
(一)梯度的定义:大小?方向?
el
l l
cos ex cos ey cos ez
1.3 标量函数的梯度
一、标量场?的等值面
➢ 在直角坐标系中,某一物理标量函数u可表示为
u ux, y, z
u u r, r = (x, y,z)

直角坐标系中梯度的计算公式

直角坐标系中梯度的计算公式

直角坐标系中梯度的计算公式直角坐标系中的梯度是一个非常重要的概念,它在数学和物理学中广泛应用。

在直角坐标系中,梯度通常被用来表示一个标量场在某一点上的变化率和方向。

梯度的计算公式可以帮助我们更好地理解和分析不同场的变化规律。

梯度的定义在直角坐标系中,对于一个标量场f(x,y),我们可以定义其梯度为一个向量,记为ablaf(x,y)。

梯度的计算公式可以表示为:$$ \ abla f(x, y) = \\left( \\frac{\\partial f}{\\partial x}, \\frac{\\partialf}{\\partial y} \\right) $$其中,$$\\frac{\\partial f}{\\partial x}$$表示f(x,y)关于x的偏导数,$$\\frac{\\partial f}{\\partial y}$$表示f(x,y)关于y的偏导数。

梯度的几何意义梯度求取的向量方向是函数变化最快的方向,其大小代表了函数在该方向上的变化率。

如果梯度向量为零向量,则表示该点为函数的极值点,可能是最大值、最小值或鞍点。

梯度的计算示例现在我们来看一个具体的例子。

假设我们有一个标量场f(x,y)=x2+2y,要求该标量场在点(1,2)处的梯度。

根据梯度的计算公式,我们可以计算出该点处梯度向量为:$$ \ abla f(1, 2) = \\left( \\frac{\\partial f}{\\partial x}(1, 2), \\frac{\\partial f}{\\partial y}(1, 2) \\right) $$计算偏导数,我们有:$$ \\frac{\\partial f}{\\partial x} = 2x, \\frac{\\partial f}{\\partial y} = 2 $$ 代入(1,2),得到:$$ \ abla f(1, 2) = (2 \\cdot 1, 2) = (2, 2) $$因此,在点(1,2)处,该标量场f(x,y)=x2+2y的梯度向量为(2,2)。

梯度、散度、旋度表达式的推导

梯度、散度、旋度表达式的推导

4. 曲线坐标系
柱坐标中的形式为:
1 ( ra r ) 1 aθ a z diva = + + r r r θ z
球坐标中的形式为:
1 (r 2 ar ) 1 (sin θ aθ ) 1 aλ diva = 2 + + r r r sin θ θ r sin θ λ
4. 曲线坐标系
e. 旋度在曲线坐标系中的表达式: 旋度在曲线坐标系中的表达式: 在如上图的单元体中,我们首先计 算矢量 沿 MM2N1M3 的环量: 此时取 n 为 q1 的正方向;则:
(n , x ) = n x
i+ j+ k x y z
上式即为 在直角坐标系中的表示。 h. 性质
dr = d
dxi = dx + dy + dz xi x y z
证明:
dr =
2. 散度
a . 通量 给定一矢量 a(r , t),在场内取一曲面 S,它可以 是封闭的也可以是不封闭的,在 S 面上取一面积元 素 d S ,在 d S 上任取一点 M,作 S 面在 M 点的法线, 令 n 表示 S 面上法线方向的单位矢量,a 表示 M 点 上的矢量函数的值,则
4. 曲线坐标系
1) 柱坐标 在 柱 坐 标 系 中 ,
q1 = r , q2 = θ , q3 = z
,r 由 0 变到
∞ , 由 0 变到 2∏, 由 ∞ θ z
变到 +∞ , 此时与直角坐标的 函数关系是:
x = r cos θ , y = r sin θ , z = z
4. 曲线坐标系
2) 球坐标 在球坐标系中, q1 = r , q2 = θ , q3 = λ ,r 由 0 变 到 ∞ , θ 由 0 变到∏, 由 0 变到 2∏, 此时与直角坐 标的函数关系是:

梯度、散度和旋度——定义及公式

梯度、散度和旋度——定义及公式

梯度、散度和旋度——定义及公式1 哈密顿算子(Hamiltion Operator )哈密顿算子本身没有含义,只有作用于后面的量才有实际意义;它是一个微分算子,符号为∇。

三维坐标系下,有=i j k x y z∂∂∂∇++∂∂∂ 或者 (,,)x y z ∂∂∂∇=∂∂∂ 其中,,i j k 分别为xyz 方向上的单位矢量。

2 梯度(Gradient ) 2.1 梯度的定义梯度是哈密顿算子直接作用于函数f 的结果(f 可以是标量和向量)。

(,,)f f f f f f grad f f i j k x y z x y z ∂∂∂∂∂∂=∇=++=∂∂∂∂∂∂ 标量场的梯度是向量,标量场中某一点的梯度指向标量场增长最快的地方,梯度的长度是最大变化率。

2.2 梯度的性质∇c=0∇(RS)= ∇R+∇S21()(),0R S R R S S S S∇=∇-∇≠ [()]()f S f S S '∇=∇其中,C 为常数,R 、S 为两个标量场,f 为一连续可微函数。

3 散度(Divergence )散度是哈密顿算子与矢量函数f 点积的结果,是一个标量。

设矢量函数=(,,)x y z x y z f f i f j f k f f f =++则散度表示为: (,,)(,,)y x z x y z f f f div f f f f f x y z x y z∂∂∂∂∂∂=∇==++∂∂∂∂∂∂ 散度是描述空气从周围汇合到某一处或从某一处散开来程度的量。

它可用于表征空间各点矢量场发散的强弱程度,物理上,散度的意义是场的有源性。

当0div f >,该点有散发通量的正源(发散源);当0div f <,该点有吸收通量的负源(洞或汇); 当=0div f ,该点无源。

4 旋度(Curl, Rotation )旋度是哈密顿算子与矢量函数f 叉积的结果,是一个矢量,设矢量函数=(,,)x y z x y z f f i f j f k f f f =++则旋度:=rot ()()()y y x x z z x y zij k f f f f f f curl f f f i j k xy z y zz x x y f f f ∂∂∂∂∂∂∂∂∂=∇⨯==-+-+-∂∂∂∂∂∂∂∂∂ 旋度是矢量分析中的一个矢量算子,可以表示三维矢量场对某一点附近的微元造成的旋转程度。

电动力学0.2-0.5 标量场的方向导数和梯度

电动力学0.2-0.5  标量场的方向导数和梯度

个标量场来表示一个矢量场。 个标量场来表示一个矢量场。
v 在矢量场 F中,如果一条曲线在空间各点都始终与矢 v v 相切, 的方向, 量 F 相切,而曲线切线方向总取为矢量 F 的方向,则 v r 这条曲线称为矢量场 F 的矢量线
矢量线的密度与矢量场的模成正比, 矢量线的密度与矢量场的模成正比,即单 位面积上矢量线的根数与矢量场的模对应
§0.3 矢量场的通量和散度
1 矢量线
v v 一般是空间坐标和时间的函数, 矢量场 F 一般是空间坐标和时间的函数, 可表示为 F v v v v v v v v v F = F ( r , t ) = ex Fx ( r , t ) + ey Fy ( r , t ) + ez Fz ( r , t ) ,即可以用三
v v F (M ) < F ( P)
P
M r F ( P)
F(M)
C
矢量场的通量 2 矢量场的通量
v v 在矢量场 F 中,任取一面元矢量dS,定 v v 义矢量F 通过面元矢量dS 的通量为
r r dΦ = F ⋅ dS
r en r dS
θ
r F
通过曲面 S 的通量为 Φ = ∫S
r r F ⋅ dS
r en θ
r l
P2
P0
标量场 ϕ ( P ) 在某一方向上的方向导数等于梯度在该方向上的投
r 影,即 ∂ϕ = ∇ ϕ ⋅ e l . ∂l
证明: 证明: ∂ϕ = ∂ϕ cos α + ∂ϕ cos β + ∂ϕ cos γ
∂l ∂x ∂y ∂z v ∂ϕ v ∂ϕ v ∂ϕ v v v = ex + ey + ez ⋅ e x cos α + e y cos β + ez cos γ ∂x ∂y ∂z r = ∇ ϕ ⋅ el
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d/
弟为最大的方向导数。
思考:什么情况下,方向导数为零呢?
sd 为零,即等值面上任意线段上
的方向导数为零。
b・梯度定义
定义:标量场中某点梯度的大小为该
点最大的方向导数,其方向为该点所
在等值面的法线方向。
d。
数学表达式:
grad^
=
八a dn n
C.梯度的计算:
挪 d,dn d, 八
梯度
al
u —=---- cos
解:根据梯度计算公式
疽卵—ax +云 ^^y az ox 8y 8z
=6 xyz & + 3x2 z z(ay + 9 x2
yz 位
, grad I 尹=12% + 3 句 + 18ciz
在不同的坐标系中,梯度的计算公式:
在直角坐标系中: 在柱坐标系中:
海八 海八 海八
v^=—a +—a y +—a ox Sy
W牛r or
Hale Waihona Puke Sz也"淨z在球坐标系中:
w=迎晶+
SR R
海a+
sin先 a
+普 +寿 在任意正交曲线坐标系中:坐标变量("i,"2,"3),拉梅系数(如h2,h3) ou2 a 2 h ou3 a 3 h h Ou
小结:
1.标量场的等值面
2.标量场梯度的定义grad^ =翌% dn
3. 标量场梯度的计算w=普&
+ + h % a 2 h m a 3
学a
, d l d n d / d n
在直d 角坐= 标gr系ad中,:- d挪l =g皿斜+灯
所以:
d/ = dx^x + dyay + dzaz
。,八 。,八 。,八
grad,a + —久 心
ox
dz
梯度也可表示:grad,= V,
例如:已知 Mx y, z) = 3x2yz3
求:P(l,2,l)点的梯度。
1.5标量场的梯度
1. 标量场的等值面 2. 标量场梯度的定义 3. 标量场梯度的计算
1.标量场的等值面
可以看出:标量场的函数是单值函数,各等值面是互不相交的。
AH 空间变化率 Al
A H最大的空间变化率
An
2.标量场梯度的定义
标量场的场函数为6(x, y, z,t)
a・方向导数:
半 空间变化率,称为方向导数。
相关文档
最新文档