河海大学高等数学下习题3-6解答 -
大学高等数学下考试题库及答案

"高等数学"试卷6〔下〕一.选择题〔3分⨯10〕1.点1M ()1,3,2到点()4,7,22M 的距离=21M M 〔 〕.A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,那么有〔 〕.A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3. 设有直线1158:121x y z L --+==-和26:23x y L y z -=⎧⎨+=⎩,那么1L 与2L 的夹角为〔 〕 〔A 〕6π; 〔B 〕4π; 〔C 〕3π; 〔D 〕2π. 4.两个向量a 与b垂直的充要条件是〔 〕.A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是〔 〕.A.2B.2-C.1D.1- 6.设y x z sin =,那么⎪⎭⎫ ⎝⎛∂∂4,1πyz =〔 〕.A.22B.22-C.2D.2-7. 级数1(1)(1cos ) (0)n n n αα∞=-->∑是〔 〕 〔A 〕发散; 〔B 〕条件收敛; 〔C 〕绝对收敛; 〔D 〕敛散性与α有关.8.幂级数∑∞=1n nn x 的收敛域为〔 〕.A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域的和函数是〔 〕.A.x -11 B.x -22 C.x -12 D.x -21 二.填空题〔4分⨯5〕1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,那么此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,那么=∂∂∂yx z2_____________________________. 4. 设L 为取正向的圆周:221x y +=,那么曲线积分2(22)d (4)d Lxy y x x x y -+-=⎰____________.5. .级数1(2)nn x n ∞=-∑的收敛区间为____________.三.计算题〔5分⨯6〕1.设v e z usin =,而y x v xy u +==,,求.,yzx z ∂∂∂∂ 2.隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4..计算10d d y xy x x⎰ .试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe e y 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y ="高数"试卷7〔下〕一.选择题〔3分⨯10〕1.点()1,3,41M ,()2,1,72M 的距离=21M M 〔 〕. A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,那么两平面的夹角为〔 〕. A.6π B.4π C.3π D.2π 3.点()1,2,1--P 到平面0522=--+z y x 的距离为〔 〕. A.3 B.4 C.5 D.6 4.假设几何级数∑∞=0n nar是收敛的,那么〔 〕.A.1≤rB.1≥rC.1<rD.1≤r 8.幂级数()nn xn ∑∞=+01的收敛域为〔 〕.A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是〔 〕. A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10. .考虑二元函数(,)f x y 的以下四条性质:〔1〕(,)f x y 在点00(,)x y 连续; 〔2〕(,),(,)x y f x y f x y 在点00(,)x y 连续 〔3〕(,)f x y 在点00(,)x y 可微分; 〔4〕0000(,),(,)x y f x y f x y 存在. 假设用"P Q ⇒〞表示有性质P 推出性质Q ,那么有〔 〕 〔A 〕(2)(3)(1)⇒⇒; 〔B 〕(3)(2)(1)⇒⇒ 〔C 〕(3)(4)(1)⇒⇒; 〔D 〕(3)(1)(4)⇒⇒ 二.填空题〔4分⨯5〕1. 级数1(3)nn x n ∞=-∑的收敛区间为____________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题〔5分⨯6〕1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ∂∂∂∂ 3.隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4. 设∑是锥面1)z z =≤≤下侧,计算y z 2d d 3(1)d d xd d y z x z x y ∑++-⎰⎰四.应用题〔10分⨯2〕 试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x y z y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x xe C e C y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=. "高等数学"试卷3〔下〕一、选择题〔此题共10小题,每题3分,共30分〕 1、二阶行列式 2 -3 的值为〔 〕4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,那么a 与b 的向量积为〔 〕 A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P 〔-1、-2、1〕到平面x+2y-2z-5=0的距离为〔 〕 A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点〔1,4π〕处的两个偏导数分别为〔 〕 A 、,22,22 B 、,2222- C 、22-22- D 、22-,225、设x 2+y 2+z 2=2Rx ,那么yzx z ∂∂∂∂,分别为〔 〕 A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为〔 〕〔面积A=2R π〕A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为〔 〕A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为〔 〕A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是〔 〕 A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为〔 〕 A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题〔此题共5小题,每题4分,共20分〕 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
[理学]河海大学高等数学高等数学下册1-15考试试卷及解答
![[理学]河海大学高等数学高等数学下册1-15考试试卷及解答](https://img.taocdn.com/s3/m/c70174c3185f312b3169a45177232f60ddcce762.png)
高等数学(下册)考试试卷(一)参考答案一、1、当10<<a 时,1022≤+<y x ;当1>a 时,122≥+y x ;2、负号;3、23;110⎰⎰⎰⎰-+=Dy e eydx dy d σ; 4、dt t t )()(22ψϕ'+'; 5、180π; 6、Cx xy=sin; 7、xxe C e C x C x C y 2423212sin 2cos -+++=; 8、1;二、1、D ; 2、D ; 3、C ; 4、B ; 5、D ; 6、B ; 7、A ; 8、C ; 三、1、21f y f x u '+'=∂∂;)(xy x g x yu +'=∂∂; 2、)()(t x f t x f x u --+=∂∂;)()(t x f t x f t u -++=∂∂; 四、1、)1(21420200220222-----===⎰⎰⎰⎰⎰e dy ye dx e dy dy e dx y y y x y ;2、⎰⎰⎰⎰⎰⎰=+=πππθθ2020212022132233142rdz r dr d dz r dr d I柱面坐标; 五、令2222,y x xQ y x y P +=+-=则xQy x x y y P ∂∂=+-=∂∂22222)(,)0,0(),(≠y x ; 于是①当L 所围成的区域D 中不含O (0,0)时,xQy P ∂∂∂∂,在D 内连续。
所以由Green 公式得:I=0;②当L 所围成的区域D 中含O (0,0)时,xQy P ∂∂∂∂,在D 内除O (0,0)外都连续,此时作曲线+l 为)10(222<<=+εεy x ,逆时针方向,并假设*D 为+L 及-l 所围成区域,则πε2)(222*=+∂∂-∂∂+=+-=⎰⎰⎰⎰⎰⎰⎰⎰=+++-++++y x D ll L llL dxdy y Px Q Green I 公式六、由所给条件易得: 0)0()0(1)0(2)0(2=⇒-=f f f f又xx f x x f x f x ∆-∆+='→∆)()(lim )(0 =x x f x f x f x f x f x ∆-∆-∆+→∆)()()(1)()(lim 0xf x f x f x f x f x ∆-∆⋅∆-+=→∆)0()()()(1)(1lim 20 )](1)[0(2x f f +'= 即)0()(1)(2f x f x f '=+' c x f x f +⋅'=∴)0()(a r c t a n 即 ])0(tan[)(c x f x f +'= 又 0)0(=f 即Z k k c ∈=,π ))0(t a n ()(x f x f '=∴七、令t x =-2,考虑级数∑∞=++-11212)1(n n nn t212321232l i m t n t n t n n n =++++∞→ ∴当12<t 即1<t 时,亦即31<<x 时所给级数绝对收敛;当1<t 即3>x 或1<x 时,原级数发散;当1-=t 即1=x 时,级数∑∞=++-11121)1(n n n 收敛; 当1=t 即3=x 时,级数∑∞=+-1121)1(n nn 收敛; ∴级数的半径为R=1,收敛区间为[1,3]。
河海大学 高等数学 高等数学(下册)1-15考试试卷及解答

高等数学(下册)考试试卷(一)参考答案一、1、当10<<a 时,1022≤+<y x ;当1>a 时,122≥+y x ;2、负号;3、23;110⎰⎰⎰⎰-+=Dy e eydx dy d σ; 4、dt t t )()(22ψϕ'+';5、180π;6、Cx xy =sin ;7、xxeC eC x C x C y 2423212sin 2cos-+++=; 8、1;二、1、D ; 2、D ; 3、C ; 4、B ; 5、D ; 6、B ; 7、A ; 8、C ; 三、1、21f y f x u '+'=∂∂;)(xy x g x yu +'=∂∂;2、)()(t x f t x f xu --+=∂∂;)()(t x f t x f tu -++=∂∂;四、1、)1(2142020220222-----===⎰⎰⎰⎰⎰edy yedx edy dy edx yyyxy;2、⎰⎰⎰⎰⎰⎰=+=πππθθ202212022132233142rdz r dr d dz r dr d I 柱面坐标;五、令2222,yx x Q yx y P +=+-=则xQ y x xy yP ∂∂=+-=∂∂22222)(,)0,0(),(≠y x ;于是①当L 所围成的区域D 中不含O (0,0)时,xQy P ∂∂∂∂,在D 内连续。
所以由Green公式得:I=0;②当L 所围成的区域D 中含O (0,0)时,xQy P ∂∂∂∂,在D 内除O (0,0)外都连续,此时作曲线+l 为)10(222<<=+εεy x ,逆时针方向,并假设*D 为+L 及-l 所围成区域,则 πε2)(222*=+∂∂-∂∂+=+-=⎰⎰⎰⎰⎰⎰⎰⎰=+++-++++y x DllL llLdxdy yP xQ Green I 公式六、由所给条件易得: 0)0()0(1)0(2)0(2=⇒-=f f f f又xx f x x f x f x ∆-∆+='→∆)()(lim)(0=xx f x f x f x f x f x ∆-∆-∆+→∆)()()(1)()(limxf x f x f x f x f x ∆-∆⋅∆-+=→∆)0()()()(1)(1lim2)](1)[0(2x f f +'=即)0()(1)(2f x f x f '=+'c x f x f +⋅'=∴)0()(a r c t a n 即 ])0(tan[)(c x f x f +'= 又 0)0(=f 即Z k k c ∈=,π ))0(t a n ()(x f x f '=∴七、令t x =-2,考虑级数∑∞=++-11212)1(n n nn t212321232lim t n t n tn n n =++++∞→ ∴当12<t 即1<t 时,亦即31<<x 时所给级数绝对收敛;当1<t 即3>x 或1<x 时,原级数发散;当1-=t 即1=x 时,级数∑∞=++-11121)1(n n n 收敛;当1=t 即3=x 时,级数∑∞=+-1121)1(n nn 收敛;∴级数的半径为R=1,收敛区间为[1,3]。
高等数学(下)典型习题及参考答案

第八章典型习题一、 填空题、选择题1、点)3,1,4(M -到y 轴的距离是2、平行于向量}1,2,1{a -=的单位向量为 3、().0431,2,0垂直的直线为且与平面过点=--+-z y x4、.xoz y z y x :面上的投影柱面方程是在曲线⎩⎨⎧==++Γ2102225、()==-=+=+=-δλδλ则平行与设直线,z y x :l z y x :l 1111212121()23A ()12B ()2C ()21D6、已知k 2j i 2a+-=,k 5j 4i 3b -+=,则与b a 3 -平行的单位向量为 ( )(A )}11,7,3{(B )}11,7,3{- (C )}11,7,3{1291-±(D )}11,7,3{1791-± 7、曲线⎩⎨⎧==++2z 9z y x 222在xoy 平面上投影曲线的方程为( )(A )⎩⎨⎧==+2z 5y x 22 (B )⎩⎨⎧==++0z 9z y x 222(C )⎩⎨⎧==+0z 5y x 22 (D )5y x 22=+8、设平面的一般式方程为0A =+++D Cz By x ,当0==D A 时,该平面必( ) (A)平行于y 轴 (B) 垂直于z 轴 (C) 垂直于y 轴 (D) 通过x 轴 9、设空间三直线的方程分别为251214:1+=+=+z y x L ,67313:2+=+=z y x L ,41312:3-=+=z y x L 则必有 ( ) (A) 31//L L (B) 21L L ⊥ (C) 32L L ⊥ (D) 21//L L10、设平面的一般式方程为0=+++D Cz By Ax ,当0==B A 时,该平面必 ( ) (A) 垂直于x 轴 (B) 垂直于y 轴 (C) 垂直于xoy 面 (D) 平行于xoy 面11、方程05z 3y 3x 222=-+所表示的曲面是( )(A )椭圆抛物面 (B )椭球面 (C )旋转曲面 (D )单叶双曲面二、解答题1、设一平面垂直于平面0=z ,并通过从点)1,1,1(-P 到直线⎩⎨⎧=+-=010z y x 的垂线,求该平面方程。
高等数学(下)课后习题答案

高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。
高数下课后题答案

13. 试证明以三点 A(4,1,9), B(10, −1,6),C(2, 4,3) 为顶点的三角形是等腰直角三角形。
解 因为
→
| AB|= (10−4)2 +(−1−1)2 +(6−9)2 =7 ,
→
| AC|= (2−4)2 +(4−1)2 +(3−9)2 =7 ,
→
|BC|= (2−10)2 +(4+1)2 +(3−6)2 =7 2 ,
解 (1) 点 (a,b,c) 关于 xOy 面的对称点为 (a,b, −c) ;关于 yOz 面的对称点为 (−a,b, c) ;关
于 zOx 面的对称点为 (a, −b, c) 。
(2) 点 (a,b,c) 关于 x 轴的对称点为 (a, −b, −c) ;关于 y 轴的对称点为 (−a,b, −c) ;关于
→
→
→
→→
所以 |BC |2=| AB|2 +| AC |2 , | AB|=| AC| 。
14. 已知两点 P(2,0,3) 和 Q(1, 2, 4) ,计算向量 PQ 的模、方向余弦和方向角。
⎯⎯→
解 PQ = (1− 2, 2 − 0, 4 − 3) = (−1, 2, 1)
⎯⎯→
| PQ |= (−1)2 + ( 2)2 +12 = 2
点的坐标为 (x, 0, z) 。
在 x 轴上的点的坐标为 (x, 0, 0) ;在 y 轴上的点的坐标为 (0, y, 0) ;在 z 轴上的点的坐标为
(0, 0, z) 。
A 在 xOy 面上, B 在 yOz 面上, C 在 x 轴上, D 在 y 轴上。
7.求点 (a,b,c) 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标。
高等数学A(下)习题册答案

高等数学A (下)习题册第六章参考答案习题6.11.3333(32)45-=+---+=-r n a b c a b +c a c .2.23(0,1,0)2(1,2,3)3(2,0,1)(4,3,3)+--+-=-a b c =.3.点(,,)a b c 到x 轴、y 轴、z4.||cos ,2cos 6u u π=<>==r r r 5. 设起点坐标为(,,)x y z ,则向量r =(2,3,0)(2,1,4)x y z ----=,解得(,,)(4,2,4)x y z =--.习题6.21.(1)(3)(2)6()61106(1,1,4)131i j k-⨯=-⨯=--=--a b a b . (2)cos ,||||⋅<>===a b a b a b 2.(1)12;(2)10k =-. 3.Prj cos ,1||⋅<>==b a ba =|a |ab b . 4.()()344(0,1,1)233ijk⨯=-=---a +b b +c .习题6.3 1.1313x y z ++=-;该平面在x 轴、y 轴、z 轴上的截距分别为3、1、3-. 2.3540x y z +++=. 3.11110121x y z+=-,即3220x y z -+++=. 4.210220240x y z x y z x y z ++-=⎧⎪++-=⎨⎪++-=⎩,解得交点坐标,319(,,)(,,)444x y z =-.5.2d ==.习题6.41.43040x y x z +-=⎧⎨--=⎩ 2.111(4,1,3)213i j ks ==---,所以对称式方程为:12413x y z -+==--、参数方程为:4132x t y t z t =+⎧⎪=-⎨⎪=--⎩. 3.325431x y z +--==. 4.111(1,1,2)110i j ks =-=----,所以12112x y z -+==. 5.如图,从直线上找个点1P ,连接向量10PP ,它与方向向量r 的夹角为θ,则所求的距离101010||||sin ||||sin ||||PP r PP r d PP r r θθ⨯===,本题结果为63. 习题6.51.垂直平分面:26270x y z -+-=.2.222(6)(2)(3)49x y z -+++-=.3.(1)2221233x y z ++=(2)2221232x y z -+=(3)2224x y z ++=(4)223x z y +=.习题6.61.(1)xOy 面上一点(1,3)-;空间中一条直线. (2)yOz 面上一点(0,2);空间中一条直线.2. (1)222100x y y z ⎧+--=⎨=⎩,2223100x z z y ⎧+-+=⎨=⎩,100y z x -+=⎧⎨=⎩(线段);(2)222390x y z ⎧+=⎨=⎩,22390z x y ⎧-=⎨=⎩,22290y z x ⎧+=⎨=⎩.3.先求题中两曲面交线在xOy 面上的投影曲线,投影曲线所围成的区域即为所求,2210x y z ⎧+≤⎨=⎩.高等数学A (下)习题册第七章参考答案习题7.11. 1、1、0、1.2.(1)在抛物线220y x +=处间断;(2)在直线y x =-处间断.3.(1)000lim lim 111xy t x t y xy te e →→→==--;(2)00012x t y →→+→==; (3)()xyy x y x 220sin 1lim +→→()2212sin 20sin 00lim 1sin 1x y xy x y x y x y e →→=+==.4.取路径(1)y kx k =≠,001lim 1x y x y kx y k →→++=--,结果与k 有关,故极限不存在. 习题7.21. (1)3/2cos(/)z y y x x x ∂=∂,z y ∂=∂, (2)/1y z u y x x z -∂=∂,/1ln y z u x x y z ∂=∂,/2ln y z u yx x z z∂=-∂.2. '''11(1,2,0)1,(1,2,0),(1,2,0).22x y z f f f ===3. 22222222212126,126,6z z z x xy y xy x x x y x y∂∂∂=-+=-=∂∂∂∂.4. 证明 因为1111()()2211,x y x y z z e e x x x y-+-+∂∂==∂∂,所以222z z x y z x y ∂∂+=∂∂. 习题7.31.(1)sin sin cos y y dz e dx x ye dy =+;(2))du xdx ydy zdz =++2.222222x y df dx dy x y x y =+++,()422,155df dx dy =+. 3.证明: (1)因为22000)0(0,0)x x y y x y f →→→→+===,所以(,)f x y 在(0,0)点处连续; (2)根据偏导数的定义,极限00(,0)(0,0)00limlim 0x x f x f xx ∆→∆→∆--==∆∆,所以对x 的偏导数存在,且'(0,0)0x f =;同理,'(0,0)0y f =. (3)因为2200)000limlimx y x y z dzρρρρ→+→+∆+∆--∆-∆∆-=00limlimz dzρρρ→+→∆-==,而这个极限不存在,所以(,)f x y 在(0,0)点处不可微.习题7.41.()()()()sin cos ,sin cos xy xy xy xy z zye x y e x y xe x y e x y x y∂∂=+++=+++∂∂. 2.()()222333223cos sin cos sin ,cos sin 2cos sin 2sin cos z z r r r θθθθθθθθθθθ∂∂=-=+--∂∂ 3.(1)12122,2xy xy u ux f ye f y f xe f x x ∂∂''''=⋅+⋅=-⋅+⋅∂∂;(2)11222211,,u u x u y f f f f x y y z z y z∂∂-∂''''=⋅=⋅+⋅=-⋅∂∂∂. 4.dy x y dx x y+=-.5.zz x y ∂∂==∂∂. 6.证明:令23x y z u +-=,则2sin u u =,此方程有解0u ,即023x y z u +-=,故12,33z z x y ∂∂==∂∂,1z zx y∂∂+=∂∂. 7.每个方程都对x 求导,222460dy dz x y dx dx dy dz x y z dx dx ⎧+=⎪⎪⎨⎪++=⎪⎩,解得626226dy x xz dx y yz dz x dx z+⎧=-⎪+⎪⎨⎪=⎪+⎩.习题7.5 1.()1,2zl∂=∂. 2.(1)()1,1z l∂=∂(2)()0,1,023u l ∂=∂. 3.()1,1,1(6,3,0)gradf =.习题7.61.(1) 1B =;(2) 2,6m n ==;(3) 2,2A B =-=-.2.(1)切线方程11101x y z --==-,法平面方程1z x -=. 3.()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 4.切平面方程24x y +=,法线方程21120x y z--==. 习题7.71.(1)()1,12f -=-为极小值;(2)11,122f e ⎛⎫-=- ⎪⎝⎭为极小值.2.区域内部:(0,0)为驻点,(0,0)0f =;区域边界上,相当于求条件极值,构造拉格朗日函数22(,,)(1)L x y xy x y λλ=++-,解得x y ==,1(2f f ==,1(2f f ==-, 所以最大值为12,最小值为12-.3.构造拉格朗日函数22(,,)(22)L x y x y x y λλ=+++-,解得42,55x y ==,424,555f ⎛⎫= ⎪⎝⎭ 为极小值.4.构造拉格朗日函数(,,,)()L x y z xyz x y z a λλ=+++-,解得3ax y z ===,即三个正数均为3a时,乘积最大. 5.构造拉格朗日函数222222(,,,)(1)(1)(1)(2)(3)(4)(32)L x y z x y z x y z x z λλ=-+-+-+-+-+-+-, 解得点2163,2,1326⎛⎫⎪⎝⎭. 6.构造拉格朗日函数222(,,,)(12)L x y z xyz x y z λλ=+++-,解得,2x y z ===.高等数学A (下)习题册第八章参考答案习题8.1 1、(1)8π(2)8(3)2(4)1 2、(1)23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰ (2)2()Dx y d σ+≤⎰⎰3()Dx y d σ+⎰⎰3、(1)02I ≤≤ (2)1827I ππ≤≤4、(1)因为积分区域关于x 轴对称,而函数(,)sin f x y x y =-关于y 为奇函数(或理解为积分区域关于y 轴对称,而函数(,)sin f x y x y =-关于x 为奇函数),所以原二重积分(sin )0Dx y dxdy -=⎰⎰.(2)因为积分区域关于y 轴对称,而函数22arcsin (,)1x y f x y x y =++关于x 为奇函数,所以原二重积分22arcsin 01Dx y dxdy x y=++⎰⎰.习题8.2 1、(1)22122001(,)(,)y y y dy f x y dx dy f x y dx -+⎰⎰⎰⎰(2)23 02(,)xxdx f x y dy -⎰⎰ (3)2602(,)yy dy f x y dx -⎰⎰2、(1)2cos 22(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰(2)22321cos d d πθρθρ⎰⎰(3)sec tan 240d d πθθθρρ⋅⎰⎰3、图如下所示.(1) (2) (3) (4)(1)解:原式2237111424000226()3355x xx x Dx ydxdy xdx ydy x y dx x x dx ==⋅=-=⎰⎰⎰⎰⎰⎰. (2)解:原式0111012121111101()()x x x y x y x y x x x x De d e dx e dy e dx e dy e dx e e dx eσ+-+++------=+=-+-⎰⎰⎰⎰⎰⎰⎰⎰1e e=-.(3)解:原式221112000sin sin sin sin [][()]yy Dy yyyy ydxdy dy dx x dy y y dy yy y y==⋅=-⎰⎰⎰⎰⎰⎰ 11111(sin sin )sin sin cos (cos sin )1sin1y y y dy ydy y ydy y y y y =-=-=-+-=-⎰⎰⎰.(4)解:原式122222222(2)(2)DD D x y dxdy x y dxdy x y dxdy +-=--++-⎰⎰⎰⎰⎰⎰1222cos ,sin (2)(2)D D x y d d d d ρθρθρρρθρρρθ==-+-⎰⎰⎰⎰令22233302(2)(2)d d d d ππθρρρθρρρ=-+-⎰⎰⎰⎰442322252[]2[]442ρρπρπρπ=⋅-+⋅-=. 4、(1)解:如左图所示. 在极坐标系中,积分区域为{(,)|0cos ,}22D R ππρθρθθ=≤≤-≤≤,故原式22222DDR x y dxdy R d d ρρρθ--=-⋅⎰⎰⎰⎰3cos cos 2222222221[()]3R R d R d R d ππθθππθρρρρθ--=-⋅=--⎰⎰⎰33320 24(1sin )()333R R d πθθπ=-=-⎰.(2)解:如左图所示. 在极坐标系中,积分区域为{(,)|12,0}4D πρθρθ=≤≤≤≤,则arctan yx θ=.故原式240 1arctan D Dydxdy d d d d x πθρρθθθρρ==⎰⎰⎰⎰⎰⎰222113()(21)24264ππ=⋅⋅-=. (3)解:如左图所示.在极坐标系中,积分区域为{(,)|12,02}D ρθρθπ=≤≤≤≤, 故原式222220 1ln()ln()2ln DDx y dxdy d d d d πρρρθθρρρ+=⋅=⎰⎰⎰⎰⎰⎰222222 1112ln 2[ln ln ]d d πρρπρρρρ=⋅=⋅-⎰⎰22132[4ln 2]2[4ln 2]8ln 2322ρππππ=⋅-=⋅-=-. 5、提示:积分区域{(,)|0,0}{(,)|,0}D x y x y y a x y x y a x a =≤≤≤≤=≤≤≤≤,交换积分次序得()()()0()()()()ayaaam a x m a x m a x xdy e f x dx dx e f x dy a x e f x dx ---==-⎰⎰⎰⎰⎰.习题8.31、(1)解:如左图所示.利用直角坐标计算.因为222{(,,)|01,01,01}x y z z x y y x x Ω=≤≤--≤≤-≤≤, 所以原式22211100x x y I xyzdxdydz xdx ydy zdz ---Ω==⎰⎰⎰⎰⎰⎰222224111120011[(1)]2224x x x y y y xdx y dy x x dx ----=⋅=--⎰⎰⎰122011(1)848x x dx =-=⎰. (2)解:如下图所示【解法一】由22z x y =+与1z =消去z 得:221x y +=. 故Ω在xoy 面上的投影区域为22{(,)|1}xy D x y x y =+≤. 所以22{(,,)|1,(,)}xy x y z x y z x y D Ω=+≤≤∈. 故原式221221[1()]2xyxyx yD D I zdxdydz dxdy zdz dxdy x y +Ω===-+⎰⎰⎰⎰⎰⎰⎰⎰ 2123002211111()12222xy xy D D dxdy dxdy d d x y ππθρρ=-=⋅⋅-+⎰⎰⎰⎰⎰⎰ 244πππ=-=.【解法二】用过点(0,0,)z 、平行于xoy 面的平面截Ω得平面圆域z D ,其半径为22x y z +=,面积为2z π.所以{(,,)|(,),01}z x y z x y D z Ω=∈≤≤.故原式4111200044zD z I zdxdydz zdz dxdy z z dz πππΩ===⋅=⋅=⎰⎰⎰⎰⎰⎰⎰.2、(1)解:如下图所示.由2243()z x y =-+与22z x y =+消去z 得:221x y +=. 故Ω在xoy 面上的投影区域为22{(,)|1}xy D x y x y =+≤. 所以Ω的柱面坐标表示为:2243,01,02z ρρρθπ≤≤-≤≤≤≤.故原式2221430I zdxdydz z d d dz d d zdz πρρρρθθρρ-ΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰22243113500132[43]212z d d ρρπρρπρρρρπ-=⋅⋅=⋅--=⎰⎰. (2)解:如下图所示.由222425()z x y =+与5z =消去z 得:224x y +=. 故Ω在xoy 面上的投影区域为22{(,)|4}xy D x y x y =+≤. 所以Ω的柱面坐标表示为:55,02,022z ρρθπ≤≤≤≤≤≤. 故原式22522235002()I x y dxdydz d d dz d d dz πρρρρθθρρΩΩ=+=⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰2223450551(5)2[]8242d d πθρρρπρρπ=-=-=⎰⎰.3、解:如下图所示.【解法一】利用直角坐标计算.由22222222x y z Rx y z Rz⎧++=⎪⎨++=⎪⎩解得2R z =,于是用平面2R z =把Ω分成1Ω和2Ω两部分,其中2221{(,,)|2,0}2Rx y z x y Rz z z Ω=+≤-≤≤; 22222{(,,)|,}2Rx y z x y R z z R Ω=+≤-≤≤. 于是原式12222z dxdydz z dxdydz z dxdydz ΩΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰2222222222022R RR x y Rz zx y R zz dzdxdy z dzdxdy +≤-+≤-=+⎰⎰⎰⎰⎰⎰22222202(2)()R RR Rz z z dz R z z dz ππ=-⋅+-⋅⎰⎰5551475940480480R R R πππ=+=. 【解法二】利用球面坐标计算.作圆锥面1arccos 23πϕ==,将Ω分成1'Ω和2'Ω两部分:1{(,,)|0,0,02}3R πρϕθρϕθπ'Ω=≤≤≤≤≤≤; 2{(,,)|02cos ,,02}32R ππρϕθρϕϕθπ'Ω=≤≤≤≤≤≤.于是原式12222z dxdydz z dxdydz z dxdydz Ω''ΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰222cos 24242303cos sin cos sin RR d d d d d d ππππϕπθϕϕϕρρθϕϕϕρρ=+⎰⎰⎰⎰⎰⎰555715960160480R R R πππ=+=. 习题8.4 1、(1)解:由2222262z x yz x y⎧=+⎪⎨=--⎪⎩消去z 得:222x y +=. 故所求立体在xoy 面上的投影区域为22{(,)|2}D x y x y =+≤.所以222222[62(2)]3[2()]DDV x y x y dxdy x y dxdy =---+=-+⎰⎰⎰⎰22230cos ,sin 3(2)3(2)Dx y d d d d πρθρθρρρθθρρρ==-=-⎰⎰⎰⎰令4226[]64ρπρπ=⋅-=.(2)解:由22140z x y z ⎧=--⎨=⎩消去z 得:221114x y +=.故所求立体在xoy 面上的投影区域为22{(,)|1}114x y D x y =+≤.所以22(14)DV x y dxdy =--⎰⎰24121230 001cos ,sin 2111(1)()2[]222244Dx y d d d d πρθρθρρπρρρθθρρρπ==-=-=⋅⋅-=⎰⎰⎰⎰令.2、(1)解:如左图所示.上半球面的方程为222z a x y =--.有222zx xa x y∂-=∂--,222z y ya x y∂-=∂--,所以222221()()z z ax y a x y∂∂++=∂∂--. 故由曲面的对称性可知所求的曲面面积为2222241()()4DDz z aA dxdy dxdyx y a x y ∂∂=++=∂∂--⎰⎰⎰⎰22cos ,sin 14Dx y a d d a ρθρθρρθρ==-⎰⎰令cos 2224a a d d a πθρθρρ=-⎰⎰22204(1sin )2(2)ad a πθθπ=-=-⎰.(2)解:如左图所示. 由2222z x yz x⎧=+⎪⎨=⎪⎩消去z 解得222x y x +=,即22(1)1x y -+=.所以所求曲面在xoy 面上的投影区域为22{(,)|(1)1}D x y x y =-+≤.又因为被割曲面的方程为22z x y =+,且2222221()()12z z x y x y x y ∂∂+++=+=∂∂+,所以所求曲面的面积为2cos 22200212242cos 42222DA dxdy d d d ππθππθρρθθπ-====⋅⋅=⎰⎰⎰⎰⎰.3、解:设矩形另一边的长度为l 并建立如左图所示的坐标系,则质心的纵坐标为 22322222()32R R x R RlRDyd R l R dx ydyR x l dxy AAAAσ-------====⎰⎰⎰⎰⎰, 由题设可知0y =即可算得 23l R = .4、解:在球面坐标系中,Ω可表示为:02cos ,0,022R πρϕϕθπ≤≤≤≤≤≤.球体内任意一点(,,)x y z 处的密度大小为2222x y z μρ=++=.由于球体的几何形状及质量分布均关于z 轴对称,故可知其质心位于z 轴上,因此0x y ==. 则22cos 22555223232sin 2cos sin 515R M dv d d d R d R πππϕμθϕρρϕρπϕϕϕπΩ==⋅==⎰⎰⎰⎰⎰⎰⎰; 所以 22cos 226722012645cos sin cos sin 64R zdvz d d d R d R MMMπππϕμπθϕρρϕρϕρϕϕϕΩ==⋅⋅==⎰⎰⎰⎰⎰⎰⎰, 故球体的质心为5(0,0,)4R . 5、解:22222222222224b a x aa a a by aa a x aDb b I x dxdy x dx dy x a x dx x a x dx a a ρρρρ-----===⋅-=-⎰⎰⎰⎰⎰⎰ 32324222000sin 4sin cos cos 4[sin sin ]x a t b a t t a tdt a b tdt tdt a πππρρ=⋅=-⎰⎰⎰令 3313114[]224224a b a b ππρπρ=⋅-⋅⋅=.6、解:如左图所示.(1)由Ω的对称性可知: 2234222000844()4()33aax y aaaa a V dx dy dz dx x y dy ax dx +==+=+=⎰⎰⎰⎰⎰⎰. (2)由对称性可知,质心位于z 轴上,故0x y ==.224224001441(2)2a ax y aa z zdv dx dy zdz dx x x y y dy MV V ρ+Ω===++⎰⎰⎰⎰⎰⎰⎰⎰ 4325202217()3515a ax a x a dx a V =++=⎰.(3)2222220()4()aax y z I x y dv dx dy x y dz ρρ+Ω=⋅+=+⎰⎰⎰⎰⎰⎰422461124(2)45a adx x x y y dy a ρρ=++=⎰⎰.高等数学A (下)习题册第九章参考答案习题9.11.⑴2π; ⑵258π; ⑶32a π; ⑷2 注意(4)的做法,此圆的参数方程为,1cos ,sin x y θθ-==,:0θπ→,所以0(cos 1)sin 2Lxy ds d πθθθ=+=⎰⎰.如果有同学用1sin ,cos x y θθ-==,θ的范围就不再是0π→. 2.(1)由于连接(1,0)及(0,1)的直线段方程为1x y +=(如图), 所以()12LLy ds ds x +==⎰⎰.(2)分三段来做(如图), 在x 轴上, 2211ay x a L x eds e dx e +==-⎰⎰;在圆弧上,222404y a a L x eds ae dx ae ππ+==⎰⎰;在y x =上,223222021a y xa L x e ds edx e +==-⎰⎰;所以22y Lx eds +⎰224a e a π⎛⎫=+- ⎪⎝⎭.(3)直接按照对弧长的曲线积分公式求即可,答案为23(1)2e --. 3.如图,此圆的参数方程为,cos ,sin x y θθ==,:02πθ→,所以201sin cos 2L xyds d πθθθ==⎰⎰.4.根据对弧长的曲线积分的物理意义,即求曲线积分Lyds ⎰.此圆的参数方程为,cos ,sin x a y a θθ==,:0θπ→,Lyds ⎰20sin 2a ad a πθθ==⎰.习题9.21.(1)把参数方程21,1x t y t =+=+代入得,1202(2)2(1)(1)23LI ydx x dy t t tdt =+-=++-=⎰⎰.(2)把参数方程3∑代入得,33232222220[sin cos ]3k x dx zdy ydz k a a d a ππθθθθπΓ+-=--=-⎰⎰.2.从(1,1,1)(2,3,4)A B 到的直线段的参数方程为1,21,31x t y t z t =+=+=+,:01t →代入得,1[(1)2(21)3(31)]13xdx ydy zdz t t t dt Γ++=+++++=⎰⎰.3.(1)把2,,:01x y y y y ==→代入得,132017()(2)30Lydx y x dy y y y y dy x +-=⋅+-=⎰⎰.(2)把,,:01x y y y y ==→代入得,1201()3Lydx y x dy y dy x +-==⎰⎰.(3)分两段积分,1L :,0,:01x x y x ==→代入得,1()0L ydx y x dy x +-=⎰;2L :1,,:01x y y y ==→代入得,2101()(1)2L ydx y x dy y dy x +-=-=-⎰⎰; 所以,1()2L ydx y x dy x +-=-⎰.4.曲线的参数方程为2,,:11x x y x x ==-→,曲线的方向向量为(1,2)x ,从而2212cos ,cos 1414x xxαβ==++,所以2L x ydx xdy -⎰22(2)14Ly x ds x-=+⎰.5.根据对坐标的曲线积分的物理意义,所求的功为2L x dy -=⎰815-.习题9.3 1.(1)10;(2)2m n ==;(3)1,1a b =-=.2.只需证明Q x∂=∂Py ∂∂即可. 3.(1)如图,1[(1cos )(sin )](1)5x x LDe dx y y dy e ydxdy e y π---=-=--⎰⎰⎰.(2)因为Q x∂=∂P y ∂∂,由格林公式,所以202yy L x e dx e dy x +=⎰. 4.(1)如图,2222()(),x y x y P Q x y x y +--==++,Q x∂=∂222222()P x y xyy x y ∂--=∂+,又由于积分范围不包括原点,由格林公式,所以22()()0C x y dx x y dyx y +--=+⎰;(2)如图,由于积分范围包括原点,所以不能直接利用格林公式,曲线的参数方程为: cos ,sin x a y a θθ==,:02θπ→,代入得,22()()2C x y dx x y dyx y π+--=-+⎰.(3)如图,由于积分范围包括原点,所以不能直接利用格林公式,在C 包围的内部区域增加一条圆形曲线1C :222x y a +=,方向为顺时针,所以11222222()()()()()()022CC C C x y dx x y dyx y dx x y dy x y dx x y dyx y x y x y ππ++--+--+--=-+++=-=-⎰⎰⎰5.只需证明Q x∂=∂Py ∂∂即可. 习题9.41.(1)10a ;(2)221()()x x y z ∂∂++∂∂;(3)42a π;(4)11110π;(5)122π+. 2.(1)22111122xyD dS dxdy zx yπ∑=+=+⎰⎰⎰⎰(积分区域如图)(2)根据对称性(也可以化成二重积分之后,根据对称性), 可知:0xdS ∑=⎰⎰,0ydS ∑=⎰⎰;所以,原式2222220222xya h D a zdS a x y dxdy d a d a x yπθρρ-∑==--⋅==--⎰⎰⎰⎰⎰⎰22()a a h π-.3.根据对称性,0,0x y ==,32221zdSa az a dSππ∑∑===⎰⎰⎰⎰(分子的求法同上题),所以曲面的重心坐标为(0,0,)2a.习题9.5 1.(1)0;(2)第二类曲面积分Pdydz Qdzdx Rdxdy ∑++⎰⎰化成第一类曲面积分是(cos cos cos )P Q R dS αβγ∑++⎰⎰,其中,,αβγ为有向曲面∑上点(,,)x y z 处的法向量的方向角.2.积分曲面如图所示,阴影部分为右侧,记为1∑,关于Ozx 面对称的为左侧,由于该曲面在Oxy 面上的投影为曲线,故(1)0z dxdy ∑+=⎰⎰,因此,()I y dzdx ∑=-⎰⎰,由对称性可知12()2()24zxD I y dzdx y dzdx x dzdx ∑∑=-=-=--⎰⎰⎰⎰⎰⎰,zx D 如图所示. 所以,222222222222224242(2)444848zxxD I x dzdx dx x dz x x dxx dx x dx π----=--=--=---=--=--=-⎰⎰⎰⎰⎰⎰⎰3.利用两类曲面积分之间的联系来做. 由于∑为平面1x y z -+=在第四卦限部分的上侧,所以,单位法向量为1(1,1,1)3-,从而I =[][][](,,)2(,,)(,,)f x y z x dydz f x y z y dzdx f x y z z dxdy ∑+++++⎰⎰[][][]1(,,)2(,,)(1)(,,)3f x y z x f x y z y f x y z z dS ∑=+++-++⎰⎰111()233x y z dS dS ∑∑=-+==⎰⎰⎰⎰. 4.利用两类曲面积分之间的联系来做. 由于∑为曲面221z x y =--在第一卦限的部分取上侧,所以,单位法向量为221(2,2,1)144x y x y ++,从而222222221(2)144144144xy I xy zdS x yx yx y∑=++++++++⎰⎰22222211221442144144xyD dS x y dxdy x yx yπ∑==++=++++⎰⎰⎰⎰.习题9.61.(1)直接利用高斯公式,3xdydz ydzdx zdxdy dv Ω∑++==⎰⎰⎰⎰⎰81π.(2)如图,增加一个“盖子”1:2z ∑=,取上侧,则2(2)-2zx dydz zdxdy ∑+=⎰⎰1122(2)2(2)2z x dydz zdxdy z x dydz zdxdy ∑+∑∑+--+-⎰⎰⎰⎰前一个积分使用高斯公式,结果为0;而12(2)20416xyD z x dydz zdxdy dxdy π∑+-=-=-⎰⎰⎰⎰,从而,原积分16π=.2.(1)由于曲线L 上2z =,故20L yz dz =⎰,所以233LLydx xzdy yz dz ydx xzdy -+=-⎰⎰,利用斯托克斯公式,得233(3)5xyLLD ydx xzdy yz dz ydx xzdy z dxdy dxdy ∑-+=-=--=-=⎰⎰⎰⎰⎰⎰20π-.(2)可求出交线L 的方程是222,3z x y =+=,故()0Lx y z dz ++=⎰,所以222()()Lx ydx x y dy x y z dz +++++⎰222()Lx ydx x y dy =++⎰,利用斯托克斯公式,得,22222()(2)(2)xyLD x ydx x y dy x x dxdy x xdxdy ∑++=-=-⎰⎰⎰⎰⎰,利用对称性,20xyD xdxdy =⎰⎰,22xy xyD D x dxdy y dxdy =⎰⎰⎰⎰,所以2222220011()22xyxy D D x dxdy x y dxdy d d πθρρρπ=+==⎰⎰⎰⎰⎰⎰, 原积分π=-.高等数学A (下)习题册第十章参考答案习题10.1 1、(1)收敛 ; (提示:∵1111()(2)22n u n n n n ==-++,又∵111lim lim()1324(2)n n n S n n →∞→∞=+++⋅⋅+11111113113lim (1)lim ()2324222124n n nn n n →∞→∞=-+-++-=--=+++,∴原级数收敛.) (2)发散 . (提示:∵1n n ∞∞===∑,又∵lim n n n S →∞→∞=++(1n ++=∞,∴原级数发散.)2、(1)发散 ;(提示:级数为1111133n n nn ∞∞===∑∑,发散.)(2)收敛 .(提示:级数为112435nnn n ∞∞==⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑,收敛.)3、0x >或2x <-.(提示:1111(1)lim lim 11(1)n n n n nnu x u x x ρ++→∞→∞+===++,当1ρ<即111x <+时,解得0x >或2x <-,此时级数11(1)nn x ∞=+∑收敛,则原级数绝对收敛.)习题10.21、(1)收敛;(提示:∵3cos 433n n n nu +=<,而级数1141433n nn n ∞∞===∑∑收敛,∴原级数收敛.) (2)发散.(提示:∵1n n n→∞==,而级数11n n∞=∑发散,∴原级数发散.)2、(1)发散;(提示:∵111333(1)lim lim lim 113n n n n n n n nn u n n e u n e e n e ρ+++→∞→∞→∞+⋅===⋅=>+⋅,∴原级数发散.) (2)发散.(提示:∵11(1)!12lim lim lim !22n n n n n nnn u n n u ρ++→∞→∞→∞++====∞,∴原级数发散.)3、(1)收敛 ;(提示:1112(1)112222n n n n n n n ∞∞∞===+-⎛⎫=+- ⎪⎝⎭∑∑∑,∵由于1112n ρ==<,∴级数112n n ∞=∑收敛;又∵2112n ρ==-<,∴级数112nn ∞=⎛⎫- ⎪⎝⎭∑也收敛.故原级数收敛.)(2)发散 .(提示:∵ln 2lim 3n n n n nρ→∞===,又因为由洛必达法则得1ln ln lim lim 1lim 333n n n n n nnn →∞→∞→∞==031==,∴ln 22lim2113n n nρ→∞===>,故原级数发散.) 4、(1)绝对收敛 ; (提示:12211(1)111n n n n n -∞∞==-=++∑∑,因为22111n n <+,而级数211n n∞=∑收敛,所以级数121(1)1n n n -∞=-+∑收敛,故原级数绝对收敛.)(2)条件收敛 .(提示:显然1111(1)(1)n n n n n u ∞∞--==-=-∑∑为交错级数,其中n u =11nn u u -==<即1n n u u -<;②lim n n u →∞=0n n →∞==,故该交错级数收敛.又因为11(1)n n ∞-=-=∑1n ∞=∑,有lim lim (1n nn S n →∞→∞⎡⎤=++++⎣⎦1)n →∞==∞ ,则级数11(1)n n ∞-=-∑发散,故原级数条件收敛.)5、(1)提示:222n n n n a b a b +≤;(2)提示:22112n n n a a n a n n +=⋅≤.6、证明:只需证明正项级数1!nn a n ∞=∑(0a >)收敛,根据比值审敛法有11!lim lim[]lim 01(1)!1n n n n n n nu a n au n n a ρ++→∞→∞→∞==⋅==<++,因此正项级数1!n n a n ∞=∑(0a >)收敛,再由级数收敛的必要条件得lim 0n n u →∞=,即lim 0!nn a n →∞=,得证.习题10.3 1、(1)1R =,收敛域为[]1,1- . (提示:因为12211limlim1(1)n n n na n n a ρ+→∞→∞===+,所以收敛半径11R ρ==.当1x =时,原级数为211n n∞=∑,该级数收敛.当1x =-时,原级数为21(1)n n n ∞=-∑,该级数也收敛.因而该级数的收敛域为 [1,1]-.)(2)2R =,收敛域为()0,4 .(提示:令2(2)t x =-,则1,44n n nn n t u a n n ==⋅⋅,因为11111(1)4lim lim 144n n n n nn a n a n ρ++→∞→∞+⋅===⋅,所以收敛半径1114R ρ==,故原级数的收敛半径为12R R ==.则有 22x -<,即04x <<.当0x =时,原级数为11n n ∞=∑,该级数发散;当4x =时,原级数为11n n∞=∑,该级数也发散.因而原级数的收敛域为 (0,4).)2、1111211114()(),(2,2)222(2)12nn n n n n n n n nnx x S x x x x x x x x x x ∞∞∞----==='⎛⎫'=====∈- ⎪-⎝⎭-∑∑∑ 11111114(1)()()22222542n n n n n n n n S ∞∞-==-=-=-=-∑∑. 3、100111112(2)()(1)22(2)222212nn n n n n x x x x x ∞∞+==--==⋅=-=--+-+∑∑,((0,4))x ∈.习题10.4 1、解: 如左图所示,由狄利克雷充分条件可知,()f x 的 傅里叶级数在间断点(21)x k π=+(0,1,2,)k =±±处收 敛于()()2222f f πππππ-++--+==.在连续点(21),(0,1,2,)x k k π≠+=±±处()f x 的傅里叶级数收敛于()f x ,其中傅里叶系数为:00111()22a f x dx xdx xdx ππππππππ--==+=⎰⎰⎰, 001111()cos cos 2cos cos n a f x nxdx x nxdx x nxdx x nxdx πππππππππ--==+=⎰⎰⎰⎰2011sin ((1)1)(1,2)n xd nx n n n πππ==--=⎰ 001113()sin sin 2sin sin n b f x nxdx x nxdx x nxdx x nxdx πππππππππ--==+=⎰⎰⎰⎰10333cos cos (1)(1,2)n xd nx n n n n nπππππ+=-=-⋅=-=⎰所以()f x 的傅里叶级数为121(1)13()cos (1)sin 4n n n f x nx nx n n ππ∞+=⎛⎫--=++- ⎪⎝⎭∑ ((21),0,1,2,)x k k π≠+=±±2、31,23、解:(1)展开成正弦级数.对()f x 作奇延拓,得 ,(0,]2()0,0,(,0)2xx F x x x x ππππ-⎧∈⎪⎪==⎨⎪+⎪-∈-⎩.再周期延拓()F x 到(,)-∞+∞.易见0x =是一个间断点,在0x =处级数收敛于()2202ππ+-=. 函数()f x 在(0,]π处连续,傅里叶级数收敛于()f x ,且傅里叶系数为:0(0,1,2)n a n ==;0001211()sin sin sin sin (1,2)2n x b f x nxdx nxdx nxdx x nxdx n nπππππππππ--==⋅=-==⎰⎰⎰⎰故()(0)2xf x x ππ-=≤≤展开的正弦级数为: 11sin (0)2n x nx x nππ∞=-=<≤∑.(2)展开成余弦级数.对()f x 作偶延拓,得 ,[0,]2(),(,0)2xx F x x x ππππ-⎧∈⎪⎪=⎨+⎪∈-⎪⎩.再周期延拓()F x 到(,)-∞+∞.则()F x 在(,)-∞+∞内处处连续,且()(),[0,]F x f x x π≡∈. 则傅里叶系数为:0(1,2)n b n ==;0012()22x a f x dx dx πππππππ--===⎰⎰;000121()cos cos cos cos 2n x a f x nxdx nxdx nxdx x nxdx πππππππππ--===-⎰⎰⎰⎰21(1(1))(1,2)n n n π=--=; 故()(0)2xf x x ππ-=≤≤展开的余弦级数为: 211(1)cos (0)24nn xnx x n ππππ∞=---=+≤≤∑.。
高等数学XX大学第三版下册课后习题及答案

sz 42 (3)2 (5 5)2 5 .
6.在 z 轴上,求与两点 A(-4,1,7)和 B(3,5,-2)等距离的点. 解:设此点为 M(0,0,z),则
解得 z 14 9 14
即所求点为 M(0,0, ).
9
7.试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.
(1)| (a b) (a b) | a a a b b a b b || 2(a b) |
(2)| (3a b) (a 2b) || 3a a 6a b b a 2b b || 7(b a) |
27.求垂直于向量 3i-4j-k 和 2i-j+k 的单位向量,并求上述两向量夹角的正弦.
由①及②可得: a b a b 1 (a b)2 1 | a |2 | b |2 2 | a |2| b |2 4
又 a b 1 | b |2 0 ,所以 cos a b 1 ,
2
| a || b | 2
故 arccos 1 π . 23
解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k
在 x 轴上的投影 ax=13,在 y 轴上分向量为 7j.
17.解:设 a {ax , ay , az} 则有
求得
ax
1 2
.
设 a 在 xoy 面上的投影向量为 b 则有 b {ax , ay , 0}
15.求出向量 a=i+j+k,b=2i-3j+5k 和 c=-2i-j+2k 的模,并分别用单位向量 ea , eb , ec 来表达向量 a,b,c.