2010年樵北中学北师大版八年级期末模拟测试数学试卷

合集下载

北师大版八年级数学上册期末模拟考试附答案

北师大版八年级数学上册期末模拟考试附答案

北师大版八年级数学上册期末模拟考试附答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .25.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在Rt △PQR 中,∠PRQ =90°,RP =RQ ,边QR 在数轴上.点Q 表示的数为1,点R 表示的数为3,以Q 为圆心,QP 的长为半径画弧交数轴负半轴于点P 1,则P 1表示的数是( )A .-2B .-22C .1-22D .22-19.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2x 1-有意义,则x 的取值范围是 ▲ .3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:()22111a a a ⎛⎫ ⎪⎝⎭-+÷++,其中21a =.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 13分,求3a-b+c 的平方根.4.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.5.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 …售价x(元/千…22.6 24 25.2 26 …克)(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、A6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、x1≥.3、如果两个角互为对顶角,那么这两个角相等4、()()2a b a b++.5、36、13 2三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、11a+,23、3a-b+c的平方根是±4.4、(1)略(2)略5、(1)y=x+1;(2)C(0,1);(3)16、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

北师大版八年级数学上册期末模拟考试及答案

北师大版八年级数学上册期末模拟考试及答案

北师大版八年级数学上册期末模拟考试及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( ) A .6m <-且2m ≠ B .6m >且2m ≠ C .6m <且2m ≠- D .6m <且2m ≠3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=100 8.如图,在ABC ∆中,D 、E F 、分别在AB BC AC 、、上,且EF ∥AB ,要使DF∥BC,只需再有下列条件中的()即可.A.12∠=∠B.1DFE∠=∠C.1AFD∠=∠D.2AFD∠=∠9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1二、填空题(本大题共6小题,每小题3分,共18分)1273=________.2.因式分解:22ab ab a-+=__________.33x-在实数范围内有意义,则 x 的取值范围是________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD=_____.6.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再求值:()()22322323a a b ab a a b ---,其中a ,b 满足()2130a b a b +-+--=3.已知5a ﹣1的算术平方根是3,3a+b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a+4b 的平方根.4.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、A6、A7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、()21a b -3、x ≥34、8.5、36、AC=DF (答案不唯一)三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、483、(1)a=2,b=3(2)±44、(1)DE=3;(2)ADB S 15∆=.5、略.6、(1) 2000元;(2) A 型车20辆,B 型车40辆.。

北师大版八年级下册期末模拟考试数学试卷(含答案解析).doc

北师大版八年级下册期末模拟考试数学试卷(含答案解析).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】八年级期末质量检测数学(BS)本试卷满分120分,时间90分钟.一、 选择题(共8小题,每小题3分,共24分) 1.若x y >,则下列式子中错误的是( ) A.33x y ->- B.33x y> C.33x y +>+D.33x y ->-2.下列因式分解正确的是( ) A.()()2444x x x -=+-B.()22211x x x +-=- C.()()222211x x x -=+-D.()22212x x x x -+=-+3.如图,ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件可以使ABE CDF ∆≅∆,则下列条件不成立的是( )A.AE CF =B.BE FD =C.BF DE =D.12∠=∠4.下列式子中,x 可以取2和3的是( )A.242x x -- B.13x - 2x - 3x -5.若关于x 的方程4233x mx x +=+--有增根,则m 的值是( ) A.7B.3C.5D.06.如图,如果把ABC ∆的顶点A 先向下平移3格,再向左平移1格到达A '点,连接A B ',则线段A B '与线段AC 的关系是( )A.垂直B.平行C.平分D.平分且垂直7.如图,直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +<-的解集在数轴上表示正确的是( )A. B.C.D.8.如图,ABCD 中,延长AB 到E ,使BE AB =,连接DE 交BC 于F ,则下列结论不一定成立的是( )A.E CDF ∠=∠B.EF DF =C.2AD BF =D.2BE CF =第Ⅱ卷(非选择题,共96分)二、填空题(共7小题,每小题3分,共21分)9.铁路部门规定旅客免费携行李箱的长宽高之和不超过160cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为20cm ,长与宽之比为3:2,则该行李箱宽度的最大值是_______.10.把多项式25x mx ++的因式分解成()()51x x ++,则m 的值为________.11.计算:111aa a+--的结果是________. 12.过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是________.13.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()4,3D 在边AB 上,以C 为中心,把CDB ∆旋转90︒,则旋转后点D 的对应点D '的坐标是________.14.如图,ABC ∆中,AB AC =,120A ∠=︒,AB 的垂直平分线分别交BC 、AB 于M 、N ,若1MN =,则BC =________.15.如图,ABC ∆中,AB AC =,40A ∠=︒,点D 为AC 边上一动点(不与点A 、C 重合),当BCD ∆为等腰三角形时,ABD ∠的度数是________.三、解答题(共9小题,共75分)16.先化简,再求值:215816111x x x x x -+⎛⎫+-÷⎪--⎝⎭,其中2x =-. 17.如图,已知ABC ∆的三个顶点的坐标分别为()2,3A -、()6,0B -、()1,0C -.(1)请直接写出点A 关于原点对称的点的坐标;(2)将ABC ∆绕坐标原点O 逆时针旋转90︒得到111A B C ∆,画出111A B C ∆,直接写出点A 、B 的对应点的点1A 、1B 坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.18.解方程:()()31112xx x x-=--+.19.解不等式组3281522x xx x--≤⎧⎪⎨->⎪⎩①②并求其整数解的和.解:解不等式①,得_______;解不等式②,得________;把不等式①和②的解集在数轴上表示出来:∴原不等式组的解集为________,由数轴知其整数解为________,和为________.在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结...合的思想....”,同学们要善于用数形结合的思想.......去解决问题.20.已知:如图ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形找出一对全等三角形:∆_______≅∆_______,并加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?21.学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅又单独整理了20分钟才完成任务. (1)求王师傅单独整理这批实验器材需要多少分钟;(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?22.如图,在ABC∆中,90ACB∠=︒,30A∠=︒,AB的垂直平分线分别交AB和AC于点D、E.求证:13CE AC=.23.如图,ABC ∆,D 、E 分别是AB 、AC 的中点,图①是沿DE 将ADE ∆折叠,点A '落在BC 上,图②是绕点E 将ADE ∆顺时针旋转180︒.图①图②(1)在图①中,判断DBA '∆和ECA '∆形状.(填空)_____________________________________________________________________________ (2)在图②中,判断四边形DBA D ''的形状,并说明理由.24.类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整. 已知ABC ∆.图①图②图③(1)观察发现如图①,若点D 是ABC ∠和ACB ∠的角平分线的交点,过点D 作//EF BC 分别交AB 、AC 于、E ,F 填空:EF 与BE 、CF 的数量关系是_______________________________________________________.(2)猜想论证如图②,若D 点是外角CBE ∠和BCF ∠的角平分线的交点,其他条件不变,填:EF 与BE 、CF 的数量关系是_______________________________________________________.(3)类比探究如图③,若点D 是ABC ∠和外角ACM ∠的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.八年级第一学期期末质量检测参考答案部分一、选择题 1-5:DCACA6-8:DCD二、填空题 9.56cm 10.611.1-12.913.()1,0-或()1,814.615.15︒或30︒二、解答题 16.解:原式()()()21115114x x xx x +---=⋅=--()()()24414144x x xx x xx +--+⋅=---. 当2x =-时,原式()241423-+==--.17.解:(1)()2,-3 (2)()13,2A --,()10,6B -(3)()5,3--,()7,3-,()3,318.解:去分母,得()()()2123x x x x +--+=,去括号,得22223x x x x +--+=,移项并合并同类项,得1x =.经检验1x =是原分式方程的增根.因此原分式方程无解. 19.解:1x ≥- 2x <12x -≤< 1-,0,1 020.解:(1)DOE BOF四边形ABCD 是平行四边形,∴//AD BC ,∴EDO FBO ∠=∠.O 是BD 的中点,∴OD OB =.又DOE BOF ∠=∠,∴DOE BOF ∆≅∆.(答案不唯一)(2)BOF ∆可由DOE ∆绕点O 旋转180︒得到. 21.解:(1)设王师傅单独整理这批实验器材需要x 分钟. 根据题意,得1112020140x x ⎛⎫++⋅=⎪⎝⎭,解得80x =.经检验:80x =是原分式方程的解.(2)设李老师至少要工作y 分钟,根据题意,得11304080y ⎛⎫-+≤ ⎪⎝⎭. 解得25y ≥,∴李老师至少要工作25分钟. 22.证明:连接BE ,DE 为AB 边为垂直平分线,∴BE AE =.30A ∠=︒,90ACB ∠=︒,∴60ABC ∠=︒,∴30EBA A ∠=∠=︒,在Rt BCE ∆中,30EBC ABC EBA ∠=∠-∠=︒,∴1122EC BE AE ==, ∴13CE AC =. 23.解:(1)DBA '∆和ECA '∆均为等腰三角形. (2)四边形DBA D ''为平行四边形. 理由:D 、E 分别是AB 、AC 的中点,∴//DE BC ,12DE BC =. 由旋转的性质可知ED DE '=,∴DD BA ''=,∴四边形DBA D ''是平行四边形.24.解:(1)EF BE CF =+(2)EF BE CF =+ (3)不成立.EF BE CF =-.//ED BC ,∴CBD BDE ∠=∠.BD 平分ABC ∠,∴EBD CBD ∠=∠,∴EBD BDE ∠=∠,∴BE DE =.同理:CF DF =,∴EF BE CF =-.中考数学知识点代数式 一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

北师大版八年级上册数学期末模拟考试(及参考答案)

北师大版八年级上册数学期末模拟考试(及参考答案)

北师大版八年级上册数学期末模拟考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-4.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或105.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.若23(1)0m n -++=,则m -n 的值为________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、A7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、22()1y x =-+3、44、145、36、8三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、x+2;当1x =-时,原式=1.3、(1)略(2)1或24、(1)略;(2)4.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

北师大版八年级数学上册期末模拟检测试题(含答案).docx

北师大版八年级数学上册期末模拟检测试题(含答案).docx

八年级数学上册期末模拟检测试题班级: __________姓名: __________一、单选题(共10 题;共 30 分)1. 在平面直角坐标系中,点(1, 3)位于第()象限。

A.第一象限B.第二象限 C.第三象限 D.第四象限2. 如果一组数据 2, 4, x, 3, 5 的众数是 4,那么该组数据的平均数是().A.5. 2B.4. 6C.4D.3. 63. 对于命题“如果∠ 1+∠ 2=180°,那么∠ 1≠∠ 2”,能说明它是假命题的反例是()A.∠ 1=150°,∠ 2=30°B. ∠ 1=60°,∠ 2=60°C.∠ 1=∠ 2=90°D.∠ 1=100°,∠ 2=40°4. 已知点 P 关于 x 轴的对称点为( a, -2 ),关于 y 轴对称点为( 1, b),那么点P 的坐标为()A.( a, - b)B. (b, -a) C.( -2,1) D. ( -1, 2)5.如图,射线 OC的端点 O在直线 AB上, 1 的度数 x 比 2 的度数 y 的 2 倍多 10 度,则可列正确的方程组为()A. B. C. D.6. 已知,如果x与y互为相反数,那么()A. k=0B.k=-C. k=-D. k=7. 甲、乙两车从 A 地驶向 B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了 0.5h (甲车休息前后的速度相同),甲、乙两车行驶的路程y( km)与行驶的时间x( h)的函数图象如图所示.根据图象的信息有如下四个说法:①甲车行驶40 千米开始休息②乙车行驶 3.5 小时与甲车相遇③甲车比乙车晚 2.5 小时到到 B 地④两车相距50km 时乙车行驶了小时,其中正确的说法有()A. 1 个B.2个 C.3个 D. 4 个8. 下列根式中,最简二次根式是()A. B.C. D.9. 如图, AB∥ CD∥ EF,则下列各式中正确的是()A. ∠ 1=180°﹣∠ 3B. ∠1=∠ 3﹣∠2 C. ∠2+∠ 3=180°﹣∠ 1 D. ∠ 2+∠3=180° +∠ 110. 如图 1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、 S2、 S3;如图 2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、 S6。

北师大版八年级数学上册期末模拟考试【及参考答案】

北师大版八年级数学上册期末模拟考试【及参考答案】

北师大版八年级数学上册期末模拟考试【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是( )A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)3.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.124.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,56.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.37.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1x2-x的取值范围是________.2.已知2x+3y-5=0,则9x•27y的值为__________.m3﹣m2﹣2017m+2015=________.3.若m-201614.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行_______cm .三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:(1﹣11a -)÷2244a a a a -+-,其中23.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点E 处,FC 交AD 于F .(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE 交BC于点F,连接CE求证:四边形BECD是矩形.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C5、C6、A7、B8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x 2≥2、2433、40304、()()2a b a b ++.56三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、原式=2aa -=.3、(1)a ≥2;(2)-5<x <14、(1)略;(2)10.5、略6、(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.。

北师大版八年级数学上册期末模拟考试(及参考答案)

北师大版八年级数学上册期末模拟考试(及参考答案)

北师大版八年级数学上册期末模拟考试(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,236. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .39.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.计算:82-=_______.3.因式分解:2a 2﹣8=________.4.如图,平行四边形ABCD 中,CE AD ⊥于E ,点F 为边AB 中点,12AD CD =,40CEF ∠=︒,则AFE ∠=_________。

北师大版八年级上期末模拟数学试卷(含答案解析) (4)

北师大版八年级上期末模拟数学试卷(含答案解析) (4)

八年级上期末考试数学试题考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x 有意义的x 的取值范围是( ) A.x=1 B.x ≠1 C.x=-1 D.x ≠-1.3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1 B.0 C.x D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x += ④()()y 3-x 3x y 9-x 22y += A.1个 B.2个 C.3个 D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x 5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175° 12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度.14.因式分解:a -a 3= .15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A= .18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S . 你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC 是等边三角形,点D 在边AC 上(点D 不与点A ,C 重合),点E 是射线BC 上的一个动点(点E 不与点B ,C 重合),连接DE ,以DE 为边作等边△DEF ,连接CF.(1)如图1,当DE 的延长线与AB 的延长线相交,且点C ,F 作直线DE 的同侧时,过点D 作DG ∥AB ,DG 交BC 于点G ,求证:CF=EG ;(2)如图2,当DE 的反向延长线与AB 的反向延长线相交,且点C ,F 在直线DE 的同侧时,求证:CD=CE+CF ;(3)如图3,当DE 的反向延长线与线段AB 相交,且点C ,F 在直线DE 的异侧时,猜想CD 、CE 、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ;16.k >21且k ≠1;17.4或±4m 3;18.8. 三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分 解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD ,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 又∵AE ∥BF ,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE 和△BDF 中⎪⎩⎪⎨⎧=∠=∠=BFAE DBF A BDAC∴△ACE ≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x-12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=()22x x-11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分=2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯ ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a2+b2=3,ab=-1,∴S4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S1=1,S2=3,S3=4,S4=7,∴S1+S2=S3,S2+S3=S4猜想:S2-n +S1-n=Sn. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S3=4,S4=7,∴S5=S3+S4=4+7=11,∴S6=S4+S5=7+11=18,S7=S5+S6=11+18=29,∴S8=S6+S7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC是等边三角形,∴∠B=∠ACB=60°.⋯⋯⋯⋯⋯⋯1分∵DG∥AB,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末综合测试(二)
一、选择题(本大题共10个小题,每小题3分,共30分。

注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在括号里)
1.下列多项式中能用平方差公式分解因式的是( ) A 、22)(b a -+ B 、mn m 2052
- C 、22y x -- D 、92
+-x
2、某弹簧秤的称量范围是0 ~ 50N ,小明用它称一个重为x N 的物体,结果发现弹簧没有恢复原状,你估计这个物体的重力在什么范围?( )
A 0≤x ≤50
B 0 < x< 50
C x>50
D x ≥50 3. 若a<0,则下列不等式不成立的是 ( )
A . a+5<a+7
B .5a >7a
C .5-a <7-a
D .
7
5a a > 4.下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等。

其中真命题的
个数的是( )
A.1个
B.2个
C.3个
D.4个
5、如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有( )
A.1个
B.2个
C.3个
D.4

6.△ABC ∽△A B C ,且相似比为2:3,则它们的面积比等于( )
A 。

2:3 ;
B 。

3:2;
C 。

4:9;
D 。

9:4。

7.方程
1
2+=x m x 的解为增根,则增根可能是( ) A .x=2 B .x=0 C .x=-1 D .x=0 或x=-1
8.在比例尺为l :300000的某市地图上,A ,B 两地相距5cm ,则A 、B 之间的实际距离为( )
A .15km
B .1.5km
C .15000km
D .1500000km
9、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200是样本容量. 其中正确的判断有( )
A.1个
B.2个
C.3个
D.4个
10.如图示跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当点A 端落地时,∠OAC=
20,横板上下转动的最大角度(即∠OA A ')是( )
A .
80 B .
60 C .
40 D .
20
二、填空题(每小题3分,共15分)
11.如果b a +=8,ab =15,则a 2b +ab 2的值为 。

12. 跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得,他们的平均成绩都是5.68,甲的方差为
0.3, 乙的方差为0.4,那么成绩较为稳定的是 。

(填“甲”或“乙”)。

13.如图,将大“E ”和小“E ”放在同一桌面上,测得l 1为3m, l 2为2m,大“E ”的高度b 1为30mm,则小“E ”的高度b 2为 mm.
14、如图,已知一次函数y = 3x + b 和y = ax - 3的图象交于点P( -2,-5) ,则根据图象可得不等式3x + b >ax - 3的解集是 .
15、如图,在△ABC 中,∠A=75o , ∠B=70o ,将∠C 折起,点C 落在△ABC 内部,已
知∠1=20o ,则∠2=_______。

三、解答题(每题6分,共30分)
16、解不等式组⎩⎨⎧>+<-0
63512x x 17、化简12
)1(44122++∙-÷++-x x x x x x
18.如图,已知CD 是∠ACB 的平分线,∠ACB = 500,∠B = 700,DE ∥BC ,求:∠EDC 和 ∠BDC 的度数。

19、如图9,在8⨯8的网格,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出△OAB 的一个位似图形,使两个图形以A 为位似中心,且所画图形与△OAB 的位似比为2:1。

第14题 O 桌面 第15题 第13题
20、某种植物适宜生长在温度为160C~200C的山坡上,已知山区海拔每升高100m气温就下降0.50C,现测得山脚的平均气温为220C,那么该种植物种在山的哪一部分为宜?
四、解答题(21、22、23每题8分,24题10分,25题11分,共45分)
21、甲、乙两位采购员同去一家饲料公司购买两次饲料。

两次饲料的价格有所变化。

两位采购员的购货方式也有不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料。

设两次购买的饲料单价分别为m元/千克、n元/千克(m、n是正整数,且m≠n),请问:
①分别写出甲、乙所购饲料的平均单价;
②请比较甲、乙的平均单价哪个比较便宜。

22、将某雷达测速区监测到的某路段一组汽车的时速数据整理,得到其频数及频率如下表(未完成) :
注:30~40为时速大于等于30千米而小于40千米,其他类同.
(1)请你把表中的数据填写完整;(4分)
(2)补全频数分布直方图;(2分)
(3)如果汽车时速不低于60千米即为违章,请你估计6月10日经过此路段约2万辆车辆中违章车辆约有多少辆? (2分)
23、如图,将两个全等的等腰直角三角形摆成如图所示的样子(顶点A
①请在图中找出三对相似但不全等的三角形。

②你认为AE2=ED•EB吗?请说明,理由。

24、甲、乙两家旅行社为了吸引更多的顾客,分别推出了赶某地旅游的团体优惠办法。

甲旅行社的优惠办法是:买4张全票,其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的
4
3
优惠。

已知这两家旅行社的原价均为每人100元,那么随着团体人数的变化,哪家旅行社的收费更优惠?
25、如图1,在∠A 内部有一点P ,连接BP 、CP ,请回答下列问题: ①求证:∠P=∠1+∠A+∠2
②如图2,利用上面的结论,你能求出五角星五个“角”的和吗?
③如图3,如果在∠BAC 间有两个向上突起的角,请你根据前面的结论猜想∠1、∠2、∠3、∠4、∠5、∠A 之间有什么等量关系,并说明理由。

相关文档
最新文档