(完整版)北师大版八年级上数学期末测试题及答案

合集下载

北师大版八年级上册数学期末测试卷及含答案完整版(名师推荐)

北师大版八年级上册数学期末测试卷及含答案完整版(名师推荐)

北师大版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若,是方程ax+by=6的两组解,则a,b的值为( )A.4,2B.2,4C.-4,-2D.-2,-42、在平面直角坐标系中,点(-1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限3、已知等腰三角形的一个内角为40°,则它的顶角为()A.40°B.100°C.40°或100°D.70°或50°4、函数y=中自变量x的取值范围是()A.x>4B.x≥4C.x≤4D.x≠45、已知一次函数y=kx+b,y随x的增大而减小,那么反比例函数满足()A.当x>0时,y>0B.y随x的增大而增大C.图象分布在第一、三象限D.图象分布在第二、四象限6、下列说法正确的是()A.7是49的算术平方根,即=±7B.7是(﹣7)2的平方根,即=7 C.±7是49的平方根,即±=7 D.±7是49的平方根,即=±77、如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒B点P位于点C的位置,……,则第2017秒点P所在位置的坐标为()A.(,)B.(- , )C.(0,﹣1)D.(,- )8、设min{ a,b }表示a,b这两个数中的较小的一个,如min{-1,1}= -1,min{3,2}=2则关于x的一次函数y=min{x,3x-4}可以表示为()A.y=xB.y=3x-4C.D.9、一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为()A.12cmB. cmC. cmD. cm10、一杯水越晾越凉,下列图像中可表示这杯水的水温T(℃)与时间t(分)的函数关系的是()A. B. C. D.11、在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8mB.9.7m,9.7mC.9.8m,9.9mD.9.8m,9.8m12、小梁报名参加了男子羽毛球双打,当他离开教室不远时发现拍子带错了.于是以相同的速度折返回去,换好拍子之后再花了一点时间仔细检查其他装备,这个时候广播里催促羽毛球双打选手尽快入场,小梁快步跑向了比赛场地.则小梁离比赛场地的距离y与时间t之问的函数关系的大致图象是()A. B. C.D.13、如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°14、矩形的两边长分别是3和5,则它的对角线长是()A.4B.6C.D.715、下列函数是一次函数的是( )A. B. C. D.二、填空题(共10题,共计30分)16、已知:,则x+y+z=________.17、⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是________.18、如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为________.19、已知数据: ,其中无理数出现的频率是________.20、两块不同的三角板按如图所示摆放,两个直角顶点C重合,,.接着保持三角板ACD不动,将三角板CBE绕着点C旋转,但保证点E在直线AC的上方,若三角板CBE有一条边与斜边AD平行,则∠ACE=________.21、如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为________22、一次函数y=2x﹣3+b中,y随着x的增大而________ ,当b=________ 时,函数图象经过原点.23、如图,在平面直角坐标系中,点A(﹣3,0)、点B(0,3),点E在OB 上,将△ABE绕点E顺时针旋转90°得到△A'B'E,则A'B'的值为________.24、如图,函数y=ax+b和y=k x的图象交于一点,则二元一次方程组的解是________.25、将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为________.三、解答题(共5题,共计25分)26、计算:.27、为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:甲:394,400,408,406,410,409,400,400,393,395乙:402,404,396,403,402,405,397,399,402,398整理数据:表一频数种类甲乙质量()________ 00 33 10 ________________ 13 0分析数据:表二种类甲乙平均数401.5 400.8中位数________ 402众数400 ________方差36.85 8.56得出结论:包装机分装情况比较好的是________(填甲或乙),说明你的理由.28、设2+ 的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.29、如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2 ,CD=4,BC=8,求四边形ABCD的面积.30、已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|参考答案一、单选题(共15题,共计45分)1、A2、B4、B5、D6、B7、A8、D9、C10、D11、B12、A13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级(上)期末数学试卷(含答案) (共四套)

北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。

) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。

C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。

2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。

)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。

北师大版八年级(上)期末数学试卷(含解析)

北师大版八年级(上)期末数学试卷(含解析)

北师大版八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、173.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+45.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.227.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,38.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<610.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是.12.若y=3x n﹣1是正比例函数,则n=.13.若P(a﹣2,a+1)在x轴上,则a的值是.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.双察下列等式:,,,…则第n个等式为.(用含n的式子表示)三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:18.(8分)计算:.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?20.(8分)求证:三角形三个内角的和等于180°.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b分析数据:平均数中位数众数80m n请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】解:无理数是,故选:C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、17【分析】分别求每个选项中数字的平方,根据其中两个数字的平方和等于第三个数字即可解题.【解答】解:22+42≠62,故A错误;22+32≠42,故B错误;52+72≠122,故C错误;82+152=172,故D正确;故选:D.【点评】本题考查了勾股数的计算,其中2个数字的平方和等于第三个数字的平方,则这3个数字为勾股数.3.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°【分析】根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.【解答】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°,北纬42°可以确定一点的位置,故选项D正确,故选:D.【点评】本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置.4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+4【分析】直接利用二次根式的定义分别分析得出答案.【解答】解:A、3﹣π<0,则3﹣a不能作为二次根式被开方数,故此选项错误;B、a的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;C、a2+1一定大于0,能作为二次根式被开方数,故此选项正确;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;故选:C.【点评】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.5.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【解答】解:∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A、∵当x=2,y=4时,2k+3=4,解得k=0.5>0,∴此点符合题意,故本选项错误;B、∵当x=﹣1,y=2时,﹣k+3=2,解得k=1>0,∴此点符合题意,故本选项错误;C、∵当x=5,y=1时,5k+3=1,解得k=﹣0.4<0,∴此点不符合题意,故本选项正确;D、∵当x=﹣1,y=﹣4时,﹣k+3=﹣4,解得k=7>0,∴此点符合题意,故本选项错误.故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.22【分析】求出确定总人数,再求出被遮盖的数即可.【解答】解:由题意,总人数=6÷25%=24(人),∴被遮盖的数=24﹣5﹣6﹣4=9(人),故选:B.【点评】本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,3【分析】把代入方程组,即可解答.【解答】解:把代入方程组得:解得:故选:B.【点评】本题主要考查了二元一次方程组的解,解题的关键是用代入法进行求解.8.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等【分析】根据补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质判断即可.【解答】解:同角的补角相等,A是真命题;相等的角不一定是对顶角,B是假命题;三角形的一个外角大于任何一个与它不相邻的内角,C是假命题;两条平行线被第三条直线所截.内错角相等,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<6【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.10.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③【分析】根据正比例函数和一次函数的性质判断即可.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选:C.【点评】此题考查一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若y=3x n﹣1是正比例函数,则n=2.【分析】根据正比例函数的定义可以列出关于n是方程n﹣1=1,据此可以求得n的值.【解答】解:∵y=3x n﹣1是正比例函数,∴n﹣1=1,∴n=2,故答案是:2.【点评】本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.13.若P(a﹣2,a+1)在x轴上,则a的值是﹣1.【分析】直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【解答】解:∵P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故答案为:﹣1.【点评】此题主要考查了点的坐标,正确掌握x轴上点的坐标特点是解题关键.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为6.【分析】根据平均数的定义计算即可.【解答】解:==6故答案为6.【点评】本题考查方差,平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为45°.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16.双察下列等式:,,,…则第n个等式为=.(用含n的式子表示)【分析】探究规律后,写出第n个等式即可求解.【解答】解:,,,…则第n个等式为=.故答案为:=.【点评】本题考查算术平方根的定义,解题的关键是探究规律,利用规律解决问题,属于中考常考题型.三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:【分析】利用加减消元法求解可得.【解答】解:①+②,得:5x=5,解得:x=1,将x=1代入①,得:3+y=6,解得y=3,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)计算:.【分析】先根据二次根式的除法法则运算,再利用平方差公式计算,然后合并即可.【解答】解:原式=﹣+4﹣5=﹣﹣1=﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设官有x人,兵有y人,依题意,得:,解得:.答:官有200人,兵有800人.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)求证:三角形三个内角的和等于180°.【分析】画出图形,写出已知,求证,过点A作直线MN∥BC,根据平行线性质得出∠MAB=∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.【解答】已知:△ABC,如图:求证:∠A+∠B+∠C=180°证明:过点A作直线MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换),即:三角形三个内角的和等于180°.【点评】本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【分析】(1)根据题意和函数图象中的数据,可以求得y与x的函数关系式;(2)将x=18代入(1)的函数解析式,求出相应的y的值,从而可以求得40天的销售量,然后与4500比较大小即可解答本题.【解答】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=﹣10x+300;(2)能在保质期内销售完这批蜜柚,理由:将x=18代入y=﹣10x+300,得y=﹣10×18+300=120,∵120×40=4800>4500,∴能在保质期内销售完这批蜜柚.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.【分析】(1)直接利用A点坐标画出平面直角坐标系进而利用关于y轴对称点的性质得出答案;(2)直接利用轴对称求最短路线的方法以及勾股定理得出答案.【解答】解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:点P,即为所求,点P的坐标为:(0,1),PC+PB'的最小值为:=2.【点评】此题主要考查了轴对称变换以及勾股定理,正确得出对应点位置是解题关键.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b 分析数据:平均数中位数众数80m n 请根据以上提供的信息,解答下列问题:(1)填空:a=5,b=4;m=81,n=81;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【解答】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)500×=300(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点评】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC==,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC =AB×CE=.【解答】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴Rt△BCE中,BC==,设AE=x,则AB=x+5,∵Rt△ACE中,AC2=AE2+CE2,Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=,∴S=AB×CE=(+5)×4=.△ABC【点评】本题主要考查了折叠问题,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.【分析】(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,即可求解;(3)证明△ACO≌△ADB(SAS),则OB=BD=4,而∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,即可求解.【解答】解:(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,故点A的坐标为(2,2);(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,直线OB的表达式为:y=0,而k>0,故:k的取值范围为:0<k≤;(3)如下图所示,连接BD,∵△OAB是等边三角形,∴AO=AB,∵△ADC为等边三角形,∴AD=AC,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB,∴△ACO≌△ADB(SAS),∴OB=BD=4,∴∠AOB=∠ABD=60°,∴∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,故直线BD表达式的k值为tan60,设直线BD的表达式为:y=x+b,将点B(4,0)代入上式并解得:b=﹣4,故:直线BD的表达式为:y=x﹣4.【点评】本题考查的是一次函数的综合运用,涉及到三角形全等、解直角三角形等知识,其中(3)利用三角形全等,确定直线BD的倾斜角本题的难点.。

2023-2024学年北师大版数学八年级上册期末测试卷(含答案)

2023-2024学年北师大版数学八年级上册期末测试卷(含答案)

期末测试卷(满分120分,时间90分钟)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的)1.4 的算术平方根是( )A.2B.-2C.±2 D .±22.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为( )A.4 B.8 C.16 D.643.在实数 ―15,3―27,π2,16,8,中,无理数的个数为( )A.1B.2C.3D.44.将直角坐标系中的点(-1,-3)向上平移4个单位,再向右平移2个单位后的点的坐标为( )A.(3,-1) B.(-5,-1) C.(-3,1) D.(1,1)5.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A. y=2x+4 B. y=3x--1 C. y=-3x+1 D. y=-2x+46.估算 24+3的值是( )A.在5与6之间B.在6与7 之间C.在7 与8之间D.在8 与9之间7.如图,将直尺与含 30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )A.30° B.40° C.50° D.60°8.小明家1至 6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( ) A.众数是6 B.中位数是5 C.平均数是5 D.方差是 439.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为( )10.下列命题中,是真命题的是( )A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形 D .12是最简二次根式11.关于x,y 的方程组 {x +my =0,x +y =3的解是 {x =1y =,其中y 的值被盖住了.不过仍能求出m ,则m 的值是( )A .―12 B. 12 C .―14 D .1412.如图,正方形网格中的△ABC,若每个小方格边长都为1,则 △ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上答案都不对二、填空题(本大题共6小题,每小题4分,共24分.本题要求把正确结果填在规定的横线上,不需要解答过程)13.若点 M(a,-1)与点 N(2,b)关于y 轴对称,则a+b 的值是 .14.若关于x ,y 的二元一次方程组 {x +y =3k ,x ―y =k 的解也是二元一次方程 x +2y =8的解,则 k 的值为15.已知一组数据1,2,3,5,x ,它的平均数是3,则这组数据的方差是 .16.写出“全等三角形的面积相等”的逆命题 .17.如图,Rt△OA ₀A ₁ 在平面直角坐标系内, ∠OA₀A₁=90°,∠A₀OA₁=30°,以 OA₁为直角边向外作Rt△OA ₁A ₂,使 ∠OA₁A₂=90°,∠A₁OA₂=30°,,以OA ₂为直角边向外作 Rt △OA₂A₃,使 ∠OA₂A₃=90°, ∠A₂OA₃=30°,,按此方法进行下去,得到 RtOA 3A 4,RtOA 4A 5,⋯,RtOA 2017A 2018,若点 A₀(1,0),则 点 A ₂₀₁₈的横坐标为 .18.如图,在 △ABC 中, AB =AC ,D 、E 两点分别在AC 、BC 上,BD 是 ∠ABC 的平分线, DE‖AB ,若 BE = 5cm ,CE=3c m,则 △CDE 的周长是 .三、解答题(本大题共8小题,满分60分.解答应写出文字说明、证明过程或演算步骤)19.(6分)计算: (1)48―27+13; (2)8+182―(32―1)220.(6分)若a,b为实数,且b=a2―1+1―a2+aa+1,求―a+b―3的值.21.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点 E 在直线DF 上,点 B 在直线AC 上,∠1=∠2,∠3=∠4.求证:∠A=∠F.证明:∵∠1=∠2(已知),∠2=∠DGF( ),∴∠1=∠DGF(等量代换),∴∥ ( ),∴∠3+∠=180°(),又∵∠3=∠4(已知),∴∠4+∠C=180°(等量代换),∴∥ ( ),∴∠A=∠F( ).22.(8分)解方程组:(1){2x+5y=30,2x―5y=―10;(2){3x―y=5, x+2y=11.23.(8分)如图,一条直线分别与直线 BE、直线CE、直线 CF、直线 BF 相交于点A,G,D,H且∠1=∠2,∠B=∠C.(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.24.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25.(8分))某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费 1 510 元.普通间/(元/人/天)豪华间/(元/人/天)贵宾间/(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各租了多少间?(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?26.(8分)如图,在平面直角坐标系中,过点 B(6,0)的直线AB 与直线OA 相交于点A(4,2),动点 M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点 M的坐标.期末测试卷1. A2. B3. B4. D5. D6. C7. C8. B9. C 10. B11. A 12. B 13.-3 14.2 15.2 16.面积相等的三角形全等 17.―220173102918.13 cm 19.解(1)原式 =433;(2).原式 =62―14.20.解因为a,b 为实数,且 a ²―1≥0,1―a ²≥0,所以 a ²―1= 1―a ²=0.所以a=±1.又因为a+1≠0,所以a=1.代入原式,得 b =12,所以 ―a +b ―3=―3.21.解∵∠1=∠2(已知),∠2=∠DGF(对顶角相等),∴∠1=∠DGF(等量代换),∴BD ∥C E(同位角相等,两直线平行),∴∠3+∠C=180°(两直线平行,同旁内角互补).又∵∠3=∠4(已知),∴∠4+∠C =180°(等量代换),∴DF ∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解(1){x=5,4,(2,y ₁=3,23.解 (1)CE‖BF ,AB‖CD .理由:∵∠1=∠2, ∴CE‖FB , ∴∠C =∠BFD . ∵∠B =∠C , ∴∠B =∠BFD ,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.24.解 (1)x g =(83+79+90)÷3=84, x 2=(85+80+75)÷3=80,x y 3=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)由该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,则甲淘汰.乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3.故乙将被录取.25.解(1)设三人间普通客房租了x 间,双人间普通客房租了y 间.根据题意得{3x +2y =50,50×50%×3x +70×50%×2y =1510,解得 {x =8,y =13.因此,三人间普通客房租了8间,双人间普通客房租了13间.(2)(50-x)根据题意得:y=25x+35(50-x),即y=-10x+1750.(3)不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元.26.解(1)设直线AB 的解析式是y=kx+b,根据题意得: {4k +b =2,6k +b =0,解得: {k =―1,b =6.则直线的解析式是:y=-x+6.(2)在y=-x+6 中,令x=0,解得:y=6,S AAC =12×6×4=12.(3)设OA 的解析式是y=mx,则4m=2,解得: m =12,则直线的解析式是: y =12x ,∵当△OMC 的面积是△OAC 的面积的 14时,∴M 的横坐标是 14×4=1,在 y =12x 中,当x=1时, y =12,则M 的坐标是 (1,12);在y=-x+6中,x=1则y=5,则M 的坐标是(1,5).则M 的坐标是: M 1(1,12)或M ₂(1,5).。

北师大版数学八年级上学期《期末检测试题》含答案解析

北师大版数学八年级上学期《期末检测试题》含答案解析
∴ =180°-∠ADE=
故选D.
[点睛]此题主要考查三角形的角度求解,解题的关键是熟知三角形的外角定理与等腰三角形的性质.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
故选:C.
[点睛]本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.
2.下列实数是无理数的是()
A. B. C. D.0.1010010001
[答案]C
[解析]
[分析]
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
9.下列命题是真命题的是()
A.如果 ,那么
B.0的平方根是0
C.如果 与 是内错角,那么
D.三角形 一个外角等于它的两个内角之和
10.如图,在△ 中, 为 边上一点,以点 为圆心, 为半径画弧,交 的延长线于点 ,连接 .若 , ,则 的度数为()
A. B. C. D.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()

北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每小题3分,共36分。

每小题只有一个选项符合题目要求。

1.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-12.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√24.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )5.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-36.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是( )A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x8.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=39.已知方程组{2x+y=1,kx+(k−1)y=19的解满足x+y=3,则( )A.k=-8 B.k=2C.k=8D.k=-210.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁11.如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A.60°B.30°C.40°D.70°12.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)二、填空题:本题共6个小题,每小题3分,共18分。

北师大版八年级数学上册期末试卷及答案【完美版】

北师大版八年级数学上册期末试卷及答案【完美版】

北师大版八年级数学上册期末试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .15.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2cm B.3cm C.4cm D.5cm 7.下列图形中,是轴对称图形的是()A.B. C.D.8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在等边三角形ABC 中,BD=CE,AD,BE 交于点F,则AFE ∠=____________;三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x+=-,求k的值.4.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、B6、B7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、1a 4<<2、-2 -33、a (a ﹣b )2.4、40°5、46、60°三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3xx ==.2、-3.3、(1)见解析;(2)k =84、(1)略(2-15、(1)略(2)等腰三角形,理由略6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

最新北师大版八年级数学上册期末考试及答案【完整版】

最新北师大版八年级数学上册期末考试及答案【完整版】

最新北师大版八年级数学上册期末考试及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .132.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1 C .﹣5 D .56.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .187.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,则这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为________. 4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分) 1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x -=---2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.已知a 23+,求229443a a a a --+-4.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5BD=,求OE的长.AB=,25.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.6.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、D5、A6、C7、D8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、22()1y x =-+3、145、46、12x y =⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、3、7.4、(1)略;(2)2.5、(1)略;(2)略.6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大八年级上数学期末测试题
一.填空题(每题3分,共30分) 1.实数 5757757775.0,27,25,2
,3333.0,11,7133π
-
(相邻两个5之间7的个数逐个加1)中,是无理数有 ; 2.如右图,数轴上点A 表示的数是 ;
3.
25
4
= ,±69.1= ,364-= ,16的平方根是 ; 4.写出二元一次方程53=+y x 的一组解是⎩

⎧==________
y x ;
5.菱形的两条对角线长为6和8,则菱形的面积是 ;
6.若一个多边形的内角和与外角和相等,则这个多边形是 边形,其内角和为 度; 7.P (-5,-6)到x 轴的距离是 ,到y 轴的距离是 ,到原点的距离是 ; 8.函数的图象13
2
+-
=x y 不经过 象限; 9.一组数据:1、2、4、3、2、4、2、5、6、1,它们的平均数为 ,众数为 ,
中位数为 ; 10.如图,直线L 是一次函数b kx y +=的图象, 则_______,==k b ,当______x 时,0>y ;
二、选择题:(每题3分,共21分)
11.判断下列几组数据中,可以作为直角三角形的三条边的是 ( ) (A ) 6,15,17 (B ) 7,12,15 (C ) 13,15,20 (D) 7,24,25 12.平方根等于它本身的数是 ( ) (A ) 0 (B ) 1,0 (C ) 0, 1 ,-1 (D) 0, -1 13.等腰梯形的上底与高相等,下底是上底的3倍,则底角的度数是 ( ) (A ) 300、1500 (B) 450、1350 (C) 600、1200 (D) 都是900 14.下列说法中错误的是 ( ) A 四个角相等的四边形是矩形 B 对角线互相垂直的矩形是正方形 C 对角线相等的菱形是正方形 D 四条边相等的四边形是正方形
15.点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是 ( )
A 、 (-4,-8)
B 、 (4,8)
C 、 (-4,8)
D 、 (4,-8)
16.小明期未语、数、英三科的平均分为92分,她记得语文是88分,英语是95分,但她
把数学成绩忘记了,你知道小明数学多少分吗 ( )
(A) 93分 (B) 95分 (C) 92.5分 (D)94分一支蜡烛长20厘米, 17.点燃后每小时燃烧5厘米,燃烧时剩下的高度n (厘米)与燃烧时间t(时)的函数关系的图象是
x
y O
2
-3
O A
1
1
( )
A B C D 三、解答题;(每题4分,共8分) 18.计算:
2
1
6
3)1526(-⨯- 56
216
24++
19.解下列二元一次方程组:(每题4分,满分8分)
⎩⎨
⎧+==+3
14
23y x y x 28、 ⎪⎩⎪⎨⎧=-=-2
431
4
3y x y x
20.(6分)如图,AC ,,AB BAC ABC =︒=∠∆90的D 、E 在BC 上,∠DAE = 45º,AEC ∆按
顺时针方向转动一个角后成AFB ∆。

(1)图中哪一点是旋转中心? (2)旋转了多少度?
(3)指出图中的对应点、对应线段和对应角.(任意指出对应点、线段、角各一组)
21.(8分)某公司要印制新产品宣传材料。

甲印刷厂提出:每份材料收1元印制费,另收
1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费。

(1)分别写出两厂的收费y (元)与印制数量x (份)之间的关系式; (2)在同一直角坐标系内作出它们的图象;
(3)根据图象回答下列问题:印制800份宣传材料时,选择哪家印刷厂比较合算?这家公司拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?
43
21
F E D C B
A
22.(6分)矩形ABCD 的对角线相交于点O ,DE//AC ,CE//DB ,CE 、DE 交于点E ,请问: 四边形DOCE 是什么四边形?请说明理由。

23.(6分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:
(1)写出男生鞋号数据的平均数、中位数、众数;
(2)在平均数、中位数和众数中,鞋厂最感兴趣的是什么?
E
D C O A B
24.(7分)某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?
北师大八年级上数学期末测试题1 答案
一、填空题 1. 5757757775.0,27,2
,1133π

2.2-;
3.
5
2
±1.3 一4 ±2; 4.略; 5.24; 6.四,360; 7.6,5,61; 8.第三;
9. 3,2,5.2; 10.3-,
2
3
,2>x ; 二、选择题 11.D ; 12.A ; 13.B ; 14.A ; 15.A ; 16.A ; 17.D ; 三、解答题 18.56-,13; 19.⎩⎨
⎧==14y x ,⎩⎨⎧==4
6
y x ;
20.(1)A 点为旋转中心;(2)旋转︒90;(3)略;
21.(1)1500+=x y 甲,x y 5.2=乙;(2)略;(3)800元时,乙y 比较合算,3000元时,
甲y 印制的材料多一些;
22.四边形DOCE 是菱形。

因为DE//AC ,CE//DB ,所以四边形DOCE 是平行四边形,又因为矩形ABCD 的对角线相等又互相平分,所以OC = OD ,所以一组邻边相等的平行四边形是菱形;
23.平均数是525.24,中位数是5.24,众数是25,厂家最关心的是众数。

24. 设现有城镇人口x 人,农村人口y 人,根据题意得:
⎩⎨

⨯=⋅+⋅=+%
142%1.1%8.042y x y x
E
D C
O
A B
解这个方程得:⎩⎨⎧==28
14
y x
答:略。

相关文档
最新文档