大学物理电磁场

合集下载

大学物理《电磁场与电磁波》公开课优秀教学设计

大学物理《电磁场与电磁波》公开课优秀教学设计

大学物理《电磁场与电磁波》公开课优秀教学设计一、教学目标- 理解电磁场的基本概念和特性;- 掌握电场和磁场的相互作用规律;- 理解电磁波的产生和传播原理;- 能够应用电磁场和电磁波的知识解决实际问题。

二、教学内容1. 电磁场的基本概念和性质- 电场的定义和性质- 磁场的定义和性质- 电场和磁场的相互作用规律2. 电磁波的产生和传播- 电磁波的概念和特性- 电磁波的产生机制- 电磁波的传播特性3. 应用案例分析- 电磁场和电磁波在通信技术中的应用- 电磁场和电磁波在医学影像技术中的应用- 电磁场和电磁波在能源传输中的应用三、教学方法1. 讲授法:通过讲解电磁场和电磁波的概念、原理和应用案例,引导学生掌握相关知识。

2. 实验探究法:组织学生进行一些简单的电磁场和电磁波实验,通过实践探究的方式提高学生的动手能力和实验设计能力。

3. 讨论交流法:引导学生在小组内进行问题讨论和知识分享,促进学生的合作研究和思维能力培养。

4. 案例分析法:通过分析电磁场和电磁波在实际应用中的案例,加深学生对知识的理解和应用能力的培养。

四、教学评价1. 知识掌握程度:通过学生的课堂表现、作业完成情况和考试成绩等综合评价学生对电磁场和电磁波知识的掌握程度。

2. 实践能力:通过学生实验报告的完成情况和实验操作能力的评估,评价学生在实际操作中掌握电磁场和电磁波相关实验技能的能力。

3. 解决问题能力:通过学生应用电磁场和电磁波知识解决实际问题的能力评价,考察学生对所学知识的理解和应用能力。

五、教学资源1. 教材:选用适合大学物理课程的教材,包含电磁场和电磁波相关章节。

2. 多媒体教学投影仪:用于讲解和展示电磁场和电磁波相关的概念和实验。

3. 实验室设备:提供适当的电磁场和电磁波实验设备,供学生进行实验探究。

六、教学安排- 第一周:介绍电磁场的基本概念和性质,进行理论讲解和案例分析。

- 第二周:讲解电场和磁场的相互作用规律,并进行实验探究。

大学物理电磁场的基本理论

大学物理电磁场的基本理论

大学物理电磁场的基本理论电磁场是物质世界中最基本的物理现象之一,也是大学物理课程的重要内容之一。

电磁场理论的研究,对于揭示物质世界的运动规律和电磁波的传播机制具有重要意义。

本文将介绍大学物理中关于电磁场的基本理论,包括电场、磁场的概念与本质、电磁场的相互作用以及电磁波的特性。

一、电场的概念与本质电场是由电荷所产生的一种物理量,它描述了在电荷存在的空间中,其他电荷所受到的力的情况。

电场的概念最早由法拉第提出,通过他的实验肯定了电场的存在。

根据库伦定律,电场强度 E 的大小与电荷 q 之间成正比,与距离 r的平方成反比。

即 E ∝ q/r^2。

这意味着电场是一种场量,它在空间中的分布由电荷的性质和位置确定。

在电场中,电荷会受到力的作用,力的大小与电场的强度有关,方向则与电荷的性质有关。

电场的本质是电荷之间的相互作用。

二、磁场的概念与本质磁场是由磁荷或运动电荷所产生的一种物理量,它描述了在磁荷存在的空间中,其他运动电荷所受到的力的情况。

磁场的概念最早由奥斯特瓦德提出,通过他的实验证实了磁场的存在。

磁场的表现形式有磁感应强度 B 和磁场强度 H。

磁感应强度 B 描述了磁场对运动电荷的作用,磁场强度 H 描述了磁场对磁荷的作用。

根据洛伦兹力定律,运动电荷在磁场中会受到洛伦兹力的作用。

磁场的本质是磁荷之间的相互作用和运动电荷在磁场中受到的洛伦兹力。

三、电磁场的相互作用电场和磁场之间存在着紧密的联系,它们是相互依存的物理量。

当电流通过导线时,周围会形成磁场,这种现象被称为安培环路定律。

根据安培环路定律,通过一条闭合回路的磁场强度与这条回路内通过的电流成正比。

根据法拉第电磁感应定律,变化的磁场可以感应出电场。

即当磁场通过一个闭合回路时,会在回路上产生感应电动势和电流。

这种现象被称为法拉第电磁感应。

电磁感应的经典实验是法拉第的环路实验,通过改变磁场的强度或方向,可以观察到感应电流的变化。

四、电磁波的特性电磁波是由电场和磁场相互耦合形成的一种能量传播的方式。

大学物理电磁场第3章讲义教材

大学物理电磁场第3章讲义教材

zˆ4(a20Iaz22)3/2
2
0
d'
B(z)2(a20Iaz22)3/2 z
3.2 真空中的静磁场基本方程
1. 磁通连续性定理
定义穿过磁场中给定曲面S 的磁感应强度B 的通量为磁通:
BdS 单位 韦伯Wb
S
若S面为闭合曲面
ΦBdS0
磁通连续 性定理
上页 下页
ΦBdS0
注意
① 磁通连续性原理也称磁场的高斯定理,表明磁力线是无头
Bdl 2B0I
l
得到
B
0I 2
e
323
I’ II 3 2 2-- 2 22 2 I 3 2 3 2-- 22 2
lBdl2B 0I3 2 3 2--22 2
得到
B
0I 2
32 -2 32 -22
e
同轴电缆的磁场分布
上页 下页
4.真空中的磁场方程
B (r)40 VJR 2R ˆd V '
磁矢位
注意 1 A是从矢量恒等式得出,是引入的辅助计算 量,无明确的物理意义;
2 A适用于整个磁场区域;
③因
mBdSAdS Stokes’ A dl
S
S
l
m Adl
l
A的单位 Wb/m (韦伯/米)
④ 恒定磁场中A满足库仑规范
A0
2 . 磁矢位 A 的求解
应用磁矢位A求解恒定磁场问题也可以分为 场源问题和边值问题。
③ 洛仑兹力垂直于电荷运动方向,只改变电荷运动方向, 对电荷不做功,而库仑力改变电荷运动速度做功。
上页 下页
安培力定律
真空中
描述两个电流回路之间相互作用力的规律。
l1

大学物理 电磁场的相对论性变换

大学物理 电磁场的相对论性变换

板内:
V
S系的电场分布: 板面很大 电荷均匀分布
O 板两侧为对称的均匀电场
板的运动 空间对称性部分破坏 场强不再与板面垂直
假设:
高斯定理 同理 (2)纵向电场变换:
一般结论:若S系相对S‘系以-V(或V)沿X轴反方 向(或正方向)运动,则
静止电荷的 电场分布
运动电荷的 电场分布
运动电荷对静止 电荷的作用力
11-7电磁场的相对论性变换
一 电场强度的洛伦仑兹变换
1、电荷的相对论不变性
氢分子 氦原子
运动状态的不同 电中性
同位素光谱
Байду номын сангаас
电荷的相对论不变性 在不同的参照系内,同一带电粒子的电量不变。
问题:如何求一个运动电荷的电场强度及对其 它电荷的作用?
2 电场强度的洛伦仑兹变换
Y
Y`
S
S`
关系?
x x’
(1)横向电场 静系S’: 板外:
O 相对论的速度变换式
的受力
电场力
磁场力 磁感应强度
说明了电场和磁场的相对性及电磁场的统一性
三 电场和磁场的洛伦仑兹变换 系:
S系: O ( , 在 系中静止)
例:计算匀速运动的点电荷的电场。 为讨论方便,设一个点电荷 静 止地置于 系的原点 ,且 时刻S系的原点O与 层迭,则
q
洛伦仑兹变换,
时刻,有
结论:在S系中的观测者O看来, 运动电荷的电场仍沿以点电荷的瞬时 位置为起点的矢径方向,只是该电场 相对于O已不再是球对称的了。
q
二 电场力的洛伦仑兹变换 相对论力的变换式:

大学物理电磁学知识点总结

大学物理电磁学知识点总结

大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。

uuu r q q ur F21 = k 1 2 2 er rur u r 高斯定理:a) 静电场:Φ e = E d S = ∫s∑qiiε0(真空中)b) 稳恒磁场:Φ m =u u r r Bd S = 0 ∫s环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁∫Lur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B 定义:B =ur ur F 定义:E = (N/C) q0基本计算方法:1、点电荷电场强度:E =ur r u r dF (d F = Idl × B )(T) Idl sin θ方向:沿该点处静止小磁针的N 极指向。

基本计算方法:urq ur er 4πε 0 r 2 1r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r2、连续分布的电流元的磁场强度:2、电场强度叠加原理:ur n ur 1 E = ∑ Ei = 4πε 0 i =1r qi uu eri ∑ r2 i =1 inr ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍)3、连续分布电荷的电场强度:ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 04、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B =ur 1、点电荷:E =q ur er 4πε 0 r 2 10 I2R0 I 2π r2、均匀带电圆环轴线上一点:ur E=r qx i 2 2 32 4πε 0 ( R + x )R 2 IN 2 ( x 2 + R 2 )3 21 0α 23、均匀带电无限大平面:E =σ 2ε 0(N 为线圈匝数)4、无限大均匀载流平面:B =4、均匀带电球壳:E = 0( r < R )(α 是流过单位宽度的电流)ur E=q ur er (r > R ) 4πε 0 r 25、无限长密绕直螺线管内部:B = 0 nI (n 是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B = (是弧度角,以弧度为单位)7、圆盘圆心处:B =r ur qr (r < R) 5、均匀带电球体:E = 4πε 0 R 3 ur E= q 4πε 0 r ur er (r > R ) 20 I 4π R0σω R2(σ 是圆盘电荷面密度,ω 圆盘转动的角速度)6、无限长直导线:E =λ 2πε 0 x λ 0(r > R ) 2πε 0 r7、无限长直圆柱体:E =E=λr (r < R) 4πε 0 R 2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦ e = ∫ d Φ e = ∫ E cos θ dS = ∫s sur u r E d S通量u u r r Φ m = ∫ d Φ m = ∫ Bd S = ∫ B cos θ dS s s s若为闭合曲面:Φ e =∫sur u r E d S若为闭合曲面:u u r r Φ m = Bd S = B cos θ dS ∫ ∫s s均匀电场通过闭合曲面的通量为零。

大学物理电磁场的基本理论与应用

大学物理电磁场的基本理论与应用

大学物理电磁场的基本理论与应用电磁场是大学物理学习过程中必不可少的重要内容,它涉及到电荷、电场、磁场等基本概念,也是理解电磁现象和应用的重要基础。

本文将从电磁场的基本理论出发,探讨其在日常生活和科技应用中的具体应用。

一、电磁场的基本理论电磁场是由带电粒子或电流所产生的一种物理场。

根据电荷分布的不同,电磁场可以分为静电场和电磁感应场两种。

静电场是由静止电荷所产生的场,其特点是场强与电荷量成正比,与距离平方成反比。

电磁感应场是由运动电荷或变化的磁场所产生的场,具有较为复杂的变化规律。

在电磁场中,电荷受到电场力的作用,而电流则同时受到电场力和磁场力的共同作用。

电场力和磁场力的方向和大小受到电荷或电流的性质和运动状态的影响。

二、电磁场的应用1. 静电场的应用静电场广泛应用于印刷、喷涂、静电除尘、静电助力等工业领域。

例如,在印刷行业中,静电场可以使印版上的墨水粘附在纸张上,实现印刷效果。

另外,静电场还可以用于电子元件制造过程中的静电除尘,避免电子元件受到静电的损害。

2. 电磁感应场的应用电磁感应场广泛应用于发电机、电动机、电磁铁等设备中。

例如,发电机是通过电磁感应原理将机械能转化为电能的装置,是电力工业中不可或缺的重要设备。

电动机则是通过电流在磁场中的相互作用产生力,实现电能转换为机械能的装置。

电磁铁则利用电磁感应的原理,在通电时产生较强磁力,用于吸附和操控铁磁物体。

3. 电磁场在通信技术中的应用电磁场在通信技术中起着至关重要的作用。

无线电通信、微波通信、雷达、卫星通信等都离不开电磁场的运用。

例如,无线电通信就是利用电磁波在空间中传播的特性,实现信息的传递和接收。

雷达则是利用电磁波与物体的相互作用,实现目标探测和测距。

4. 电磁场在医学中的应用电磁场在医学影像、磁共振诊断、放射治疗等方面都有广泛的应用。

例如,在医学影像技术中,X射线和γ射线是利用电磁场与人体组织相互作用的原理,通过检测射线的强度和方向来获得身体内部的影像信息。

大学物理-第九章 电磁感应 电磁场理论

大学物理-第九章 电磁感应 电磁场理论

2.电场强度沿任意闭合曲线的线积分等于以该曲线
为边界的任意曲面的磁通量的变化率的负值。 3.通过任意闭合曲面的磁通量恒等于零。
4.磁场强度沿任意闭合曲线的线积分等于穿过以该 曲线为边界的曲面的全电流。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
麦克斯韦方程组(物理含义)
(1) SDdSq (2)
例1 有一圆形平板电容器 R , 现对其充电,使电路上
的传导电流为 I ,若略去边缘效应, 求两极板间离开轴
线的距离为 r(r R) 的区域的(1)位移电流;
(2)磁感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的
电位移通量为
I
R P*r
I
ห้องสมุดไป่ตู้
D D(πr2)
D
Edl BdS
L
s t
(3) SBdS0
(4) LHdl IsD t dS
1.电荷是产生电场的源。
2.变化的磁场也是产生电场的源。
3.自然界没有单一的“磁荷”存在。
4.电流是产生磁场的源,变化的电场也是产生磁场的源。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
解:∵
B只分布在R 1

r

R 2

域内且
wm
B2 2

8
I2 2r 2
B I 2 r
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
RR11 RR22
⊙⊙BB II
rr ⊕⊕BB
r dr
所以取体积元为 dVl2rdr
W m VwmdVR R1 28μπ2Ir22l2πrdr

大学物理易考知识点电磁场

大学物理易考知识点电磁场

大学物理易考知识点电磁场电磁场是大学物理中的重要知识点之一,也是考试中常考的内容。

学好电磁场的基本概念和原理,对于理解电磁现象和解决相关问题具有重要意义。

本文将从电荷和电场、电场力和电场能、电场的高斯定律、电位和电势能、静电场中的导体和电容、电容器及电容等方面,详细论述大学物理易考的电磁场知识点。

一、电荷和电场电荷是物质的一种性质,它具有正电荷和负电荷两种状态。

同性电荷相互排斥,异性电荷相互吸引,这是电荷的基本性质。

在物质周围存在电场。

电场是电荷在周围产生的一种特殊的物理场,用来描述电荷之间相互作用的力的传递方式。

电场的强度用E表示,单位是牛顿/库仑(N/C)。

二、电场力和电场能电场力是电荷在电场中产生的受力。

当一个电荷在电场中受力时,根据库仑定律,电场中的电场力与电荷的大小和电场强度有关。

电场能是电场对电荷做功的能量。

当电荷沿电场方向从一个位置移动到另一个位置时,其受力方向与位移方向相同,电场力对电荷做正功;当电荷沿相反方向移动时,电场力对电荷做负功。

电场能的大小与电荷的大小和电势差有关。

三、电场的高斯定律电场的高斯定律是描述电场分布与电荷分布之间关系的重要定律。

根据高斯定律,通过任意闭合曲面的电场通量与该曲面内电荷的代数和成正比。

根据高斯定律可以推导出电场的分布规律,例如对于均匀带电线的电场分布、均匀带电球壳的电场分布等。

高斯定律是解决电场问题的重要方法之一。

四、电位和电势能电位是描述电场势能分布的物理量。

在电场中,沿着某一路径从一个位置移到另一个位置,电势差即电位的变化。

电势能是电荷在电场中具有的能量。

它与电场强度和电荷的位置有关。

电势能的大小与电荷的大小、电场强度和电势差有关。

五、静电场中的导体和电容导体是一种能够自由移动电荷的物质。

在静电场中,导体内部的电荷分布趋向稳定,电场强度为零。

因此,导体内部的电荷分布是关键的。

电容是描述导体储存电荷能力的物理量。

电容器是一种用于存储电荷的装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

w2weE2 HE EH EH /u
2. 能流密度S 单位时间通过垂直波传播方向单位面积的能量
能流密度矢量:
S
Skˆ
wukˆ
EHukˆ
E
wH
S
u
u
EHkˆ
EH
u
单位面积
坡印廷矢量
【例】一个正在充电的圆形平行板电容器, 半径为R,板间距为b,忽略边缘效应。
证明: (1)两极板间的边缘处,坡印廷矢量的
解 (1)因为d<<R,所以板间电场均匀, 忽略边缘效应.
I位ddDt
R2
dD dt
R2 0
dE dt
3.1 40.128.8 510 12 1103
2.7A 8
பைடு நூலகம்
(2) 全电流对中心线是对称的,它产生的磁场
对中心线也是对称的。作回路L1、L2 如图 所示。
由于
H,B
只有
方向的分量,所以由
D
4 波速
真空
u
1
00
3108
msc
光是电磁波
nc u
rr
r
(一 般 r1)
与物质作用的主要是 E矢量, 称为光矢量
三. 电磁波的能量和动量 1. 能量密度
电磁场能量密度: wwewm
对各向同性介质:
w 1D E 1BH 1E 21H 2
22 22
对电磁波 H E ,
wm1 2H21 2 E2we
2E x2
2E t2
2H x2
2H t2
x 与 方向传播 的标准波动方程比较
2 1 2 x2 u2 t2
yE u
任一物理量
x
得电磁波波速:
zH
1 u
1886年赫兹由实验获得了电磁波
二.
电磁波的性质
1 EH
2 EH//u─ 传播方向
电磁波是横波
3 同一点E 和H 成正比 E H
方向指向电容器内部;
(2)单位时间内,按坡印廷矢量计算, 进入电容器内部的能量等于电容 器中静电能量的增加率。
解: (1)充电的方向向下, 电场的方向也向下。 H的方向与位移电流
成右手螺旋关系,

SEH
S指向电容器的内部的
(2)作回路L正方向如图, 由H的环路定理
H d l D d S D d S D R 2
通过某个面积的电位移通量的时间变化率
三.全电流及修正后的安培环路定理
定义 J全J0Jd ——全电流密度
J全dS0 ——全电流连续
S
◆安培环路定理修正为:
Hdl I全
L
i

LH dlS J 0D t dS
位移电流与传导电流按相同的规律激发磁场, 本质是时变电场激发磁场
再看电容器的充电回路
麦克斯韦假设,非稳恒时仍有
sDdSq
由 得 连 S(sJ J 0 0续 dS D t )性 s J dd 0 d SdtsS 方 D 0d S d d 程 q t
从量纲上分析
d D
dt
J
ddtSD dS ddtDI
麦克斯韦定义: 位移电流密度
dD Jd dt
位移电流
Id
d D dt
第二十一章 电磁场
§21.1 位移电流(书17.7节) §21.2麦克斯韦方程组 (书21.1节) §21.3 电磁波(书21.4节 和 21.6节)
§21.1 位移电流
★电场: 静电场 源? 静止电荷
感生电场
dB dt
★磁场
稳恒磁场 稳恒电流
感生磁场? 对称
dE? dt
安培环路定理在电流非稳恒时出现了矛盾,
• 场客观存在, 环流值必须唯一
Hdl I 不适用于非稳恒电流的情况
L
修正
二. 位移电流 麦克斯韦设想:
平板电容器极板之间存在某个物理量, 起着延续“电流”的作用(应是电流的量纲)
它和传导电流总体(全电流) 满足连续性方程。
同时将安培环路定理修正为对全电流成立。
寻找非稳恒情况下满足“电流 ”连续的物理量。
对磁场的“源”认识必须发展
一.问题的提出
Hdl Ii内
L
i
1. 从稳恒电流情况导出
2.方程本质 反映电流产生磁场
3. Ii内 的含义 :与回路套连的电流
i
与恒定电流方程
JdS0一致
S
3与1统一
电容器的充电回路
取L :如图
对S1 : Hdl I
L
对S2 : Hdl 0
L
出现矛盾! 原因:传导电流在电容器处中断!
四个微分方程 介质方程
DE
BH
J0E
确定的边界 条件下
解方程组
还有
fqE qv B
方程组在任何惯性系中形式相同
§21.3 电磁波 一. 电磁波的波动方程
由麦克斯韦方程组出发预言:
变化的电磁场将以波的形式传播
各向同性介质中,J0 0 0 0 情况下
x 对沿 方向传播的电磁场(平面波)
导出所满足方程
Hdl dS
L1
S1 t
H 内 2r1d dD tS1dS 0d dE t r12
H内
0r1
2
dE dt
B内0H内020r1
dE dt
41078.85101
2
0.02103
2
1.11106T
同理,
H外2r2
R20
dE dt
H外
R2 2r2
0
dE dt
B 外 0H 外 0 2 r 0 2 R 2d dE t4 .6 4 1 6 0 T
L
S t
S t t
H2RDR2
t
H R D 2 t
SEHERD 2 t
单位时间内,从电容器的侧面进入电容器的
能量为
dW S2Rb ERD2Rb
dt
2 t
ER2bE
t
ddt
E2 2
R2b
§21.2 麦克斯韦方程组
麦克斯韦总结了库仑、安 培和法拉第等人的电磁学研 究成果,归纳出了电磁场的 基本方程组。
麦克斯韦
1862年麦克斯韦预言了电磁波的存在,论 证了光是一种电磁波。
1888年赫兹用实验证实电磁波的存在。
一. 积 分形式
EE静 电 E感生 DD静 电 D感生
BB 稳 恒 B 位 移 H H 稳 恒 H 位 移
S
S1只有传导电流
Hdl I
L
S2只有位移电流
Hdl Id
L
板间 DDS SQ
Id
dD dt
dQI dt
【例】半径为R=0.1m 的两块圆形平板电容器,
两板间距为d<<R,充电过程某时刻两板之
间电场的时间变化率为 dE1013V/ms
求此时刻:
dt
(1)两板间的I位; (2)两板间离中心
线 r1=0.02m处, r2=0.12m处的 B
电场量的方程:
DdS 0dV
S
V
B
Edl
L
S t
dS
磁场量的方程:
BdS0
S
D
LH dlSJ0dSStdS
麦克斯韦电磁场方程组
二. 微分形式
D0
B0
EB t
D HJ0 t
积分形式 反映了电磁场的瞬时关系与区域关系
微分形式 反映了电磁场的瞬时关系与当地关系
方程组的意义 :电场、磁场密不可分, 形 成统一的电磁场
相关文档
最新文档