《4.1第一节 平面向量的概念及其线性运算》 学案

合集下载

4.1平面向量的概念及其线性运算

4.1平面向量的概念及其线性运算

第四章平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算2019考纲考题考情1.向量的有关概念2.向量的线性运算三角形法则平行四边形法则(1)a(2)((三角形法则a(1)|λa|=|λ||a|;向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b =λa。

1.若P为线段AB的中点,O为平面内任一点,则OP→=12(OA→+OB→)。

2.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1。

3.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件。

要特别注意零向量的特殊性。

一、走进教材1.(必修4P 86例4改编)已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________。

(用a ,b 表示)解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b 。

答案 b -a -a -b2.(必修4P 118A 组T 2(3)改编)在平行四边形ABCD 中,若|AB →+AD→|=|AB →-AD →|,则四边形ABCD 的形状为________。

解析 如图,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|。

由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形。

答案 矩形二、走近高考3.(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A .34AB →-14AC → B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →解析 如图所示,EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →,故选A 。

4向量学案

4向量学案

第四章 第一节 平面向量的概念及其线性运算大纲要求:平面向量(1)平面向量的实际背景及基本概念 ①了解向量的实际背景. ②理解平面向量的概念,理解两个向量相等的含义. ③理解向量的几何表示. (2)向量的线性运算① 掌握向量加法、减法的运算,并理解其几何意义.② 掌握向量数乘的运算及其意义,理解两个向量共线的含义.③ 了解向量线性运算的性质及其几何意义.一、选择题1.若O 、E 、F 是不共线的任意三点,则以下各式中成立的是( )A .EF =OF +OEB .EF =OF-OEC .EF =-OF +OED .EF=-OF -OE2.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB+μAC ,则λ+μ的值为( )A.12B.13C.14D .13.设P 是△ABC 所在平面内的一点,BC +BA =2BP,则( )A .P 、A 、B 三点共线 B .P 、A 、C 三点共线 C .P 、B 、C 三点共线D .以上均不正确4.已知点O ,N 在△ABC 所在平面内,且|OA |=|OB |=|OC |,NA +NB +NC=0,则点O ,N 依次是△ABC 的( )A .重心 外心B .重心 内心C .外心 重心D .外心 内心5.如图,已知AB =a ,AC =b ,BD =3DC ,用a ,b 表示AD,则AD=( )A .a +34bB.14a +34bC.14a +14bD.34a +14b 6.已知△ABC 中,点D 是BC 的中点,过点D 的直线分别交直线AB 、AC 于E 、F 两点,若AB =λAE (λ>0),AC =μAF (μ>0),则1λ+4μ的最小值是( )A .9 B.72 C .5D.92二、填空题7.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 8.设a ,b 是两个不共线的非零向量,若8a +kb 与ka +2b 共线,则实数k =________. 9.如图所示,平面内的两条相交直线OP1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若OP =a 1OP +b 2OP,且点P落在第Ⅲ部分,则实数a ,b 满足a ________0,b ________0(用“>”,“<”或“=”填空).三、解答题10.△ABC 中,AD =23AB,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N .设AB =a ,AC =b ,用a 、b 表示向量AE 、BC 、DE、DN 、AM 、AN .11.已知OB =λOA +μOC(λ、μ为实数),若A 、B 、C 三点共线,求证λ+μ=1.12.已知△ABC 中,AB=a ,AC =b ,对于平面ABC 上任意一点O ,动点P 满足OP =OA+λa +λb ,则动点P 的轨迹是什么?其轨迹是否过定点,并说明理由.第四章 第二节 平面向量基本定理及坐标表示大纲要求:平面向量的基本定理及坐标表示 ① 了解平面向量的基本定理及其意义. ② 掌握平面向量的正交分解及其坐标表示.③ 会用坐标表示平面向量的加法、减法与数乘运算. ④ 理解用坐标表示的平面向量共线的条件.一、选择题1.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a·b 的值为( )A .1B .2C .3D .42.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB =a ,AD =b ,则BE =( )A .b -12aB .b +12aC .a +12bD .a -12b3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c 则λ=( ) A.14B.12 C .1D .24.已知向量a =(1,1-cos θ),b =(1+cos θ,12),且a ∥b ,则锐角θ等于( )A .30°B .45°C .60°D .75°5.已知a ,b 是不共线的向量,AB=λa +b ,AC =a +μb ,μ∈R ,那么A 、B 、C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(3b -c ,cos C ), n =(a ,cos A ),m ∥n ,则cos A 的值等于( ) A.36B.34C.33D.32二、填空题7.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值等于________.8.在△ABC 中,CA =a ,CB=b ,M 是CB 的中点,N 是AB 的中点,且CN 、AM交于点P ,则AP=_______(用a ,b 表示).9.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 三、解答题10.已知向量a =(1,2),b =(2,3),λ∈R ,若向量λa +b 与向量c =(-4,-7)共线, 求λ.11.已知P 为△ABC 内一点,且3AP +4BP +5CP =0.延长AP 交BC 于点D ,若AB=a ,AC =b ,用a 、b 表示向量AP 、AD .12.已知O 为坐标原点,A (0,2),B (4,6),OM =t 1OA +t 2AB.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM ⊥AB且△ABM 的面积为12时a 的值.第四章 第三节 平面向量的数量积及平面向量的应用大纲要求:平面向量的数量积① 理解平面向量数量积的含义及其物理意义. ② 了解平面向量的数量积与向量投影的关系.③ 掌握数量积的坐标表达式,会进行平面向量数量积的运算.④ 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.一、选择题1.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2D .02.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A .-π4B.π6C.π4D.3π43.已知a =(1,2),b =(x,4)且a ·b =10,则|a -b |=( ) A .-10B .10C .- 5D. 54.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ) A.2-1 B .1 C. 2D .25.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 p 1:|a +b |>1⇔θ∈[0,2π3) p 2:|a +b |>1⇔θ∈(2π3,π]p 3:|a -b |>1⇔θ∈[0,π3)p 4:|a -b |>1⇔θ∈(π3,π]其中的真命题是( ) A .p 1,p 4 B .p 1,p 3 C .p 2,p 3D .p 2,p 46.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a·bx 在R 上有极值,则a 与b的夹角范围为( )A .(0,π6)B .(π6,π]C .(π3,π]D .(π3,2π3]二、填空题7.已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.8.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量ka -b 垂直,则k =________.9.已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为____. 三、解答题10.已知a 、b 、c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=25,且c ∥a ,求c 的坐标; (2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ.11.设a =(1+cos x,1+sin x ),b =(1,0),c =(1,2). (1)求证:(a -b )⊥(a -c );(2)求|a |的最大值,并求此时x 的值.12.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c .若AB ·AC=CA ·CB =k (k ∈R).(1)判断△ABC 的形状; (2)若k =2,求b 的值.第四章 第四节 数系的扩充与复数的引入大纲要求:数系的扩充与复数的引入①理解复数的基本概念,理解复数相等的充要条件. ②了解复数的代数表示法及其几何意义.③ 能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.一、选择题1.设复数z 满足i z =1,其中i 为虚数单位,则z =( ) A .-i B .i C .-1D .12.若复数z =1+i ,i 为虚数单位,则(1+z )·z =( ) A .1+3i B .3+3i C .3-iD .33.若(x -i)i =y +2i ,x 、y ∈R ,则复数 x +y i =( ) A .-2+i B .2+i C .1-2iD .1+2i4.已知f (x )=x 2,i 是虚数单位,则在复平面中复数f (1+i )3+i 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若a 、b ∈R ,i 为纯虚数单位,且(a +i)i =b +i ,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-16.设i 是虚数单位,复数1+a i2-i 为纯虚数,则实数a 为( )A .2B .-2C .-12D.12二、填空题7.i 为虚数单位,1i +1i 3+1i 5+1i7=________.8.已知复数x 2-6x +5+(x -2)i 在复平面内对应的点在第三象限,则实数x 的取值范围是________.9.复数2+i1-2i的共轭复数是________.三、解答题10.实数m 分别取什么数值时?复数z =(m 2+5m +6)+(m 2-2m -15)i (1)与复数2-12i 相等;(2)与复数12+16i 互为共轭复数; (3)对应的点在x 轴上方.11.计算:-23+i 1+23i +(21+i )2012+(4-8i )2-(-4+8i )211-7i.12.复数z 1=3a +5+(10-a 2)i ,z 2=21-a+(2a -5)i ,若z -1+z 2是实数,求实数a 的值.。

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

第1节平面向量的概念及线性运算考试要求1。

了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4。

掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义。

知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量。

规定:0与任一向量平行。

(5)相等向量:长度相等且方向相同的向量。

(6)相反向量:长度相等且方向相反的向量。

2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a。

(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb=03.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。

[常用结论与微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即错误!+错误!+错误!+…+错误!=错误!,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2。

中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则错误!=错误!(错误!+错误!).3。

错误!=λ错误!+μ错误!(λ,μ为实数),若点A,B,C共线,则λ+μ=1.4.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.诊断自测1。

教案平面向量的基本概念和运算

教案平面向量的基本概念和运算

教案平面向量的基本概念和运算平面向量是数学中的重要概念之一,广泛应用于几何、物理和工程等领域。

本文将介绍平面向量的基本概念和运算方法。

一、平面向量的定义平面向量是具有大小和方向的量,可以用箭头表示。

一般用大写字母表示平面向量,如A、B。

平面向量可以由一个有序的数对表示,也可以用坐标表示。

例如,平面向量A可以表示为(Ax, Ay)或者\[A =\begin{pmatrix} Ax \\ Ay \end{pmatrix}\] ,其中Ax和Ay分别表示向量A在x轴和y轴上的分量。

二、平面向量的基本运算1. 平面向量的加法平面向量的加法是指两个向量相加得到一个新的向量。

设有两个向量A和B,其坐标表示分别为\[A = \begin{pmatrix} Ax \\ Ay\end{pmatrix}\] 和\[B = \begin{pmatrix} Bx \\ By \end{pmatrix}\],则它们的和向量C为\[C = \begin{pmatrix} Ax + Bx \\ Ay + By \end{pmatrix}\]。

2. 平面向量的减法平面向量的减法是指将一个向量减去另一个向量得到一个新的向量。

设有两个向量A和B,它们的差向量C可以表示为C = A - B。

具体计算方法是将B的坐标取反,然后进行加法运算,即\[C = \begin{pmatrix} Ax - Bx \\ Ay - By \end{pmatrix}\]。

3. 平面向量的数乘平面向量的数乘是指将一个向量乘以一个实数得到一个新的向量。

设有一个向量A和实数k,它们的数乘结果为kA。

具体计算方法是将向量A的每个分量都乘以实数k,即\[kA = \begin{pmatrix} kAx \\ kAy\end{pmatrix}\]。

4. 平面向量的数量积平面向量的数量积又称为点积或内积,表示为A·B。

设有两个向量A和B,它们的数量积为A·B = Ax * Bx + Ay * By。

平面向量的概念及线性运算(优质课)教案

平面向量的概念及线性运算(优质课)教案

1.6平面向量的基本概念与线性运算(优质课)教案教学目标:1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.教学过程:*创设情境兴趣导入如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗?图7-1一、平面向量的概念:1、平面向量:在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等.平面上带有指向的线段(有向线段)叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.BaA图7-22、向量的模长:向量的大小叫做向量的模.向量a,AB的模依次记作a,AB.3、零向量:长度为0的向量叫做零向量,其方向是任意的.4、单位向量:长度等于1个单位长度的向量叫做单位向量.5、平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.6、 相等向量:长度相等且方向相同的向量叫做相等向量.7、相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.二、平面向量的基本运算:一般地,λa +μb 叫做a , b 的一个线性组合(其中λ,μ均为系数).如果l =λa +μ b ,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC 叫做位移AB 与位移BC 的和,记作AC =AB +BC .一般地,设向量a 与向量b 不共线,在平面上任取一点A (如图7-6),依次作AB =a , BC =b ,则向量AC 叫做向量a 与向量b 的和,记作a +b ,即 a +b =AB +BC =AC (7.1)求向量的和的运算叫做向量的加法.上述求向量的和的方法叫做向量加法的三角形法则. 2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD =BC ,根据三角形法则得AB +AD =AB +BC =AC这说明,在平行四边形ABCD 中, AC 所表示的向量就是AB 与AD 的和.这种求和方法叫做向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;图7-7ACBaba +bab图7-9ADCB(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =OA ,b =OB ,则()= OA OB OA OB OA BO BO OA BA −=+−+=+=.即 OA OB −=BA (7.2)观察图7-13可以得到:起点相同的两个向量a 、 b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为||||||a a λ=λ (7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有 λ⇔=a b a b ∥ (7.4) 一般地,有 0a = 0,λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则:()()111=−=−a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 .aAa -bBbO图7-13题型1 平面向量的基本概念 例1 给出下列六个命题:① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ;③ 若AB →=DC →,则A 、B 、C 、D 四点构成平行四边形; ④ 在ABCD 中,一定有AB →=DC →;⑤ 若m =n ,n =p ,则m =p ; ⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b 方向不确定,所以a 、b 不一定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在一条直线上的情况,所以③不正确;零向量与任一向量平行,故a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA 相等的向量; (2)找出向量DC 的负向量; (3)找出与向量AB 平行的向量.分析 要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.解 由平行四边形的性质,得 (1)CB =DA ;(2)BA =DC −,CD DC =−; (3)BA //AB ,DC //AB ,CD //AB .练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出ADCB图7-5O(1)与EF 相等的向量;(2)与AD 共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC 相等的向量; (2)OC 的负向量; (3)与OC题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.解 如图7-10所示,AB 表示船速,AC 为水流速度,由向量加法的平行四边形法则,AD 是船的实际航行速度,显然22AD AB AC =+=22125+=13.又512tan =∠CAD ,利用计算器求得6723CAD '∠≈︒1. 即船的实际航行速度大小是13km/h ,其方向与河岸线(水流方向)的夹角约6723'︒.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.分析 由于两条同样的绳子与竖直垂线所成的角都是θ,所以12F F =.解决问题不考虑其它因素,只考虑受力的平衡,所以12F F k +=−.解 利用平行四边形法则,可以得到1212cos F F F k +==θ,所以12cos k F =θ.练习:1. 如图,已知a ,b ,求a +b .F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 A BDC图7-10F 1F 2kθ 图7-112.填空(向量如图所示):(1)a +b =_____________ ,答案:→AC (2)b +c =_____________ ,答案:→BD (3)a +b +c =_____________ .答案:→AD 3.计算:(1)AB +BC +CD ; (2)OB +BC +CA . 答案:(1)→AD (2)→OA例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .解 如图7-14(2)所示,以平面上任一点O 为起点,作OA =a ,OB =b ,连接BA ,则向量BA 为所求的差向量,即BA = a -b . 练习:1.填空:(1)AB AD −=_______________,答案:→DABbOaAba(1)(2)图7-14(图1-15)bbaa(1)(2)第1题图(2)BC BA −=______________,答案:→AC (3)OD OA −=______________.答案:→AD2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .解:AC =a+b ,BD =b-a,DB =a -b例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD . 解 :AC =a +b ,BD =b −a , 因为O 分别为AC ,BD 的中点,所以 1122==AO AC (a +b )=12a +12b ,OD =12BD =12(b −a )=−12a +12b .练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).解:(1)3(a −2 b )-2(2 a +b )=3a -6b-4a-2b=4 b-a (2)3 a −2(3 a −4 b )+3(a −b )=-11b2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). 解:如图所示。

《平面向量的概念与线性运算》导学案

《平面向量的概念与线性运算》导学案

平面向量的概念与线性运算知识梳理:1向量的有关概念1向量:既有,又有的量叫向量;通常记为;长度为的向量是零向量,记作:;的向量,叫单位向量2平行向量或共线向量记作:;规定:零向量与任何向量3相等向量:4相反向量:2向量加法与减法1向量加法按法则或法则;向量加运算律:交换律:;结合律:2向量减法作法:3实数与向量的积1实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下:长度:方向:2.运算律4共线定理:5平面向量基本定理:6基底:二、题型探究探究一:平面向量的基本概念例1.给出下列命题:a b a b AB DC =a b b c a c a b a b a b a b b c a cAB DC =||||AB DC =//AB DC //AB DC ||||AB DC =AB DC =a b a b b c b c a c a c a b a b a b a b a b a b b 00a a a a 0a a a a 0a a 0a a a 0a 1a a 0a a 0a a 0a a a 0a BA a BCb a b OE BF BD FD a b BA BC BA AO BO +=+=BO a b OE BO a b BF BO OF BO BA a b a a b BD BC CD +BC BO +b a b a b FD BC BA -b a a b a b a b BM CN =AM AC CM =+BN =和B 、AP AM BP BN BA BP AP =-BA BC CA =+=4,5AP AM ==4:1 三、方法提升1、向量的线性运算可以结合图形,利用三角形法则或平行四边形法则,特别是有向线段表示向量运算时,要利用“首尾相接”或“起点相同”来化简;2、证明三点共线问题,可用向量共线定理来解决。

四、反思感悟b a O FE DC B A。

高中数学_《平面向量的概念及其线性运算》教学设计学情分析教材分析课后反思

高中数学_《平面向量的概念及其线性运算》教学设计学情分析教材分析课后反思

《平面向量的概念及其线性运算》教学设计一、教材分析:本节课对平面向量的概念及其线性运算的复习,是对学生所学知识的融通和运用,也是学生对学习平面向量的总结和探索。

正确理解和熟练掌握平面向量的概念及其线性运算是之后学好空间向量的关键。

二、学情分析:本节课是在学习平面向量的概念及其线性运算,继续深入学习,是一节复习课。

学生已经掌握了平面向量的概念及其线性运算的基础知识,,这为本节课的学习提供了一定的知识保障,在此基础上,本节课将继续加深学生对基础知识的理解,加强平面向量的线性运算,这也是为后面学习空间向量内容做好知识储备的课.为了让学生能更加直观、形象地理解平面向量的概念及其线性运算,将采用多媒体课件进行演示,以提高学生的学习兴趣,使之能达到良好的教学效果。

三、教学目标:1、了解向量的实际背景;2、理解平面向量的概念,理解两个向量相等的含义;3、理解向量的几何表示;4、掌握向量加法、减法的运算,并理解其几何意义;5、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;6、了解向量线性运算的性质及其几何意义;四、教学重点和教学难点:(一)教学重点:1、理解平面向量的概念,理解两个向量相等的含义;2、理解向量的几何表示;3、掌握向量加法、减法的运算,并理解其几何意义;4、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;5、了解向量线性运算的性质及其几何意义;(二)教学难点:平面向量的线性运算以及共线定理的应用五、教学工具:多媒体、粉笔等。

六、教学过程:向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba+=+;(2)结合律:cbacba++=++)()(减法求a与b的相反向量-b的和的运算)(baba-+=-相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量的相反向量为0教师展示表格,布置任务学生加深学生对新知识的理解共线.其中错误说法的序号是________. 考点二 平面向量的线性运算(基础之翼练牢固)[题组练通]1.在△ABC 中,D 为AB 的中点,点E 满足EC EB 4=,则ED = ( ) A. AD AB 3465- B. AD AB 6534- C. AD AB 3465+ D. AD AB 6534+2.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE 等于 ( )A.AD AB 2132+ B.AD AB 3221+ C.AD AB 3165+ D.AD AB 6531+ 3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若BC AB AO μλ+=,其中λ,μ∈R ,则λ+μ等于 ( )教师板书讲题过程教师提出问题学生自主完成,并回答问题培养学生语音表达能力,激发学生七、板书设计:平面向量的概念及其线性运算一、知识梳理二、典例分析1、向量的有关概念考点一:2、向量的线性运算考点二:3、共线向量定理考点三:八、教学反思:总体情况良好,基本满意,大多数学生可以换换掌握!九、作业反馈:分析作业中存在的问题,查找原因,并进行总结和反馈。

平面向量的线性运算教案

平面向量的线性运算教案

平面向量的线性运算教案一、引言平面向量是数学中重要的概念之一,具有广泛的应用领域。

本教案旨在通过线性运算的教学来帮助学生深入理解平面向量的概念和运算法则。

二、知识点梳理1. 平面向量的定义和表示方法2. 平面向量的加法和减法运算3. 数乘运算及其性质4. 平面向量的数量积及其性质5. 平面向量的分解与合成三、教学步骤1. 概念讲解(1) 平面向量的定义和表示方法平面向量是具有大小和方向的量,用箭头来表示。

常用的表示方法有坐标表示和向量符号表示。

2. 加法和减法运算(1) 加法运算- 向量的加法满足交换律和结合律。

- 加法运算可以通过平行四边形法则进行计算。

(2) 减法运算- 向量的减法可以转化为加法运算,即a - b = a + (-b)。

- 通过平行四边形法则可以将减法运算转化为加法运算。

3. 数乘运算及其性质(1) 数乘运算- 数乘运算指的是将一个向量与一个实数相乘,结果是一个新的向量。

- 数乘运算可以改变向量的大小和方向。

(2) 数乘运算的性质- 数乘的加法法则:(k1 + k2)a = k1a + k2a- 数乘的数乘法则:(k1k2)a = k1(k2a)4. 数量积及其性质(1) 数量积的定义- 数量积,也称点积或内积,是两个向量的乘积,结果是一个实数。

- 数量积的计算方法为两个向量模的乘积乘以它们夹角的余弦值。

(2) 数量积的性质- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b) = a·(kb)- 分配律:(a + b)·c = a·c + b·c5. 分解与合成(1) 向量的分解- 分解是将一个向量表示为多个已知向量的线性组合。

- 可以使用平行四边形法则或三角函数来进行向量的分解。

(2) 向量的合成- 合成是根据给定向量和它们的系数,通过线性组合得到一个新的向量。

四、案例演练1. 解决实际问题(1) 给定向量A(-3, 4)和向量B(2, 5),求A + B和2A - B的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 / 19
【例题 2】 【题干】如图,在△OAB 中,延长 BA 到 C,使 AC=BA,在 OB 上取点 D,使 DB= OB.设 OA =a,
1 3
OB =b,用 a,b 表示向量 OC , DC .
8 / 19
【解析】 OC = OB + BC = OB +2 BA = OB +2( OA - OB )
2 / 19
知识讲解 考点 1 向量的有关概念 名称 定义 既有大小又有方向的量叫做向量,向量的大小叫做向量的长度 (或称模) 长度为零的向量叫做零向量,其方向是任意的,零向量记作 0 长度等于 1 个单位的向量 方向相同或相反的非零向量叫做平行向量,平行向量又叫共线 向量.规定:0 与任一向量平行 长度相等且方向相同的向量 长度相等且方向相反的向量
A.3 C .2
1 B.3 1 D.2
14 / 19
【巩固】 4.在▱ABCD 中, AB =a, AD =b, AN =3 NC ,M 为 BC 的中点,则 MN =________(用 a,b 表示).
15 / 19
5.(2013· 淮阴模拟)已知△ABC 和点 M 满足 MA + MB + MC =0.若存在实数 m 使得 AB + AC =m AM 成立,则 m =________.
12 / 19
a b 2.已知向量 p=|a|+|b|,其中 a、b 均为非零向量,则|p|的取值范围是( A.[0, 2] C.(0,2] B.[0,1] D.[0,2]
)
13 / 19
3.(2013· 保定模拟)如图所示,已知点 G 是△ABC 的重心,过 G 作直线与 AB,AC 两边分别交于 M,N 两点,且 AM =x AB , AN =y AC ,则 x· y 的值为( x+y )
1 / 19
学习过程
复习预习 1.我们已经学习过位移、速度、力等,你能总结出它们的特点吗?特点为________________________________. 2.在学习三角函数线时,我们已经学习过有向线段了,你还记得吗? 所谓有向线段就是________________________,三角函数线都是_____________.
=2 OA - OB =2a-b.
DC = OC - OD = OC - OB
2 3
2 =(2a-b)-3b 5 =2a-3b.
9 / 19
【例题 3】 【题干】已知 a,b 不共线,OA =a,OB =b,OC =c,OD =d,OE =e,设 t∈R,如果 3a=c,2b=d,
e=t(a+b),是否存在实数 t 使 C,D,E 三点在一条直线上?若存在,求出实数 t 的值,若不存在,请 说明理由.
10 / 19
【解析】由题设知, CD =d-c=2b-3a, CE =e-c=(t-3)a+tb,C,D,E 三点在一条直线上的充
要条件是存在实数 k,使得 CE =k CD ,即(t-3)a+tb=-3ka+2kb, 整理得(t-3+3k)a=(2k-t)b.
t-3+3k=0, 因为 a,b 不共线,所以有 t-2k=0,
向量
零向量 单位向量
平行向量
相等向量 相反向量
3 / 19
考点 2
向量的线性运算 向量运算 定义 法则(或几何意义) 运算律 (1)交换律:a+b=b+a 加法 求两个向量和的运算 (2)结合律:(a+b)+c=a +(b+c) 减法 求 a 与 b 的相反向量-b 的 和的运算叫做 a 与 b 的差 (1)|λa|=|λ||a| 数乘 求实数 λ 与向量 a 的积的运 算 (2)当 λ>0 时,λa 与 a 的方向相同; 当 λ<0 时,λa 与 a 的方向相反;当 λ =0 时,λa=0 a-b=a+(-b)
λ(μ a)=(λ μ) a (λ+μ)a=λa+μ a λ(a+b)=λa+λb
4 / 19
考点 3
共线向量理
向量 a(a≠0)与 b 共线的充要条件是存在唯一一个实数 λ,使得 b=λa.
5 / 19
例题精析 【例题 1】 【题干】设 a0 为单位向量,①若 a 为平面内的某个向量,则 a=|a|a0;②若 a 与 a0 平行,则 a=|a|a0;
18 / 19
课程小结
(1)向量共线的充要条件中要注意“a≠0” ,否则λ可能不存在,也可能有无数个. (2)证明三点共线问题, 可用向量共线来解决, 但应注意向量共线与三点共线的区别与联系, 当两向量共线且有公共点时, 才能得出三点共线;另外,利用向量平行证明向量所 在直线平行,必须说明这两条直线不重合.
16 / 19
【拔高】 6.如图所示,在五边形 ABCDE 中,点 M、N、P、Q 分别是 AB、CD、BC、DE 的中点,K 和 L 分别是 MN 和 PQ 的 1 中点,求证: KL = AE . 4
17 / 19
7.设两个非零向量 e1 和 e2 不共线. (1)如果 AB =e1-e2, BC =3e1+2e2, CD =-8e1-2e2,求证:A、C、D 三点共线; (2)如果 AB =e1+e2, BC =2e1-3e2, CD =2e1-ke2,且 A、C、D 三点共线,求 k 的值.
6 解之得 t=5. 6 故存在实数 t=5使 C,D,E 三点在一条直线上.
11 / 19
课堂运用 【基础】 1.如图,已知 AB =a, AC =b, BD =3 DC ,用 a,b 表示 AD ,则 AD =( 3 A.a+ b 4 1 1 C.4a+4b 1 3 B. a+ b 4 4 3 1 D.4a+4b )
平面向量的概念及其线性运算
适用学科 适用区域 数学 新课标 鱼向量有关的基本概念、向量记法与表示 知 识 点 向量的加法运算及其几何意义、向量加法交换律与结合律 向量的减法运算及其几何意义、向量的数乘运算及其几何意义 向量的数乘运算律、两个向量共线的判定定理及其应用、用向量处理共线问题 1.了解向量的实际背景. 2.理解平面向量的概念,理解两个向量相等的含义. 学习目标 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解其几何意义. 5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 6.了解向量线性运算的性质及其几何意义. 学习重点 学习难点 三角函数的定义及应用,三角函数值符号的确定 三角函数的定义及应用 适用年级 课时时长 高三 60 分钟
③若 a 与 a0 平行且|a|=1,则 a=a0.上述命题中,假命题的个数是( A.0 B.1 C.2 D.3
)
6 / 19
【答案】D 【解析】向量是既有大小又有方向的量,a 与|a|a0 的模相同,但方向不一定相同,故①是假命题;若
a 与 a0 平行,则 a 与 a0 的方向有两种情况:一是同向,二是反向,反向时 a=-|a|a0,故②③也是假命 题.综上所述,假命题的个数是 3.
19 / 19
相关文档
最新文档