线粒体遗传病
线粒体遗传病(精)

Inheritance of Mitochondrailห้องสมุดไป่ตู้Diseases
第一节 线粒体DNA的结构特点与遗传特征
一、线粒体基因组 线粒体内含有DNA分子,被称为人类第25号染色体, 是细胞核以外含有遗传信息和表达系统的细胞器, 其遗传特点表现为非孟德尔遗传方式,又称核外遗 传。
1981年Anderson等人完成了人类线粒体基因 组的全部核苷酸序列的测定。
线粒体基因组特点: 线粒体基因组全长16569bp
不与组蛋白结合,呈裸露闭环双链状,外环为重链 (H),富含 G,T,内环为轻链( L),富含 A,C 编码区各基因之间排列极为紧凑,部分区域出现重 叠,无启动子和内含子 非编码区(D loop),1122bp,H链复制起始点,H 链和L链的启动子,保守序列
根据临床表现,将线粒体脑肌病分为:伴有破碎红 纤维的肌阵挛癫痫(MERRF)、线粒体脑疾病合并乳 酸血症及卒中样发作(MELAS) 、Kearns-Sayer综合征 (KSS) 、慢性进行性眼外肌瘫痪(CEPO) 、神经源 性肌软弱、共济失调并发色素性视网膜炎(NARP)和 Leigh综合征(LS)等几种。
Mitochondrial DNA
13个mRNA基因 线粒体氧化磷 酸有关的蛋白 质 2个rRNA基因 22个tRNA基因
1个细胞色素b基因
2个ATP酶复合体 成分基因 3个细胞色素c氧化酶 亚单位基因 7个NADH脱氢酶亚单位 的基因
16569bp编码 37 个基因
1.封闭性双链分子,外为H链,内为L链. 2.结构紧凑,无内含子,部分区域有重叠现象.
Parkinson disease
核基因突变引起的线粒体疾病
线粒体蛋白质转运的缺陷 基因组间交流的缺损
线粒体遗传病

高通量筛查技术的应用
高通量筛查技术能够同时检测多个样本,提高了 筛查效率,有助于线粒体遗传病的大规模筛查和 早期诊断。
新型治疗策略探索
基因治疗
基因治疗是线粒体遗传病治疗领域的研究热点,通过向患 者体内导入正常的线粒体基因或修复突变基因,以达到治 疗疾病的目的。
线粒体遗传病
演讲人:
日期:
目录
CONTENCT
• 线粒体遗传病概述 • 线粒体结构与功能 • 线粒体肌病 • 线粒体脑肌病 • 遗传咨询与产前诊断 • 研究进展与未来方向
01
线粒体遗传病概述
定义与发病机制
定义
线粒体遗传病是指由于线粒体DNA或核DNA缺陷导致线粒体结构 和功能障碍,ATP合成不足所引起的一组遗传性疾病。
病例分享与讨论
病例分享
某患者因肌无力、肌萎缩等症状就诊, 经肌肉活检和基因检测确诊为线粒体肌 病。经过药物治疗、运动疗法和饮食疗 法等综合治疗后,患者的症状得到一定 程度的改善。
VS
病例讨论
针对该病例,医生们就线粒体肌病的诊断 、治疗及预后评估等方面进行了深入讨论 。大家一致认为,对于线粒体肌病等遗传 性疾病,应加强科普宣传,提高公众对这 类疾病的认识和重视程度,以便更好地帮 助患者及其家庭应对疾病带来的挑战。
预后评估
线粒体遗传病的预后因病情严重程度、治疗及时与否等因素而异。一般来说,早 期发现、及时治疗可改善患者的预后。同时,患者的心理状况、家庭支持等也对 预后产生重要影响。
02
线粒体结构与功能
线粒体基本结构
外膜
平滑的膜结构,主要起界限作用,含有孔蛋白可允 许某些分子通过。
线粒体遗传病

第七章 线粒体疾病的遗传
整理ppt
1
本章节重点
掌握线粒体遗传、线粒体疾病、异质性、 阈值效应等基本概念
掌握线粒体DNA结构和遗传特点 ❖ 熟悉线粒体基因组和核基因组的关系 ❖ 了解线粒体病的类型及遗传机制
整理ppt
2
1894年,首次发现 1897年,正式命名为mitochondrion(线粒体)
野生型mtDNA和突变型mtDNA
整理ppt
13
三、阈值效应
异质型细胞的表现型依赖于细胞内突变型和野 生型mtDNA的相对比例,能够引起特定组织器官功 能障碍的突变mtDNA的最少数量称阈值。
突变型mtDNA的累积可使正常组织、器官的能 量供给减少。
整理ppt
14
能量
中枢神经系统、骨骼肌、心脏、胰腺、肾脏、肝脏
无数次分裂后?
细胞逐渐成为只有野生型mtDNA的纯质细胞
整理ppt
19
突变型mtDNA具有复制优势,在分裂不旺盛的细 胞中逐渐累积。形成只有突变型mtDNA的纯质细胞
整理ppt
20
第十二章 线粒体疾病
第一节 线粒体疾病的分类
生化分类
底物转运缺陷 底物利用缺陷 Krebs循环缺陷 电子传导缺陷 氧化磷酸化偶联缺陷
电镜下的线粒体
整理ppt
5
mtDNA的结构特征
人 mtDNA 是 一 个长为16,569 bp的 双链闭合环状分子, 外环含G较多,称 重链(H链),内环含 C 较 多 , 称 轻 链 (L 链)。
整理ppt
6
mtDNA结构紧凑, 没有启动子和内含子, 缺少终止密码子,仅以 U或UA结尾。
基因间隔区只有 87bp,占mtDNA总长度 的的0.5%。有两段非编 码区
第四章线粒体遗传病

• 线粒体病有累加效应因此线粒体病有 随着年龄的增加病情会越来越严重的特 征。
• 问题:什么叫阈值效应?
(六)mtDNA的突变率极高
mtDNA的突变率比核DNA高10~20倍。 但因为都是中性和中度有害的mtDNA的 突变,有害的突变会通过选择(例如遗传 瓶颈) 而消除,故线粒体遗传病并不常 见。
第二节 线粒体基因突变与线粒体基因病
•线粒体的代谢障碍,则不能产生足够的能量而导致 细胞功能衰退,出现一系列临床症候。人群患病率 约为1/8,500
线粒体基因突变
表现的临床特征:
线粒体突变导致的疾病主要累 及中枢和外周神经系统,肌病 和脑病症状。与贫血和糖尿病
等疾病也相关。
问题:线粒体疾病主要受累的器官是哪些
tRNALeu(UUR)
tRNALeu(UUR)
tRNALeu(UUR) tRNALeu(UUR)
tRNALeu(UUR)
tRNAIle
tRNAAsn
tRNALys tRNALys tRNAPro A6
ND4
ND1
ND1 COX1
ND6
Cyt6
表
型
MELAS/PEO/耳聋
PEO
MELAS
心肌病
心肌病/肌病 心肌病
遗传方式:多数是纯质性的母系遗传病,如是杂质 性的个体细胞中突变mtDNA超过96%时发病, 少于80%时男性病人症状不明显。受累器官主 要有中枢神经系统。
主要影响线粒体氧化磷酸化水平和产生ATP的能力。 通过引物PCR扩增后再酶切可诊断。
男性发病率为女性5倍,差异的原因还不清楚。
•
临床表现:为双侧视神 经严重萎缩引起的急性 或亚急性双侧中央视力 丧失,可伴有神经、心 血管、骨骼肌等系统异 常,如头痛、癫痫及心 律失常等。
第06章-线粒体遗传病

Complex Ⅰ Ⅱ Ⅲ Ⅳ
Subunits 41 4 11 13
Nuclear 34 4 10 10
mtDNA 7 0 1 3
ATPase
14
12
2
合计
87
70
13
(二)线粒体基因组所用的遗传密码
和通用密码不完全等同
Codon UGG UGA AGG AGA AUG AUA
Universal code Trp Stop Arg Arg Met Ile
含16569个碱基对。 外环为重链(H)富含G
12种多肽链 12S rRNA 16S rRNA 14种tRNA
内环为轻链(L)富含C
1种多肽链 8种tRNA
mtDNA共有37个 基2因种 编码
rRNA(12S和16S )基因
22种 编码 tRNA 基因
13种 编码 蛋白质 基因
Human mtDNA, a circular molecule that has been completely sequenced, is among the smallest known mtDNAs, containing 16,569 base pairs. It encodes the two rRNAs found in mitochondrial ribosomes and the 22 tRNAs used to translate mitochondrial mRNAs.
(一)线粒体蛋白输入缺陷 (二)底物运输缺陷 (三)底物利用缺陷 (四)铁运输缺陷 (五)电子传递链缺陷
mtDNA Trp Trp Stop Stop Met Met
(三)mtDNA为母系遗传
母亲将她的mtDNA 传递给儿子和女儿, 但只有女儿能将其 mtDNA传递给下一代。
第八章线粒体疾病ppt课件

熟悉: 线粒体遗传病的传递和发病规律;mtDNA的阈值 效应
了解: 线粒体的结构,线粒体疾病的分类。
人线粒体的结构
每个线粒体可含2-10条DNA链, 单个细胞内可存在多个线粒体。
线粒体的核糖体与原核生物相似, 对一些抗生素敏感,
线粒体可能是细胞内处于共生状态 的微生物独立进化而来
Lynn Margulis
线粒体的复制、转录、翻译都不依赖于细胞核DNA, 但 是
细胞核和线粒体在功能上相互依赖。
人线粒体DNA的结构
7445A>G
Reid et al, 1994
7510T>C
Tiranti et al, 1995
核基因突变引起的线粒体疾病
大量的参与线粒体功能活动的蛋白质是由核基因编码。 如,氧化磷酸化过程:≧69基因;线粒体编码其中13个。
每一个核DNA编码的线粒体蛋白在其N-末端通常有数十 个氨基酸组成的序列—靶序列。后者结合在线粒体外膜的 受体上,后者促使蛋白质从外膜进入膜间隙或进入基质,行 使诸多的功能:分子转运,底物代谢,氧化磷酸化,线粒体 DNA复制,维持DNA结构的稳定。 参与线粒体功能活动的细胞核基因突变可导致相应线粒体功 能的异常
Leber遗传性视神经病(LHON)的遗传异质性
在编码线粒体呼吸链蛋白(多肽)的线粒体基因中,至少有 18种错义突变直接和间接地导致LHON表型出现。 LHON分为两种类型: (1)单一突变导致LHON表型 (2)需要2次突变或其它变异才能产生临床表型 第一种类型中,90%以上病例存在有下列突变之一: MTND1*LHON3460A、MTND4*LHON11778A、 MTND6*LHON14484C, LHON家族中存在同质性和异质性,而异质性LHON中突变 线粒体DNA的阈值水平 70%。
线粒体遗传病名词解释医学遗传学

线粒体遗传病名词解释医学遗传学线粒体遗传病是由线粒体基因突变引起的一类遗传病。
线粒体是细胞内的一种器官,它担负着产生能量的重要功能,而线粒体基因的突变则会影响到线粒体的功能,从而导致一系列疾病。
线粒体遗传病具有母系遗传特点,即由母亲传递给下一代。
因为精子中的线粒体只有很少的个数,而卵细胞中含有丰富且重要的线粒体,因此线粒体病毒的传递主要与母亲有关。
线粒体病比较罕见,但影响严重且无法治愈,导致心脏病、肌肉病、失明等严重疾病。
目前已有一些研究表明,将健康的线粒体基因插入到患者的生殖细胞中,可避免线粒体病的遗传。
在临床实践中,一些病人可以通过饮食、运动等生活方式干预,降低线粒体病复发风险,或通过药物治疗,缓解疾病进展。
此外,科学家正在寻求新的治疗方法,包括基因编辑等技术,为线粒体病研究开拓了新的方向。
线 粒 体 遗 传 病

肌阵挛性癫痫和破碎红纤维病
(二)、遗传学基础
绝大部分病例是一种tRNA基因发生点突变的结果:
MTTK*MERRF8344G
MT表示线粒体基因突变, T代表转运RNA, K表示赖氨酸, 8344G表示该基因8344碱基位置的鸟嘌呤变异
肌阵挛性癫痫和破碎红纤维病
发生在转运RNA基因的这种突变影响了整个线
线 粒 体
电子传递链:由一系列能传递氢或电子的酶或辅酶组成, 它们按一定顺序排列在线粒体内膜上,组成传递氢或传递 电子的体系。这个体系进行的一系列连锁反应与细胞摄取 氧的呼吸过程有关,故又称为呼吸链。
线 粒 体
人线粒体呼吸链复合体
复合体 名称 亚单位数
复合体Ⅰ
复合体Ⅱ 复合体Ⅲ
NADH-泛醌还原酶
核基因突变引起电子传递链缺陷
引起电子传递链缺陷的
核基因突变主要发生在复
合体Ⅰ和复合体Ⅱ,通常 引起儿童期严重的神经系 统疾病。 如: NDUFS4基因突变
线粒体蛋白输入缺陷
丙酮酸脱羧酶:参 与构成丙酮酸脱氢 酶复合体,是由两 个α亚单位和两个β 亚单位组成的四聚 体。 丙酮酸脱羧酶前体 •成熟形式的蛋白质
线 粒 体 遗 传 病
华西基础医学与法医学院
法医物证教研室 颜 静
重要事件
1894年,Altmann在动物细胞中发现了线粒体, 线 称为生物芽体(bioblast) 粒 体 1897年,Benda将其命名为线粒体 (mitochondria) 线
1963年,Nass在鸡胚中发现线粒体DNA
线粒体DNA的突变率极高,约比核DNA高10 -20倍。
线粒体DNA缺少组蛋白的保护; 线粒体中没有DNA损伤的修复系统; 细胞中的线粒体DNA拷贝数多,且每个线粒体 基因组中的任何碱基都可能发生突变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线粒体疾病的遗传
一、线粒体的功能:
✧是细胞有氧呼吸的基地和供能的场所,供应细胞生命活动95%的能量
✧线粒体的主要功能是把氧化各种底物产生的自由能转化为可被细胞直接利用的形式
——ATP
✧细胞氧化(细胞呼吸)
✧无氧酵解:1分子葡萄糖→2ATP 线粒体有氧呼吸:1分子葡萄糖→36~38ATP
二、mtDNA的遗传特点:
1、具有复制半自主性。
(M染色体,25号染色体)
线粒体内含有DNA分子,被称为人类第25号染色体,是细胞核以外含有遗传信息和表达系统的细胞器,其遗传特点表现为非孟德尔遗传方式,又称核外遗传。
2、部分遗传密码与核DNA不同。
3、母系遗传。
(不符合经典遗传定律)。
精卵结合时,受精卵中的线粒体DNA几乎全都来自于卵子,来源于精子的mtDNA 对表型无明显作用,这种双亲信息的不等量表现决定了线粒体遗传病的传递方式不符合孟德尔遗传,而是表现为母系遗传(maternal inheritance),即母亲将mtDNA传递给她的儿子和女儿,但只有女儿能将其mtDNA传递给下一代。
4、在细胞分裂间期经过复制和分离。
细胞分裂时,突变型和野生型mtDNA发生分离,随机地分配到子细胞中,使子细胞拥有不同比例的突变型mtDNA分子。
5、具有阈值效应。
在克隆和测序的研究中发现一些个体同时存在两种或两种以上类型的mtDNA,这是由于mtDNA发生突变,导致一个细胞内同时存在野生型mtDNA和突变型mtDNA,称为“杂质”(heteroplasmy)。
野生型mtDNA对突变型mtDNA有保护和补偿作用,因此,mtDNA突变时并不立即产生严重后果。
突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。
阈值效应的一个表现就是在某些线粒体遗传病的家系中,有些个体起初并没有临床症状,但随年龄增加由于自发突变、环境选择等原因,突变型DNA逐渐积累,线粒体的能量代谢功能持续性下降,最终出现临床症状。
6、突变率极高(比核基因大10-20倍)。
A、突变率高的原因:
✧mtDNA中基因排列紧凑,任何突变都可能会影响到其基因组内的某一重要功能区域
✧mtDNA是裸露的分子,不与组蛋白结合
✧mtDNA位于线粒体内膜附近,直接暴露于呼吸链代谢产生的超氧离子和电子传递产
生的羟自由基中,极易受氧化损伤
✧mtDNA复制频率较高,复制时不对称
✧缺乏有效的DNA损伤修复能力
B、线粒体基因的突变:
✧碱基突变
⏹错义突变
⏹蛋白质生物合成基因突变
✧缺失、插入突变
✧MtRNA拷贝数目突变
⏹mtDNA数量减少
✧部分线粒体遗传病是核DNA与rtDNA联合作用的结果
三、nDNA和mtDNA的比较
核DNA mt DNA
存在部位细胞核细胞质
形态双螺旋闭环双链
碱基数(bp) 3.1 x 10916 569
编码基因数约2万个37个
基因拷贝数单拷贝成千上万
间隔顺序有无
突变频率低高(自身无修复机制)。